

This project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement No 833955

Project No. 833955

Project acronym: SDN-microSENSE

Project title:

SDN - microgrid reSilient Electrical eNergy SystEm

Deliverable D5.2
SS-IDPS System

Programme: H2020-SU-DS-2018
Start date of project: 01.05.2019
Duration: 36 months

Editor: ATOS

Due date of deliverable: 31/10/2020 Actual submission date: 30/10/2020

Ref. Ares(2020)6160636 - 30/10/2020

 D5.2
 Version 1.3

© SDN microSENSE consortium Page | 2
Public document

Deliverable Description:
Deliverable Name SS-IDPS System
Deliverable Number D5.2

Work Package WP 5

Associated Task T5.2
Covered Period M6

Due Date M18

Completion Date M18

Submission Date 30/10/2020

Deliverable Lead Partner ATOS

Deliverable Author(s) Rubén Trapero

Version 1.3

CHANGE CONTROL

DOCUMENT HISTORY

Version Date Change History Author(s) Organisation

0.1 15/06/2020 Initial ToC Ruben Trapero ATOS

0.2 7/8/2020 Section 3.2, Section 4
Jose Antonio Lopez
Montero

TECN

0.3 13/8/2020 Section 1 Ruben Trapero ATOS

0.4 15/09/2020
Section 2.2, Section
2.3, Section 2.4

Yannis Spyridis (0INF),
Panagiotis Radoglou-
Grammatikis (UOWM),
Elisavet Grigoriou (SID)

UOWM, 0INF, SID

0.5 16/09/2020
Annex I, Annex II,
Annex III

Yannis Spyridis (0INF),
Panagiotis Radoglou-
Grammatikis (UOWM),
Elisavet Grigoriou (SID)

UOWM, 0INF, SID

0.6 16/09/2020 Section 3.3 Ruben Trapero ATOS

0.7 17/09/2020 Section 3.2 Iñaki Angulo TECN

0.8 17/09/2020 Section 2.1
Iñaki Angulo (TECN)
Sofianna Menesidou (UBI)

TECN, UBI

0.8a 17/09/2020 Section 4 All All

0.9 17/09/2020
Executive Summary,
Conclusions, list of
acronyms

Ruben Trapero ATOS

1.0 30/09/2020
Version ready for
reviews

Ruben Trapero ATOS

Dissemination Level

PU Public X

PP Restricted to other programme participants (including the Commission Services)

RE Restricted to a group specified by the consortium (including the Commission Services)

CO Confidential, only for members of the consortium (including the Commission Services)

 D5.2
 Version 1.3

© SDN microSENSE consortium Page | 3
Public document

1.1 09/10/2020
Industrial and
academic reviews
addressed

Ruben Trapero ATOS

1.2 16/10/2020
SAB review
completed

Dave Raggett ERCIM

1.3 29/10/2020
QM and TM review
addressed

Ruben Trapero (ATOS),
Iñaki Angulo (TECN).
Panagiotis Radoglou-
Grammatikis (UOWM)

ATOS, TECN, UOWM

DISTRIBUTION LIST

Date Issue Group

28/10/2020 Revision ERCIM, CERTH, SID, SAB, TM, QM

29/10/2020 Acceptance ERCIM, CERTH, SID, SAB, TM, QM

30/10/2020 Submission ATOS

SAB APPROVAL

NAME INSTITUTION DATE

Dr. Dave Raggett ERCIM 16/10/2020

Academic and Industrial partner revision

NAME INSTITUTION DATE

Anastasis Drosou Academic partner: CERTH 08/10/2020

Anastasios Lytos Industrial partner: SID 08/10/2020

Quality and Technical manager revision

NAME INSTITUTION DATE

Dimos Ioannidis CERTH 26/10/2020

Anastasios Drosou CERTH 26/10/2020

 D5.2
 Version 1.3

© SDN microSENSE consortium Page | 4
Public document

Table of contents

Table of contents ...4

Table of figures ..6

Table of tables ...6

Acronyms ...7

Executive Summary ..8

1 Introduction ..9
1.1 Purpose of this Document ...9

1.2 Structure of this Document..9

1.3 Relation to other Tasks and Deliverables ... 10

1.4 Requirements analysis ... 10

2 Main protocols in the Electrical Power and Energy System domain12

2.1 IEC 61850 .. 12

2.1.1 Description .. 12

2.1.2 Main attacks .. 13

2.1.3 Attacking tools ... 14

2.1.4 Attacks detection ... 15

2.2 IEC 60870-5-101/104 ... 15

2.2.1 Description .. 15

2.2.2 Main attacks .. 17

2.2.3 Attacking Tools .. 18

2.2.4 Attacks detection ... 18

2.3 Modbus ... 20

2.3.1 Description .. 20

2.3.2 Main attacks .. 21

2.3.3 Attacking tools ... 22

2.3.4 Attacks detection ... 23

2.4 DNP3 ... 23

2.4.1 Description .. 23

2.4.2 Attacking tools ... 25

2.4.3 Attacks detection ... 25

3 Main detection tools ...27

 D5.2
 Version 1.3

© SDN microSENSE consortium Page | 5
Public document

3.1 Enhanced Suricata for EPES ... 27

3.1.1 Input data .. 29

3.1.2 Internals of the tool ... 29

3.1.3 Deployment ... 29

3.1.4 Output: connection to XL-SIEM, logs and taxonomy ... 30

3.2 SBT-Aware ... 31

3.2.1 Input data .. 32

3.2.2 Internals of the tool ... 33

3.2.2.1 SCL interpreter module .. 34

3.2.2.2 Pluggable detection engine module ... 37

3.2.2.3 Pluggable report launcher module ... 37

3.2.3 Deployment ... 37

3.2.3.1 SCL interpreter ... 37

3.2.3.2 Report launcher ... 38

3.2.3.3 Tools integration .. 38

3.2.4 Output: connection to XL-SIEM, logs and taxonomy ... 38

3.3 SDN-IDPS: Nightwatch ... 39

3.3.1 Input data from the SDN controller .. 40

3.3.2 Internals of the tool ... 40

3.3.3 Deployment ... 41

3.3.4 Output: connection to XL-SIEM, logs and taxonomy ... 41

4 Unit Testing and validation ..43
4.1 Modbus/TCP Unit Tests – Suricata ... 43

4.2 IEC104 Unit Tests – Suricata... 55

4.3 DNP3 Unit Tests – Suricata .. 62

4.4 IEC 61850 Unit Tests – STB-Aware ... 71

5 Innovation Summary ..75

6 Conclusions ...83

7 References ..84

Annex I: IEC104 Suricata Signature/Specification Rules...86

Annex II: Modbus/TCP Suricata Signature/Specification Rules ..96

Annex III: DNP3 Suricata Signature/Specification Rules .. 100

 D5.2
 Version 1.3

© SDN microSENSE consortium Page | 6
Public document

Table of figures

Figure 1. T5.2 components within WP5 architecture ...9

Figure 2. Links between D5.2 and the rest of deliverables and WPs ... 10

Figure 3. Security requirements, threats, and possible attacks [IEC62351]. 13

Figure 4. Modbus/TCP frame information [PLIATSIOS20] .. 20

Figure 5. Suricata output using JSON format ... 28

Figure 6. Suricata internals .. 29

Figure 7. SBT-Aware tool, including modules, I/O data and relevant actors 34

Figure 8. Defence in Depth for devices and for an IEC 61850 substation .. 35

Figure 9. Architecture of Nightwatch in SDN-microSENSE .. 41

Figure 10. Activation of the Modbus/TCP keywords testcase Modbus_Suricata_01 44

Figure 11. Pcap for modbus/function/readCoils attack for test case Modbus_Suricata_01 44

Figure 12. Activation of the Modbus/TCP keywords for test case Modbus_Suricata_02 46

Figure 13. Pcap for modbus/function/writeSingleCoils attack for test case Modbus_Suricata_02 47

Figure 14. Activation of Modbus/TCP keywords for test case Modbus_Suricata_03 49

Figure 15. Pcap for modbus/function/readInputRegister attack for test case Modbus_Suricata_03 .. 49

Figure 16. Activation of Modbus/TCP keywords for test case Modbus_Suricata_04 51

Figure 17. Pcap for modbus/function/writeSingleRegister attack for Modbus_Suricata_04 52

Figure 18. Activation of Modbus/TCP keywords for test case Modbus_Suricata_05 54

Figure 19. Pcap for modbus/function/readDiscreteInput attack for test case Modbus_Suricata_05.. 54

Figure 20. Pcap for UOWM IEC 60870-5-104 dataset for test case IEC104_Suricata_01 56

Figure 21. Pcap file of UOWM IEC 60870-5-104 dataset for test case IEC104_Suricata_02 58

Figure 22. Pcap file of UOWM IEC 60870-5-104 dataset for test case IEC104_Suricata_03 60

Figure 23. Pcap file of UOWM IEC 60870-5-104 dataset for test case IEC104_Suricata_04 62

Figure 24. Activation of the DNP3 keywords of Suricata for test case DNP3_Suricata_01 63

Figure 25. Pcap of [Pliatsios20] for test case DNP3_Suricata_01 .. 64

Figure 26. Activation of the DNP3 keywords of Suricata for test case DNP3_Suricata_02 65

Figure 27. Pcap of [Pliatsios20] for test case DNP3_Suricata_02 .. 66

Figure 28. Activation of the DNP3 keywords of Suricata for test case DNP3_Suricata_03 67

Figure 29. Pcap of [Pliatsios20] for test case DNP3_Suricata_03 .. 68

Figure 30. Activation of the DNP3 keywords of Suricata for test case DNP3_Suricata_04 69

Figure 31. Pcap of [Pliatsios20] for test case DNP3_Suricata_04 .. 70

Figure 32. sclCrawler output (XML containing CDATA for MMS) .. 72

Figure 33. Extract from sclCrawler otuput for bay 1 CID file ... 73

Figure 34. LUA script to add substation specific information ... 74

Figure 35. Alert launched when checking the state ... 74

Table of tables

Table 1. Standard IEC104 data types ... 16

Table 2. Description for Suricata logs .. 30

Table 3. Description for the Generic Threat Discovery log ... 38

Table 4 Description of the SBT Cybersecurity events log.. 39

https://atos365-my.sharepoint.com/personal/ruben_trapero_atos_net/Documents/Work/Projects/SDN-microSENSE/WP5/D5.2/SDNmicroSENSE_D5.2_SS-IDPSSystem_v1.3.docx#_Toc54940880

 D5.2
 Version 1.3

© SDN microSENSE consortium Page | 7
Public document

Table 5. Description for the threat discovery log ... 41

Table 6. Summary of protocols attacks and tools involved .. 75

Acronyms

Acronym Explanation

ADU Application Data Unit

APCI Application Protocol Control Information

APDU Application Protocol Data Unit

CASDU Common Address of ASDU

COT Cause of Transmission

DiD Defense in Depth

DNP3 Distributed Network Protocol Version 3.0

DoS Denial of Service

EPA Enhanced Performance Architecture

EPDS Energy Protection and Detection System

EPES Electrical Power and Energy System

FR Functional Requirement

GOOSE Generic Object-Oriented Substation Events

GR General Requirement

GSSE Generic Substation State Events

IDCM Intrusion Detection and Classification Module

IDS Intrusion Detection System

IEC International Electrotechnical Commission

IED Intelligent Electronic Device

ISO Open Systems Interconnection

MiTM Man-In-The-Middle

MMS Manufacturing Messaging Specification

NSE Nmap Scripting Engine

PDU Protocol Data Unit

RTU Remote terminal Unit

SCADA Supervisory Control and Data Acquisition

SCD Substation Configuration Description

SCL System Control Language

SDN Software Defined Network

SIEM Security Information and Event Manager

SMV Sampled Measured Values

UC Use Case

UR User Requirement

VSQ Variable Structure Qualifier

 D5.2
 Version 1.3

© SDN microSENSE consortium Page | 8
Public document

WAF Web Application Firewalls

WAN Wide Area Networks

Executive Summary
This deliverable is the second document of Work Package 5 (WP5) of SDN-microSENSE. WP5 focuses

on cybersecurity protection in the EPES domain, including components for the monitoring of EPES

infrastructures, detection of cyber incidents associated to application protocols commonly used EPES

networks (T5.1), the development of components for detecting cyber incidents linked to these

protocols (T5.2, T5.3, T5.4), and threat intelligence sharing capabilities within EPES (T5.4).

The content of this deliverable is focused on the results of task T5.2, describing the main threats

associated to the most popular protocols used in the EPES domain, including not just the insights of

those protocols but also the techniques to detect attacks associated to those threats. This document

continues with the work carried out in T5.1 and reported in D5.1, which was focused on the incident

detection as part of the XL-EDPS module. More specifically, this document details those components

that interconnects to the XL-EDPS, acting as detectors of some of the attacks described in this

document. This document is complemented with D5.3 (the output from T5.3) which details the

detection of some of the attacks described in this deliverable with AI based detection mechanisms,

and D5.4 (the output from T5.4), which details the detection of privacy related incidents.

More specifically, this document is structured in two parts. The 1st part describes the attacks, tools

and detection mechanisms associated to the protocols IEC61850, IEC60870-5-101/104, Modbus and

DNP3, extending the introduction included in D5.1 with more details related to mechanisms to detect

the incidents described.

The 2nd part of the deliverable details the three main tools that implement the detection techniques

described in the first part of the document: Nightwatch as an SDN-based IDPS, and SBT Aware and

Suricata as rule-based IDPSs. The attacks detected by these tools depends on their capabilities and

the protocols that are able to monitor.

 D5.2
 Version 1.3

© SDN microSENSE consortium Page | 9
Public document

1 Introduction

1.1 Purpose of this Document
This document details the results of task T5.2, which is focused on the development of incident

detection tools within EPES infrastructures. As it was introduced in D5.1 [SDN51], the XL-EPDS

evaluates events produced by incident detectors that are monitoring the EPES infrastructure,

triggering security alerts whenever a cyber-incident is identified. EPES operates upon a set of specific

communication protocols (i.e., DNP3 or Modbus) which are affected by cyber threats just as any other

ICT infrastructure. However, specific detectors are required to evaluate the cyber incidents associated

with those protocols. The components developed in T5.2, along with the components developed in

T5.3 and T5.4, cover the detection of cyber incidents associated with EPES related communication

protocols. Figure 1 represents the complete WP5 architecture, highlighting the components developed

in T5.2, which will be detailed in this document. Three main detectors are covered by this document

(Enhanced Suricata1, Data injection detector by Tecnalia and Nightwatch2). These detectors feed from

network traffic monitored from the EPES infrastructure (such is the case of Suricata) or from logs

captured from an SDN controller in the case of the Nightwatch detector acting as an SDN based IDPS.

Additionally, as also depicted in Figure 1, there is also interaction between T5.2 components and the

XL-SIEM, not just to feed it with events, but also as input for the Nightwatch detector, which also needs

additional events generated by other detectors (i.e., honeypots).

1.2 Structure of this Document
This document is structured as follows:

• Section 2 is focused on the detailed description of the communication and industrial protocols

widely used in EPES operations and their associated threats

• Section 3 details IDPS detectors developed in T5.2 capable of detecting the incidents described

in Section 2.

• Section 4 details the unit testing to validate the mechanisms described in Section 2.

• Section 5 summarizes the main innovations developed in this task.

1 https://suricata-ids.org/
2 https://www.cyberlens.eu/nightwatch/

Figure 1. T5.2 components within WP5 architecture

 D5.2
 Version 1.3

© SDN microSENSE consortium Page | 10
Public document

• Section 6 concludes the document.

1.3 Relation to other Tasks and Deliverables
The following tasks and deliverables are related to the current report:

• D2.2 [SDN22], where the requirements of the SDN-microSENSE platform are elicited

• D2.3 [SDN23] that describes the SDN-microSENSE architecture

• D2.4 [SDN24] that describes the validation methodology and the list of threats and attacks

associated to every pilot and use case

• D3.3 [SDN33], where the output from the honeypots developed in WP3 are described and used

as input for the Nightwatch component described in Section 3.1.

• D5.1 [SDN51], where the XL-EPDS is described, detailing the interfaces available at the XL-SIEM

for receiving events produced by T5.2 detectors. The communication protocols deeply

described in this document were also introduced in D5.1.

• D5.3 [SDN53], that details the machine learning based detectors that allows to detect the

cyber-incidents described in Section 2.

Those three deliverables are the ones that are directly related, although there are additional ones that

also, to some extent, related, such as D5.4 [SDN54] and D5.5 [SDN55]

Figure 2. Links between D5.2 and the rest of deliverables and WPs

1.4 Requirements analysis
The following requirements elicited from D2.2 are covered by the components described in this

document.

Functional Requirements General Requirements

FR-GR-05, related to the ability to provide network flow metrics from network data
FR-GR-12, related to the collection of security events

D5.2

D2.2

D2.3

D2.4

D3.3 D5.1

D5.3

D5.4

D5.5 WP2

WP3

WP5

 D5.2
 Version 1.3

© SDN microSENSE consortium Page | 11
Public document

Functional Requirements User Requirements

FR-UR-03 to 13 related to the detection of cyberattacks associated to different types of protocols
FR-UR-16, related to the discrimination of various types of cyberattacks

Functional Requirements Use Case Requirements

FR-UC1-01 to 03, which cover cyber-attacks to SCADAs logical interface under the Use Case 1
FR-UC1-04 to 07, which cover cyber-attacks to the Station Bus network under the Use Case 1
FR-UC1-08 to 11, which cover cyber-attacks against the process control bus
FR-UC3-01, which cover the defence against coordinated attacks scenarios in the Islanding Use
Case 3.

Non-Functional requirements

All non-functional requirements refined in Table 12 of D2.2 are covered by this deliverable

The following sections describe the results of this task. The deliverable is structured in two main parts.

The first part, covered by Section 2, describe in detail the main communication and industrial protocols

commonly used in the EPES domain, focused from the cybersecurity point of view, indicating their

weak points from a cybersecurity perspective, the main attacks threatening these protocols and the

techniques to detect them.

The second part, covered by Section 3, details the technologies developed or adapted by SDN-

microSENSE partners for detecting the attacks described in Section 2. In this part it is described how

the mechanisms detailed in Section 2 are implemented and incorporated to these tools. As part of

WP7 activities these tools will be integrated in the SDN-microSENSE platform and interconnected to

the XL-SIEM derived from Task 5.1.

The final part of the document describes other aspects related to the results obtained in Task 5.2, such

as the unit testing carried out (described in Section 4) and the innovation summary described in Section

5.

 D5.2
 Version 1.3

© SDN microSENSE consortium Page | 12
Public document

2 Main protocols in the Electrical Power and Energy System domain
This section extends the description included in Section 4 of deliverable D5.1, related to the detection

of the attacks described there. The following subsections detail the insights of the main protocols in

the EPES domain, and the strategies to monitor them and detect incidents associated with these

protocols.

2.1 IEC 61850

2.1.1 Description
As described in deliverable D5.1 [SDN51], the objective of the IEC 61850 was the definition of an

international standard for the automation of the control, protection and measurement functions of a

substation. IEC 61850 is used for interactions with field equipment, including protective relaying,

substation automation, distribution automation, power quality, distributed energy resources,

substation to control centre, and other power industry operational functions. It also includes profiles

to meet the ultra-fast response times of protective relaying and for the sampling of measured values.

The IEC 61850 stack consists of four types of messages:

• Manufacturing Messaging Specification (MMS). It is the client-server communication that

takes place between the servers (the protection and control devices) and the SCADA and

GATEWAY acting as clients. The protocol used in this exchange use the MMS protocol

(Manufacturing Message Specification) that is depicted in the standard ISO 9506. This protocol

was developed for industrial automation, and it is one of the first protocols that identify data

with hierarchies of names. The communication is based on the OSI layered model over TCP/IP.

A TCP channel is created between each client and each server. Over this channel, the client

can read data, force settings, request commands or receive spontaneous reporting. A SCADA

system will keep open as many TCP/IP channels as servers it is monitoring [IEC61850].

• Generic Substation State Events (GSSE) and Generic Object-Oriented Substation Events

(GOOSE). Fast and reliable system-wide distribution of data based on a publisher-subscriber

model. This model is used for real-time transmission of critical events (GOOSE messages).

• Sampled Measured Values (SMV) model for multicast measurement values. This model is used

to provide rapid communication of measurement, protection and control values. It works

through Ethernet (Layer 2 OSI) following a publisher-subscriber model.

Elaborated by the IEC Technical Committee 57 (IEC TC57), IEC 61850 did not consider initially

cybersecurity aspects in its definitions. Because of this, communication protocols (MMS, GOOSE, GSSE,

SMV) have rarely incorporated any security measures, including security against inadvertent errors,

power system equipment malfunctions, communications equipment failures, or deliberate sabotage

[IEC62351]. The IEC 62351 (Power systems management and associated information exchange - Data

and communications security), incorporates cybersecurity capabilities in the IEC TC57 electrical

protocols [IECTC57]. The different security objectives include authentication in the transfer of data

through digital signatures, guaranteeing only authenticated access, eavesdropping prevention,

spoofing prevention, or intrusion detection.

 D5.2
 Version 1.3

© SDN microSENSE consortium Page | 13
Public document

2.1.2 Main attacks
The Figure 3 references to the IEC 62351-1 specification and presents a set of cyberattacks that are

likely to occur in an electrical environment. Furthermore, it provides a relationship between

cyberattacks and threats, depending on whether they threaten the confidentiality, integrity,

availability or non-repudiation of an IED.

Figure 3. Security requirements, threats, and possible attacks [IEC62351].

The most typical attacks to an IED are the following:

• Deny of Service (DOS). The most common is to saturate the communication channels.

However, it can also be accomplished by injecting invalid firmware or configuration or by

inserting a malicious program to stop internal daemons.

• Access to the IED for theft of information.

• Identity Fraud. Take the control of an IED to generate unauthorised actions in the electrical

components of a substation (for example to generate a blackout), provide wrong information

to the SCADA of the control room, or to get access to other EIDs.

• Message injection. A MiTM attack that intercept authorised messages from the control room

and replay them to make the IED behave anomalously.

Most of these attacks use a specific mechanism to achieve their malicious purpose, these attack

mechanisms are categorized by CAPEC3 and the attacks listed above belong to the following categories:

3 https://capec.mitre.org/data/definitions/1000.html

https://capec.mitre.org/data/definitions/1000.html

 D5.2
 Version 1.3

© SDN microSENSE consortium Page | 14
Public document

• Abuse Existing Functionality

• Engage in Deceptive Interactions

• Manipulate Data Structures

• Inject Unexpected Items

Among the three IEC 61850 protocols, one is devoted to inter-IED high-speed information exchange:

GOOSE (Generic Object-Oriented Substation Event). To meet IEC 61850 standard requirements its end-

to-end transfer time must be less than 4ms. This time-critical specification explains GOOSE

implementation as an Ethernet Link layer-based protocol (mapped on ISO/IEC 8802-3): GOOSE

messages are broadcasted over the Ethernet network, IEDs that need a specific-GOOSE message

content must have been subscribed to it at configuration time of the substation. To ensure reliability

of such communications, message publication follows a periodical mechanism: in stable conditions,

the same information is published within a standard period T0. When a data item changes, its new

value is sent at a higher frequency, then publication rhythm progressively slows down back to stable

conditions. Regarding the cybersecurity tools, an attacking computer is connected to the high-speed

real-time network and launches false data injection and spoofing GOOSE attacks [Kabir16].

2.1.3 Attacking tools
Strictly speaking, an IEC 61850 attack would be an attack to specific protocols i.e. MMS, GOOSE, PTP,

HSR, sending messages that the IEC 61850 components would eventually understand. Therefore, it can

be made only by a specific component which is able to spoof a real device or to inject IEC 61850

messages. For example, for a MITM successful attack, the real components (source and destination)

must rely on the malicious software/component in the middle. Therefore, as a first step, conventional

attacks (DoS for the service and ARP Spoofing for the client) must be launched. Once the control is

taken, the second step is a malware injecting/modifying messages into the IEC 61850 communication

channels.

The cybersecurity tools include an attack generation station and a network analyzer. Usually starting

from the highest level which is the operating system we will use Kali Linux which includes all the

required tools and services to help successfully simulate an attack against IEC 61850 Protocol.

Moreover, we can use the Kali Linux built in and famous network analyzer which is Wireshark.

In the following list, the most common attacking tools are described:

• Metasploit4. Based on the "exploit" concept, this tool contains code which can circumvent

security measurements and break into the system. It is a commercial product, but a free

version is available.

• W3af5. Open Source framework for scanning Web Applications. It detects vulnerabilities such

as SQL injection, cross-site scripting, application errors and PHP misconfigurations

• Nmap6. This tool looks for open ports in a system or entire network

• Hydra7. This application is designed for brute force attacks even for multiple protocols. It has

both command line and graphic interfaces.

4 https://www.metasploit.com/
5 http://w3af.org/
6 https://nmap.org/
7 https://github.com/vanhauser-thc/thc-hydra

https://www.metasploit.com/
http://w3af.org/
https://nmap.org/
https://github.com/vanhauser-thc/thc-hydra

 D5.2
 Version 1.3

© SDN microSENSE consortium Page | 15
Public document

• Wafw00f8. This software detects whether a component has WAF (Web Application Firewalls)

or not

• Ettercap9. A network sniffer which allows filters to exploit only the desired vulnerabilities. It

allows attacks such as spoofing, MITM or DoS. It has both command line and graphic interfaces.

• Siege10. This application is designed for load testing in servers, but it is usually used in Denial

of Service attacks by hackers.

• Slowloris11. Application for performing DoS. It keeps the connections opened for multiple and

simultaneous invocations.

• hping312. Among other functionalities, it allows to send thousands of packets per second, even

simulating different source addresses. It allows perform DoS not only of the targeted device,

but the complete network as well.

Note: Although IEC 61850 does not include any HTTP-based protocol, some tools listed above exploit

it. This is the reason why some of these tools are available in the previous list.

2.1.4 Attacks detection
One of the most important mechanisms to detect the aforementioned attacks is with Intrusion

Detection Systems, which are based on the identification of signatures associated to the attacks to

detect. The IDS usually lie in the same network as the system which is being attacked.

As any IDS, the Error! Reference source not found. described in Error! Reference source not found.

detects the attacks described in Error! Reference source not found., however, after a successful

attack, valid IEC 61850 messages are present in the Ethernet network. Therefore, it is more difficult to

detect malicious messages unless the IDS can understand the application protocols, the substation

(electric and network) topology, as well as its configuration. The Error! Reference source not found.,

described in section Error! Reference source not found., adds extra information concerning substation

components (named logical and physical devices in IEC 61850). This way, the Error! Reference source

not found. is more robust because it also detects not allowed operations for the specific substation.

Another possible solution is with the usage of a SIEM, used to collect all required logs and add the

policies and rules required to detect such attacks.

Finally, a combination of a honeypot and a SIEM could be the best solution to catch an attack before

it makes real damage to the infrastructure. The honeypot imitates the function of the real

infrastructure and it provides the time for the SIEM to catch the actual attack before the attacker

understand that the system which is focusing is not the real one.

2.2 IEC 60870-5-101/104

2.2.1 Description
IEC-60870-5-104 [IEC60870-104] also called for short IEC104, is an international standard released in

2000 by IEC and it is often used in electrical industries in Europe. Its application layer is based on

IEC101. IEC104 enables the communication between the control station and the substation using

8 https://github.com/EnableSecurity/wafw00f
9 https://www.ettercap-project.org/
10 https://linux.die.net/man/1/siege
11 https://github.com/gkbrk/slowloris
12 https://tools.kali.org/information-gathering/hping3

https://github.com/EnableSecurity/wafw00f
https://www.ettercap-project.org/
https://linux.die.net/man/1/siege
https://github.com/gkbrk/slowloris
https://tools.kali.org/information-gathering/hping3

 D5.2
 Version 1.3

© SDN microSENSE consortium Page | 16
Public document

TCP/IP. Its advantage is that it enables communication using a standard network, which allows

simultaneous data transmission between several devices and services.

The messages that are sent by IEC101 use one of the two directions of the communication, (i) control

direction from the control station to the RTU transported using data types with TypeIDs begging with

“C_”, or (ii) monitor direction from RTU to the control station and these are transported using data

types with TypeIDs begging with “M_”. The standard IEC104 data types are presented in Table 1.

An IEC104 packet is called Application Protocol Data Unit (APDU), and it contains a header called

Application Protocol Control Information (APCI).

There are three types of filed formats, (i) I-format to perform numbered information transfer and

consist additionally the Application Service Data Unit (ASDU) that determines the type of function they

carry i.e. the TypeID, (ii) S-format to perform numbered supervisory functions, and (iii) U-format to

perform unnumbered control functions, which are built from the APCI.

All the ASDU structures include a common header to identify the following, (i) Type Identification (TI)

identifies the ASDU and then its format and its content, (ii) Variable Structure Qualifier (VSQ) describes

how the information objects are organized, (iii) Cause of Transmission (COT) includes the reason for

sending the ASDU and one byte with an identifier of the control centre, (iv) Common Address of ASDU

(CASDU) used to identify the data in the system and (v) Information objects include the content of the

requested service or the notified information.

Table 1. Standard IEC104 data types

3 M_DP_NA_1 Double point information

5 M_ST_NA_1 Step position information

7 M_BO_NA_1 Bit string of 32 bit

9 M_ME_NA_1 Measured value, normalized value

11 M_ME_NB_1 Measured value, scaled value

13 M_ME_NC_1 Measured value, short floating point value

15 M_IT_NA_1 Integrated totals

20 M_SP_NA_1 Packed single-point information with status change detection

21 M_ME_ND_1 Measured value, normalized value without quality descriptor

45 C_SC_NA_1 Single command

46 C_DC_NA_1 Double command

47 C_RC_NA_1 Regulating step command

48 C_SE_NA_1 Setpoint command, normalized value

49 C_SE_NB_1 Setpoint command, scaled value

50 C_SE_NC_1 Setpoint command, short floating point value

51 C_BO_NA_1 Bit string 32 bit

70 M_EI_NA_1 End of initialization

100 C_IC_NA_1 (General-) Interrogation command

101 C_CI_NA_1 Counter interrogation command

102 C_RD_NA_1 Read command

103 C_CS_NA_1 Clock synchronization command

104 C_TS_NB_1 (IEC 101) Test command

 D5.2
 Version 1.3

© SDN microSENSE consortium Page | 17
Public document

105 C_RP_NC_1 Reset process command

106 C_CD_NA_1 (IEC 101) Delay acquisition command

110 P_ME_NA_1 Parameter of measured value, normalized value

111 P_ME_NB_1 Parameter of measured value, scaled value

112 P_ME_NC_1 Parameter of measured value, short floating point value

113 P_AC_NA_1 Parameter activation

120 F_FR_NA_1 File ready

121 F_SR_NA_1 Section ready

122 F_SC_NA_1 Call directory, select file, call file, call section

123 F_LS_NA_1 Last section, last segment

124 F_AF_NA_1 Ack file, Ack section

125 F_SG_NA_1 Segment

126 F_DR_TA_1 Directory

127 F_SC_NB_1 QueryLog – Request archive file

The TypeIDs described above, it is possible to parse traffic containing the most commonly used

functions.

2.2.2 Main attacks
With recent malware developed to abuse the lack of security mechanisms in IEC104, it is important to

include real-time monitoring capabilities for this protocol. By making this parser available, the target

is to share a practical solution for packet inspection, which will enable research with respect to

monitoring and intrusion detection of the IEC104 based on the SDN-microSENSE user requirements

defined in D2.1 are the following:

(1) Attempt to identify IEC104 ICS protocol.

(2) IEC104 DoS attack that sends continuously malicious IEC104 packets to the target system.

(3) Malicious IEC104 commands. Various kinds of IEC104 commands are executed to the target

system.

In particular, the following attacks can be directly performed against IEC-104.

• M_SP_NA_1_DoS: It is a packet flooding attack. The M_SP_NA_1 is a Single-point information

without time tag command in the Monitor Direction. The specific cyberattack sends

continually to the target system M_SP_NA_1 packets. The aim is to generate a possible

malfunction to the MTU, confuse the system operator or even disrupt the operation of MTU.

The configured PLC transmits M_SP_NA_1 command to MTU per second.

• C_SE_NA_1_DoS: It is a packet flooding attack. The C_SE_NA_1 is a Set-point Command with

normalized value in the Control Direction. This cyberattack floods the target with C_SE_NA_1

packets. The aim is to generate a possible malfunction to the MTU, confuse the system

operator or even disrupt the operation of MTU. The configured PLC transmits C_SE_NA_1

command to MTU per second.

• C_SC_NA_1_DoS: It is a packet flooding attack. The C_SC_NA_1 command is Single command

in the Control Direction. Similarly, this attack sends continuously to the target system

C_SC_NA_1_packets. The aim is to generate a possible malfunction to the MTU, confuse the

 D5.2
 Version 1.3

© SDN microSENSE consortium Page | 18
Public document

system operator or even disrupt the operation of MTU. The configured PLC transmits

C_SC_NA_1 command to MTU per second.

• C_SE_NA_1: The C_SE_NA_1 is a Set-point Command with normalized value in the Control

Direction This cyberattack constitutes and unauthorised access, transmitting to the target

system C_SE_NA_1 packets. An authorized client sends a Control command to a Server using

the C_SE_NA_1. The unauthorized client is created by modifying the static IP of the authorized

client, in order not to be recognized as part of the recognized network.

• C_CI_NA_1: The C_CI_NA_1 is a Counter Interrogation command in the Control Direction. This

cyberattack send unauthorised C_CI_NA_1 packets to the target system. It’s an unauthorized

access attack. Normally, an unauthorized user should not be able to communicate with PLC.

However, IEC104 does not provide any authentication mechanism. To emulate this attack, the

IP address of the attacker is modified appropriately, in order not to be considered as a member

of the network.

• C_SC_NA_1: The C_SC_NA_1 command is Single command in the Control Direction. This

cyberattack is another unauthorised access attempt related to IEC-104, transmitting

C_SC_NA_1 packets to the target. An authorized client sends a Control command to a Server

using the C_SC_NA_1. The unauthorized client is created by modifying the static IP of the

authorized client, in order not to be recognized as part of the recognized network.

• C_CI_NA_1_DoS: It is a packet flooding attack. The C_CI_NA_1 is a Counter Interrogation

command in the Control Direction. This cyberattacks constitutes a DoS related to IEC-104,

transmitting continuously C_CI_NA_1 packets to the target system. The aim is to generate a

possible malfunction to the MTU, confuse the system operator or even disrupt the operation

of MTU. The configured PLC transmits C_CI_NA_1 command to MTU per second.

2.2.3 Attacking Tools
As penetration testing tool, Scapy13 was used in order to test and assess the vulnerabilities of IEC104:

Any cyber infrastructure is an integral part of a network. For the networking aspect of pentesting and

other security assessment tasks such as Nmap, tcpdump, arppoof, there are numerous tools available,

but one tool that stands out is Scapy. The most important thing is that it can also be used as a library

in the Python programs that allow the pentester to generate its own tool according to the demand.

Scapy is a powerful interactive packet manipulation tool written in Python. It helps us to analyze

packets, to build, send and slice.

2.2.4 Attacks detection
The tools that are used were the Suricata and “SID iec104 rules generator” (SIREN). Suricata is used to

detect IEC104-related cyberattacks in the sense of Task 5.2 / D5.2. The SIREN is able to load a pcap file

with normal traffic, identify the packets and their formats i.e. i-format, u-format, s-format and create

a file with IEC104 rules for Suricata, using Scapy. Recent studies have demonstrated the efficacy of

Suricata to detect effectively cyberattacks against IEC104. Some remarkable cases are listed in

[Radoglou-Grammatikis19] and [Yang17].

13 https://github.com/Feanaur/Scapy-Pentest

 D5.2
 Version 1.3

© SDN microSENSE consortium Page | 19
Public document

SIREN (SID iec104 rules generator)

STEP1: Define the pcap file

STEP2: Run the SIREN python script.

STEP3: Open the “IEC104_Rules.txt” file with the identified rules.

STEP4: Validate that only these rules exist to the pcap file.

In the context of D5.2, Suricata and SIREN were used to implement the respective unit tests related to

the detection tools provided by Task 5.2/D5.2. Unique IEC104 rules were found for this reason and

provided by Annex1. In this respect, Suricata checked the applicability and validity of the rules and

described in Section 4 (Unit Tests).

The following example present an alert message of Suricata regarding the detection of a IEC104

cyberattack. This message is sent to the XL-SIEM agent, which undertakes to normalise it, thus

producing the respective security alert.

{"timestamp":"2020-04-

28T21:24:59.491102+0300","flow_id":375306941721969,"pcap_cnt":6956,"event_type":"alert","src_ip":"X.X.X

.28","src_port":XXX9,"dest_ip":"X.X.X.21","dest_port":XXX4,"proto":"TCP","flow":{"pkts_toserver":6,"pkts_tocl

 D5.2
 Version 1.3

© SDN microSENSE consortium Page | 20
Public document

ient":3,"bytes_toserver":426,"bytes_toclient":228,"start":"2020-04-

28T21:24:49.355697+0300"},"alert":{"action":"allowed","gid":1,"signature_id":52171,"rev":1,"signature":"PRO

TOCOL-SCADA IEC 104 C_SC_NA_1","category":"Generic Protocol Command Decode","severity":3}}

2.3 Modbus

2.3.1 Description
Modbus is an industrial communication protocol utilised widely by SCADA systems in the energy sector

due to its simplicity, easy deployment and open specifications. Figure 4 depicts the reference structure

of Modbus, which is provided through two versions a) serial communication (Modbus/RTU) and b)

TCP/IP (Modbus/TCP). In particular, the general Modbus frame is called Application Data Unit (ADU),

which in turn consists of a) the Protocol Data Unit (PDU), b) Addressing and c) Error Checking. PDU

encloses the primary information of the Modbus packets, including the function code and the

respective data [PLIATSIOS20]. Each function code defines a different functionality. The whitepaper

[Modbus15] summarises and details the available Modbus function codes and their necessary data. It

is noteworthy that each manufacturer and programmer has the capability to develop its own Modbus

function codes. On the other side, the addressing and error checking functionalities rely on the Modbus

version (i.e., a) Modbus/RTU or b) Modbus/TCP). In the Modbus RTU version, the master and each

slave are characterised by unique IDs while the error checking is achieved through Cyclic Redundancy

Check (CRC). On the other hand, in the Modbus/TCP version, the Slave ID field is replaced by the

Modbus Application Protocol (MBAP) header, which in turn includes a) the Transaction Identifier, b)

the Protocol Identifier, c) Length and d) Unit Identifier. The protocol identifier is always equal to zero

for the current Modbus services, and other values are reserved for potential extensions. Length

indicates the size of the remaining field, including Unit ID, Function Code and Data. The Unit ID is used

for serial connecting to a Modbus device which does not use the Modbus/TCP version. Finally, the

error checking functionality was replaced by the corresponding mechanisms of TCP/IP. It is worth

mentioning that based on the SDN-microSENSE user requirements and the technical specification

defined in D2.2 and D2.3, respectively, D5.2 focuses mainly on Modbus/TCP.

Figure 4. Modbus/TCP frame information [PLIATSIOS20]

 D5.2
 Version 1.3

© SDN microSENSE consortium Page | 21
Public document

2.3.2 Main attacks
Modbus/RTU and Modbus/TCP are characterised by severe security issues since they were not

constructed having cybersecurity in mind. In particular, they do not include sufficient authentication

and access control rules, thus allowing a plethora of unauthorised access and MiTM attacks. P. Huitsing

et al. in [Huitsing08] summarise and describe the various attacks against Modbus RTU and Modbus

TCP. Based on the SDN-microSENSE user requirements defined in D2.1, WP5 focuses mainly on the

following Modbus/TCP cyberattacks.

• modbus/function/readInputRegister (DoS): This Modbus/TCP attack sends continuously a

plethora of Modbus/TCP packets with the function code 04 (Modbus Read Input Register

packet) to the target system, thus aiming to corrupt its availability.

• modbus/function/writeSingleCoils: This unauthorised access Modbus/TCP attack takes full

advantage of the lack of authentication and authorisation mechanisms by changing the status

of single coil either to ON or OFF through a Modbus/TCP packet with the function code 05.

• modbus/scanner/getfunc: This reconnaissance Modbus/TCP attack enumerates all

Modbus/TCP function codes supported by the target system. Usually, it constitutes the first

step when a cyberattacker tries to exploit the vulnerabilities of the Modbus/TCP protocol.

Based on the outcome, the cyberattacker can proceed to unauthorised access, Man-in-The-

Middle (MiTM) or Denial of Service (DoS) attacks targeting the corresponding Modbus/TCP

services (Modbus/TCP function codes).

• modbus/dos/writeSingleRegister: This DoS Modbus/TCP attack transmits continuously

Modbus/TCP packets with the function code 06 to the target system. The goal of the

cyberattacker is to affect the availability of the target. The particular Modbus/TCP function

code is used to write a single register in the TCP server Modbus device (e.g., slave device).

• modbus/function/readDiscreteInputs (DoS): This DoS Modbus/TCP cyberattacks sends a

plethora of Modbus/TCP packets with the function code 02. The specific function code is

utilised to read the status of the discrete inputs of a Modbus/TCP server. As in the previous

case, the cyberattack aims to disrupt the availability of the Modbus/TCP server.

• modbus/function/readHoldingRegister (DoS): This Modbus/TCP cyberattack also targets the

availability of a Modbus/TCP device by sending multiple Modbus/TCP packets with the

function code 03. This function code is used to read the content of a holding register.

• modbus/function/readCoils (DoS): As in the previous cases, this Modbus/TCP cyberattack is

another DoS attack, which exploits in this time the function code 01. The attacker sends

continuously to the target system a plethora of Modbus/TCP packets with the function code

01 that read the status of a single coil.

• modbus/function/readInputRegister: This unauthorised access Modbus/TCP cyberattack

aims to violate the confidentiality of a Modbus/TCP input register by reading its content. Since

Modbus/TCP does not include any authentication or authorisation mechanism, the

cyberattackers have the capability to execute such cyberattacks in order to read or change the

content of the various Modbus/TCP registers without the necessary permissions.

 D5.2
 Version 1.3

© SDN microSENSE consortium Page | 22
Public document

• modbus/function/writeSingleRegister: This unauthorised access Modbus/TCP cyberattack

targets both the confidentiality and integrity of a Modbus/TCP single register by sending a

Modbus/TCP packet with the function code 06, thus changing its content.

• modbus/dos/writeSingleCoils: This DoS Modbus/TCP cyberattack is another DoS attack,

which uses the Modbus/TCP packets with the function code 05. The specific function code is

used to change the value of a single coil to ON or OFF.

• modbus/function/readDiscreteInput: This Modbus/TCP unauthorised access cyberattack

violates the confidentiality of a Modbus/TCP device by reading the content of multiple discrete

inputs. It uses Modbus/TCP packets with the function code 02.

• modbus/scanner/uid: This Modbus/TCP reconnaissance cyberattack enumerates the slave IDs

supported by the target system. As in the case of modbus/scanner/getfunc, it usually

constitutes the first step for other cyberattacks targeting Modbus/TCP. Based on the available

slave IDs given by this cyberattack, next, the cyber attacker can adapt and specify the following

cyberattacks (e.g., unauthorised access cyberattacks).

• modbus/function/readCoils: This Modbus/TCP unauthorised access cyberattack accesses the

content of a single coil. To this end, a Modbus/TCP packet with the function code 01 is utilised.

• modbus/function/readHoldingRegister: It constitutes the most usual unauthorised access

attack against Modbus/TCP targeting the content of a holding register via a Modbus/TCP

packet with the function code 03.

2.3.3 Attacking tools
Several penetration testing tools have been developed in order to test and assess the vulnerabilities

of Modbus/TCP. The most widely used of them are summarised below.

• SMOD: SMOD [Radoglou-Grammatikis20+1] is a pen-testing tool devoted to Modbus RTU and

Modbus/TCP, including multiple Modbus-related cyberattacks. It relies on Python and Scapy.

Its functional environment is very similar to Metasploit.

• UOWM SMOD: UOWM SMOD is an extension of the aforementioned SMOD tool developed

by UOWM [Radoglou-Grammatikis20+1], incorporating more experimental Modbus/TCP-

related cyberattacks, such as a) teardrop, b) port pool exhaustion, c) response delay and d)

baseline response delay.

• Metasploit: Metasploit14 includes several modules devoted to Modbus, such as a)

modbus_findunitid, b) modbusdetect, c) modbus_zip and d) modbusclient. The first one

transmits a Modbus/TCP packet with the function code 04 (Read Input Registers) and returns

the Unit ID of the Modbus endpoint. The second module (modbusdetect) detects whether

Modbus is used by the target system. Next, modbuszip extracts from a pcap file a ZIP file which

was transmitted via Modbus. Finally, modbusclient enables the penetration tester or the

cyberattacker to read and write appropriate data via Modbus.

• mbtget: mbtget15 is a Modbus/TCP client written in Perl which enables a plethora of

Modbus/TCP transactions.

14 https://www.rapid7.com/db/?q=modbus&type=metasploit
15 https://nmap.org/nsedoc/scripts/modbus-discover.html

https://www.rapid7.com/db/?q=modbus&type=metasploit
https://nmap.org/nsedoc/scripts/modbus-discover.html

 D5.2
 Version 1.3

© SDN microSENSE consortium Page | 23
Public document

• Nmap NSE (modbus-discover): This script (modbus-discover) of the NMAP NSE16 enumerates

which slave IDs are supported by the target system or network and displays information about

their vendor and firmware.

• Modbus/TCP Fuzzer: The Modbus/TCP Fuzzer was developed by A. Voyiatzis et al.

[Voyiatzis15] Modbus/TCP Fuzzer includes Modbus/TCP-related reconnaissance attacks and

performs relevant fuzzing action, thus revealing potential bugs and vulnerabilities of the

Modbus/TCP application. It is not available publicly.

• CAS Modbus Scanner: CAS Modbus Scanner17 can detect and identify whether the assets of a

network use the Modbus/TCP service. It is also capable of retrieving and displaying the values

of coils, input and holding registers.

• TCP Modbus Hacker: TCP Modbus Hacker is a Java application, which was developed by S.

Bhatia et al. [PLIATSIOS200] and it can read and write input and holding registers as well as

coils, thus executing the respective unauthorised access and DoS attacks. It is not available

publicly.

• ModScan: ModScan [PLIATSIOS201] identifies whether the assets of a network utilise

Modbus/TCP.

In the context of D5.2, SMOD and UOWM SMOD were used to implement the respective unit tests

related to the detection tools provided by Task 5.2/D5.2.

2.3.4 Attacks detection
In the context of Task 5.2/D5.2, Suricata is used to detect Modbus/TCP-related cyberattacks presented

above. To this end, particular signature and specification Modbus-related rules were identified and

provided by Annex 2. The applicability and validity of the particular rules were tested using Suricata in

section 4. Suricata is analysed further in subsection 3.2. . Its is noteworthy, that recent papers have

confirmed the effectiveness of Suricata against Modbus/TCP cyberattacks. Some notable papers are

provided by K.Wong et al. in [Wong17] and O. N. Nyasore et al. in [Nyasore20]. The following example

presents an alert message of Suricata regarding the detection of a modbus/function/readCoils

cyberattack. This message is sent to the XL-SIEM agent, which undertakes to normalise it, thus

producing the respective security alert.

{"timestamp":"2020-03-

25T13:12:22.707663+0200","flow_id":1409353732485049,"pcap_cnt":6775,"event_type":"alert","src_ip":"XX.

XX.XX.6","src_port":XXX8,"dest_ip":"XX.XX.XX.9","dest_port":XXX,"proto":"TCP","tx_id":0,"alert":{"action":"`all

owed","gid":1,"signature_id":2,"rev":0,"signature":"Modbus\/TCP Alert - Not Allowed Moudbus\/TCP Function

Code","category":"","severity":3},"app_proto":"modbus","flow":{"pkts_toserver":4,"pkts_toclient":3,"bytes_to

server":284,"bytes_toclient":216,"start":"2020-03-25T13:12:22.683961+0200"}}

2.4 DNP3

2.4.1 Description

Distributed Network Protocol Version 3.0 (DNP3) constitutes an open industrial protocol that was

established in the 1990s and defines communications between master devices, RTUs and a number of

IEDs. The key incentive of its development was the interoperability among different systems in various

16 https://nmap.org/nsedoc/scripts/modbus-discover.html
17 https://store.chipkin.com/products/tools/cas-modbus-scanner

https://nmap.org/nsedoc/scripts/modbus-discover.html
https://store.chipkin.com/products/tools/cas-modbus-scanner

 D5.2
 Version 1.3

© SDN microSENSE consortium Page | 24
Public document

types of industries. Ever since its distribution, DNP3 has been widely adopted in Critical Infrastructures

(CIs), including EPES, especially in the US. DNP3 was specifically designed targeting SCADA applications

and thus involves the acquisition of information and the exchange of control commands among distinct

computer devices. In contrast to general IT protocols, DNP3 is used to transmit relatively smaller data

packets in a robust way that arrive in well-defined sequences, rendering it appropriate for SCADA

control. Notable features of DNP3 include the detailed specification of data objects and a

comprehensive certification system.

The following system topologies are supported by DNP3:

a) Master – slave: Direct one-on-one communication between a master and a slave station.

b) Multi-drop: One master station communicates with several slaves.

c) Hierarchical: An intermediate slave can act as master station for different slave devices.

d) Multiple master: Several master stations communicate with one slave.

The DNP3 protocol is based on the three-layer Enhanced Performance Architecture (EPA) model which

was defined by the IEC and constitutes a sub-set of the Open Systems Interconnection (OSI) model

[Clarke04]. When examined with respect to the OSI model, DNP3 is composed of the following three

layers:

a) Application layer: This layer is responsible for combining the application service data with the

application protocol control information and creating the application protocol data unit

(APDU). All the necessary commands and generic data types required for controlling the

various entities in the system are defined in this layer.

b) Transport layer: Often referred to as pseudo-transport, this layer is responsible for segmenting

the APDU from the application layer into several data link frames, inserting a single-byte

function code that indicates the position of the frame in the message.

c) Data link layer: This layer manages the logical link between the communicating devices. A

control byte is added here, specifying the purpose of the data link frame, and the status of the

logical link. The data link layer provides addressing services for data while offering techniques

for multiplexing, data fragmentation, error checking, link control and prioritisation.

Besides the above, DNP3 can also be encapsulated into Ethernet packets and used over TCP/IP,

enabling SCADA communications in local or Wide Area Networks (WANs). More information about the

technical details of DNP3 is provided in [Pliatsios20].

As with several industrial protocols, DNP3 is a standard that was not designed with integrated cyber-

security mechanisms [0IN4]. Comprehensive analysis on the protocol has identified several attacks that

target weaknesses and exploit vulnerabilities in DNP3, raising important security issues when using it

in an industrial environment [East09, Igbe17]. Although there are several categories into which DNP3

attacks can be classified, those that directly target the protocol specifications are of greater concern,

since they can be directed at every SCADA system that uses the DNP3 standard, irrespective of specific

implementation. Key targets of potential attacks are usually master stations, outstation devices as well

as communication paths. The main attacks that threaten the security of the protocol involve

intercepting, interrupting, modifying, and fabricating messages encapsulated in DNP3 packets

[Igbe17]. Centered on the SDN-microSENSE requirements, the following DNP3 attacks are assessed:

 D5.2
 Version 1.3

© SDN microSENSE consortium Page | 25
Public document

• DNP3 Enumerate: This reconnaissance attack aims to discover which DNP3 services and

functional codes are used by the target system. It is implemented via the Nmap NSE.

• DNP3 Info: This attack constitutes another reconnaissance attempt, aggregating various DNP3

diagnostic information related the DNP3 usage. It can be executed via the Nmap NSE.

• DNP3 Disable Unsolicited Messages Attack: This attack targets an outstation device,

establishing a connection with it while acting as a master station. The false master then

transmits a packet carrying the DNP3 function code “21” which requests to disable all the

unsolicited messages on the target. A successful conduction of this attack renders the

outstation device unable to send alarm messages to the actual master station in cases of

critical failure in the system.

• DNP3 Cold Restart Message Attack: In a similar manner to the previous attack, the intruding

device acts as the master station and sends a DNP3 packet that includes the “Cold Restart”

function code to the target outstation. When the target receives this message, it initiates a

complete restart and sends back a reply with the time window available before the restart.

This attack renders the outstation unavailable for a period of time and has the risk of resulting

in an inconsistent device restoration after restarting.

• DNP3 Warm Restart Message Attack: This attack is quite similar to the “Cold Restart

Message”, but aims to trigger a partial restart, re-initiating a DNP3 service on the target

outstation. This attack is of particular concern, since it could be executed several consecutive

times, resulting in a denial-of-service attack, since the outstation will not be able to send

events or receive control command packets, causing disruptions in the industrial procedure.

2.4.2 Attacking tools
This subsection outlines the key penetration testing tools utilised to examine the weaknesses of the

DNP3 protocol and evaluate the effectiveness of the developed attack detectors. The following tools

were used for this purpose:

• Nmap Scripting Engine (NSE): NSE constitutes a substantial and versatile feature of Nmap,

offering the possibility to develop scripts that allow the automation of various network

processes. It was designed with vulnerability detection mechanisms in mind, but also provides

the capability of incorporating custom scripts that exploit vulnerabilities and thus can be used

for penetration testing purposes as well. Two specific Nmap scripts were utilised, targeting the

reconnaissance attacks described in the above subsection, namely the “DNP3 enumerate” and

the “DNP3 info”.

• OpenDNP3: Open DNP3 is not a pent-testing tool but emulates the DNP3 service. It can be

used appropriately to emulate various DNP3 cyberattacks.

• Scapy: Scapy constitutes a network packet manipulation tool and programming library, which

gives the necessary interfaces in order to capture, parse, analyse and construct network

packets. Therefore, Scapy can be used in order to perform various DNP3 attacks, such as DNP3

Disable Unsolicited Messages Attack, DNP3 Cold Restart Message Attack and DNP3 Warm

Restart Message Attack.

2.4.3 Attacks detection
The attacks described above exploit weaknesses inherent to the design of the DNP3 protocol and can

result in critical incidents if they are not detected early and addressed effectively [Radoglou-

Grammatikis20]. In the context of Task 5.2/D5.2, Suricata is adopted to detect DNP3-related

 D5.2
 Version 1.3

© SDN microSENSE consortium Page | 26
Public document

cyberattacks. To this end, specific signature and specification DNP3 rules (available in Annex 2) were

specified and tested. The “msg“ label of each DNP3 specification/signature rule denotes details related

to the corresponding DNP3 cyberattack. Suricata is analysed in subsection 3.2. As in the

aforementioned protocols the efficacy of Suricata against DNP3-related cyberattacks has been

presented by recent papers [Wong17]. A security log exported by Suricata regarding the DNP3 Disable

Unsolicited Messages Attack is presented below. This message is transmitted to the XL-SIEM agent,

which undertakes to produce the respective, normalised security event.

{"timestamp":"2017-02-

14T01:28:54.950977+0200","flow_id":706430872485681,"pcap_cnt":1428,"event_type":"alert","src_ip":"XX.X

X.XX.197","src_port":XXXX,"dest_ip":"XX.XX.XX.198","dest_port":XXXX,"proto":"TCP","alert":{"action":"allowed

","gid":1,"signature_id":1111203,"rev":1,"signature":"SCADA_IDS: DNP3 - Unsolicited Response

Storm","category":"Attempted Denial of

Service","severity":2},"flow":{"pkts_toserver":2,"pkts_toclient":2,"bytes_toserver":140,"bytes_toclient":157,"st

art":"2017-02-14T01:28:54.950065+0200"}}

 D5.2
 Version 1.3

© SDN microSENSE consortium Page | 27
Public document

3 Main detection tools
The techniques described in Section 2 are supported by underlaying technologies that allows their

deployment in real infrastructures. To this end, the state of the art of technologies for the detection

of cyber incidents, and more specifically IDPSs, is mostly taken by proprietary commercial solutions,

typically integrated in bigger solutions that includes additional capabilities(i.e., SIEM or SOC). Such is

the case of Cisco IOS IPS18, Real Secure Network from IBM19 or McAfee Network Security Platform20.

The open source community counts with several alternatives for IDPS, such as Kismet21 or Prelude

OSS22. However, the most popular and considered as de facto standard in IDPSs technologies is Snort23.

Snort is a rule based IDPSs that analyses traffic either in real time or from precaptured network packets,

detecting incidents and triggering alerts in different possible formats. The support from the cyber

security solution is very consolidated, with rules that are updated daily and the possibility to update

them automatically. An evolution of Snort is Suricata, which improves Snort on the support for

multithreading processing, increasing performance. Suricata uses the same rules format as Snort does,

which guarantee the support of the community. Therefore, Suricata has been chosen as the best

option to include the detection mechanisms described in Section 2. As a result, these technologies

results in a set of Suricata rules as listed in the Annexes of this document. Section 3.1 describes

Suricata, how it works and how it is integrated with the XL-SIEM. Section 3.2 describes the Tecnalia’s

SBT Aware, which is also based on Suricata rules. Finally, Section 3.3 describes the Nightwatch IDPS,

which is a CLS proprietary solution for detecting cyber incidents using SDN information.

3.1 Enhanced Suricata for EPES
Suricata is a real time intrusion detection (IDS) that can also act as an inline intrusion detection (IPS),

network security monitoring (NSM) and is capable of processing network traffic files (pcap) offline.

Suricata is open source and publicly available.

Suricata analyses network traffic, either in real time sniffing directly from the network, or offline

through a network capture file. It supports multi-threading processing, optimizing the CPU usage. It is

also capable of detecting the protocol of the network traffic automatically for IP, TCP, UDP and ICMP.

I can also detect incidents associated to other specific application protocols such as FTP, HTTP, TLS and

SMB, and it can be extended to support additional protocols, as it has been done in SDN-microSENSE.

Suricata works with rules. The network traffic is analysed by Suricata, parsed and compared with a set

of predefined rules. The rules to be compared can be configured in order to optimize the detection

and performance. Suricata rules (also known as signatures) consists of three main parts:

• The action, represents the action to be taken when the rule matches.

• The header, represents general information related to the rule, such as IP addresses to match,

the direction of the rule or the ports.

18 https://www.cisco.com/c/en/us/products/security/ios-intrusion-prevention-system-ips/index.html
19 https://www-01.ibm.com/common/ssi/cgi-bin/ssialias?infotype=DD&subtype=SM&htmlfid=897/ENUS5765-
ISS
20 https://www.mcafee.com/enterprise/en-us/products/network-security-platform.html
21 https://www.kismetwireless.net/
22 https://www.prelude-siem.org/
23 https://www.snort.org/

 D5.2
 Version 1.3

© SDN microSENSE consortium Page | 28
Public document

• The rule options, which are specific fields that can be specified in the rule for a more accurate

matching.

For example, for the following rule:

alert tcp $HOME_NET 502 -> $EXTERNAL_NET any (msg:"PROTOCOL-SCADA Modbus function scan";
flow:established,to_client,no_stream; content:"|00 00|"; depth:2; offset:2; byte_test:1,&,128,7;
content:"|01|"; depth:1; offset:8; detection_filter:track by_dst, count 3, seconds 10;
reference:url,www.modbus.org/docs/Modbus_Application_Protocol_V1_1b.pdf;
classtype:protocol-command-decode; sid:29314; rev:2;)

• The action is “alert”

• The header is “tcp $HOME_NET 502 -> $EXTERNAL_NET any”, being:

o tcp: the protocol.

o $HOME_NET: The IP address (or subnet) of the home network that is monitored. The value of

this variable is configured in the Suricata configuration file.

o 502: The port for the source of the packet.

o $EXTERNAL_NET: The IP address (or subnet) of the destination of the packet. The values of this

variable are configured in the Suricata configuration file.

o Any: The port of the destination of the packet. In this case this rule applies to any port.

• The rule options are “msg:"PROTOCOL-SCADA Modbus function scan";

flow:established,to_client,no_stream; content:"|00 00|"; depth:2; offset:2; byte_test:1,&,128,7;

content:"|01|"; depth:1; offset:8; detection_filter:track by_dst, count 3, seconds 10;

reference:url,www.modbus.org/docs/Modbus_Application_Protocol_V1_1b.pdf;

classtype:protocol-command-decode; sid:29314; rev:2;””

Suricata as output as output supports several standard formats such as JSON, XML, CSV among others.

Figure 5. Suricata output using JSON format

 D5.2
 Version 1.3

© SDN microSENSE consortium Page | 29
Public document

3.1.1 Input data
Suricata receives network traffic directly from the network interface that is defined in the Suricata

configuration. Additionally, Suricata can also analyse traffic contained in pcap files.

3.1.2 Internals of the tool
Suricata is conceptually a simple framework, as depicted in next figure. Network traffic is captured.

This traffic is decoded, reading the different parts of the packets. Depending on the type of traffic,

several decoders can be applied. Once decoded packets are passed through the active rules. If any rule

matches (one or more than one) an event (or more than one in case more than one matches) is

reported as output. Suricata outputs are logged a text file.

Figure 6. Suricata internals

3.1.3 Deployment
Suricata can be found in many different Linux distributions directly from their respective packet

managers. Suricata can also be downloaded and compiled directly from the Suricata home page.

The Suricata configuration file is called suricata.yaml and can be typically found under /etc/suricata/.

This file contains many different options. The main ones are the following:

• Address-groups: Contains the range of IP addresses to take into account for monitoring

network packets. The two main variables are HOME_NET and EXTERNAL_NET. HOME_NET

specifies the source IP or subnet that is taken into account when monitoring. For example,

HOME_NET: “XX.XX.XX.XX/24” indicates that only the packets with origin in this IP or

range or IPs is used to apply the Suricata rules

EXTERNAL_NET indicates the remote IP or subnet taken into account to apply Suricata rules. It

can also be used combinations of both and logic operators. For example,

EXTERNAL_NET: “!HOME_NET” includes all the IPs that are not inside the HOME_NET

set.

Packet

capture Network flow

Packet

decoding

Detection Rules

Output

Decoder 1 Decoder 2

Detection 1 Detection 2

 D5.2
 Version 1.3

© SDN microSENSE consortium Page | 30
Public document

• Port-groups: Similar to address-groups, there are a set of variables that allows to specify

custom port numbers for HTTP, SSH, etc.

• Default-rule-path: defines the rule to the rule files

• Rule-files: indicates the name of the files containing the rules. Rules are written in different

files. Lines commented (using #) are ignored.

• Outputs: indicates options for the different types of output that Suricata produces. All of them

are plain text options. The different is in the format (normal text, json, etc), more (alert-debig)

or less verbose (i.e., fast.log), pcap logs, etc.

• Af-packet, indicates the interfaces to monitor. For example, “interface: eth0” tells Suricata to

sniff traffic in the eth0 interface

There are many more options that can be checked directly from the Suricata documentation.

3.1.4 Output: connection to XL-SIEM, logs and taxonomy
As it was mentioned before, Suricata produces output in plain text and written in different log files. As

mentioned in Deliverable D5.1, the XL-EPDS receives logs from the different detectors (such as

Suricata), through rsyslog. Therefore, it is necessary to configure rsyslog appropriately to send all

events written by Suricata in its output log files (i.e., fast.log) to the XL-SIEM agent at the XL-EPDS. The

following is an example of rsyslog configuration that send fast.log and eve.json logs (both produced by

Suricata) to the XL-SIEM agent:

$ModLoad imfile
$InputFileName /var/log/suricata/fast.log
$InputFileTag suricata_fastlog
$InputFileStateFile fast.log
$InputFileSeverity alert
$InputFileFacility local6
$InputRunFileMonitor
local6.*@@XX.XX.XX.XX:xx
$InputFilePollInterval 1

$ModLoad imfile
$InputFileName /var/log/suricata/eve.json
$InputFileTag suricata_evelog
$InputFileStateFile eve.json
$InputFileSeverity alert
$InputFileFacility local7
$InputRunFileMonitor
local7.*@@ XX.XX.XX.XX:xx
$InputFilePollInterval 1

The following table describe the format of the logs created by Suricata and exported to the XL-SIEM

agent through rsyslog.

Table 2. Description for Suricata logs

Log name Suricata log (general taxonomy)

Log description

This log represents an anomaly detected by Suricata. Suricata can detect a
myriad of anomalies. The structure of the logs is generic enough to be
interpreted by the XL-SIEM as the same type of log.

Important fields Field type Possible values Field description

 D5.2
 Version 1.3

© SDN microSENSE consortium Page | 31
Public document

Timestamp String
Free text
representing a date

Timestamp when the incident appeared
(Aug 22 07:38:41 in the example below)

Incident
description String Free text

Text describing the incident
(MODBUS port 502 access in the example
below)

Incident id int Undetermined

Unique identifier used by the XL-SIEM to
know the type of incident
(19700 in the example below)

Priority int 0-5

Level of importance of the incident
detected
(3 in the example below)

Protocol String {TCP, UDP}

Type of protocol where the incident has
been detected
(TCP in the example below)

Source IP String

String representing
a valid ipv4 or ipv6
IP

IP address of the machine originating the
anomaly
(XX.XX.XX.XX in the example below)

Source Port int Any valid port

Port of the machine originating the
anomaly
(xx in the example below)

Destination IP String

String representing
a valid ipv4 or ipv6
IP

IP address of the machine targeted by the
incident
(YY.YY.YY.YY in the example below)

Destination Port int Any valid port

Por of the machine targeted by the
incident
(yy in the example below)

Example

Aug 22 07:38:41 ubuntu suricata[19700]: [1:1:0] MODBUS port 502 access
[Classification: (null)] [Priority: 3] {TCP} XX.XX.XX.XX:xx ->
YY.YY.YY.YY:yy

A new set of rules has been created for Suricata to cover the requirements of SDN-microSENSE. These

rules are listed in Annexes I, II and III. Additionally, the information related to the attacks and the

detection of the incidents associated to EPES related protocols have been described in Section 2.

3.2 SBT-Aware
Most detection tools are generalist, designed to find predefined patterns such as frequency of

messages, well-known malware packets, source and destination of the messages or the content of

each packet itself. These tools also allow plugging modules for different protocols, offering a better

understanding of the analysed data, such as the protocol action (read, write, reset...) or data

model/schema understanding. However, the semantics of the data transmitted cannot be inferred.

The SBT-Aware tool adds the latest feature for primary and secondary substations, taking into account

not only the protocols defined in the IEC 61850 standard (see Section 2.1), but the substation topology

as well.

SBT-Aware is composed by three modules. The first one is the SCL interpreter which extracts data from

any SCL file and delivers it to the detection engine. The second is the detection engine which analyses

 D5.2
 Version 1.3

© SDN microSENSE consortium Page | 32
Public document

messages at real time, whereas the third module sends the reports, alarms, detected attacks, etc. to

any system or human.

After the installation of the tool and the configuration of the electric substation configuration (IEC

61850) to protect, the detection engine will be capable to detect generic attacks such as deny of

service, ARP spoofing, known protocol bugs exploitation, alert to IED conversations or MMS

connections, as well as detecting undesired (deliberated or not) accesses to any device and requests

for existing but unused data.

The innovation of the STB-Aware solution lies in the use of the IEC 61850 configuration files to generate

the detection rules that will be used by an IDS, Suricata in our case. As it was explained in section 3.2.1,

these files contain relevant information about the substation topology (electrical and communication),

the IEDs deployed (IP address, data model, published services, …) and data they publish and receive

(reports and GOOSES). STB-Aware processes IEC 61850 configuration files and transform its

information into a set of rules that allow detecting any activity inside the substation that does not

correspond to what is specified in the configuration files.

Two are the main advantages of STB-Aware: the automatic generation of the detection rules, and the

instantiation of the rules to a particular substation. Modern solutions incorporate industrial protocol-

based rules, which means that they can detect and process messages of this protocol. However, they

are not able to interpret nothing about the equipment that has sent the message or the destination

one. Rules generated by STB-Aware can contain information about the functionality of the devices that

are involved in the communication.

This approach has been validated in a lab environment using a Suricata installed in Tecnalia’s

Cybersecurity Lab and an attack tool developed for this purpose. We have deployed the detection rules

generated by the SCL-Crawler in the Suricata and executed an identity fraud attack against a real IED

installed the lab. The second unit test, 61850_IED_Sniffing, included in section 4.4 explain how the

Suricata detects an MMS message, that tries to request for a control switch, that is not configured, and

therefore not present in the sclCrawler output file.

The following subsections describe in detail the main aspects of the SBT-Aware solution.

3.2.1 Input data
The needed information for running this tool is the following:

• SCL file(s). One or more XML documents which complies with the IEC 61850-6 specification.

They are used to define the substation (electric, communications and devices) using SCL files,

as follows:

o SCD (Substation Configuration Description) file. It is the complete substation

configuration, which contains the substation details. This file also contains the

substation electric topology, the communications topology and the IEDs along with

their functionality. Notice that in most cases the SCD file is not available or provided

by the DSO.

o CID (Configured IED Description) file. It contains the IED configuration (network and

functionality) and is used to upload the configuration to the IED for the substation

where it is installed. When the SCD file is not present, the tool can import several CID

 D5.2
 Version 1.3

© SDN microSENSE consortium Page | 33
Public document

files (one per IED) in order to extract the substation data, although in this case, some

global information, such as the electric topology is missing.

• Rules file(s). This is a sort of rules files whose data model is understood by the detection

engine. There are three kind of rules files:

o Generic rules. They are rules for general purpose, written or imported by the

cybersecurity team that describe when communication alarms or events must be

launched. These rules include scripts to detect invalid connections, undesired or

malware traffic, invalid ports or protocols, message flooding, etc.

o Substation rules. It is the SCL interpreter output, which formats the allowed accesses

to IEDs and their data into the detection engine data model.

o Enhanced SBT rules. The cybersecurity team can enrich the substation rules, adding

some extra information that is not present in the SCL. For example, the IED has several

disconnectors, but only three of them (XSWI1, XSWI2 and XSWI3) are used. Therefore,

any attempt to access XSWI4 can launch an alarm. It has the same data model as the

substation rules file.

• Ethernet traffic. The detection engine listens to the Ethernet channel. There can be many

communication, configuration or substation protocols (HTTP, MMS, ARP, DHCP, DNS, GOOSE,

SOAP, NTP…) which can be allowed or not.

• Reporting data. In order to report alarms, this inner model allows sending alarms and events

to any system in the required data format.

Note: As the SBT-Aware can use different detection and reporting tools, the rules and the reporting

data format have been omitted in the present deliverable.

3.2.2 Internals of the tool
Although, as any detection tool, SBT-Aware is intended to be used in production, it can also be used at

substation engineering stage. The overall system is depicted in the Figure 7, where the software

modules are represented in blue, whereas the yellow files are input data created outside the tool, the

green files are substation related data used for a better attack detection and the orange files contains

alarms, events and alerts to be delivered to any report launcher.

 D5.2
 Version 1.3

© SDN microSENSE consortium Page | 34
Public document

Figure 7. SBT-Aware tool, including modules, I/O data and relevant actors

In the Figure 7, two actors are involved. The SBT engineer is responsible for designing and configuring

the substation, who composes the SCD file (or write one CID file per IED). The cybersecurity team

creates generic rules (attack patterns) with all the data relevant to any IT/OT system. The SBT-Aware

has a graphic interface in order to enhance/enrich the substation operation that can be used by the

cybersecurity team with the help of the SBT engineer to generate rules that cannot be extracted from

the SCL files according to the IEC 61850-6 specification.

3.2.2.1 SCL interpreter module

The SCL interpreter is an XML parser, which processes IEC 61850 (-6, -7.2, -7.3 and -7.4) SCL files and

data models, for extracting devices, nodes, objects and attributes, among other general information,

from any SCL file. It is an offline module whose objective is just adding information to the IDS system

installed in the substation.

If we consider the cybersecurity as an onion layer defence system (DiD), where the substation

processes (devices operation) are in the inner layer, when the attackers circumvented the outer layers

(communications, firewalls, access control) they could operate the controls (feeders, taps,

disconnectors, switches…) straightforward. In Figure 8, the classic DiD for breaking into a device is

translated to its corresponding IEC 61850 substation. If the user can listen to the messages within the

station bus and manages to associate (MMS association or ARP spoofing) to an IED, the attackers can

send messages.

 D5.2
 Version 1.3

© SDN microSENSE consortium Page | 35
Public document

Figure 8. Defence in Depth for devices and for an IEC 61850 substation

Conventional IDS can easily detect attacks for spoofing IEDs, as well as normative MMS association or

reports subscription attempts (association layer). By means of the SCL interpreter output, the IDS is

fed by the substation data model and therefore can detect if the operations comply with it. The main

advantage of the SCL interpreter module is that the IDS is customized to the substation to protect.

3.2.2.1.1 SCL rules extraction process

Input data: One SCL file or several CID files

Output data: Substation rules file

Process/daemon: sclCrawler

The sclCrawler is a standalone application which navigates through SCL files and extract useful

information for allowed information, data flow and communications. The XML navigation is divided

into 4 steps:

1. Communication extraction. The first step looks for any communication device connected to a

network. It looks for all elements (IEDs) in each communication node and extracts its IP

configuration. To do so, the <Communication.Subnetwork.ConnectedAP> elements are

retrieved. The result of this process will serve the IDS to know the networks and the IPs in each

network.

2. IED services extraction. The IEC 61850 services available for each IED is extracted from here

(model navigation, dataset configurations, reports, GOOSEs and files). Notice that some

services, although available in the SCL file, they are not recommendable its use in operation

(e.g. get data object definitions). In such case, the logical nodes curtailment process should

mark these services as alarms. This information is in the <IED.Services> elements.

3. Extract MMS (logical devices and logical nodes). In this step, the access to the logical nodes are

retrieved for each IED. This information is the features, protections or functionalities that each

IED provides, allocated in the <IED.AccessPoint.Server.LDevice.LN and LN0 nodes> elements.

When CID files are provided, more nodes than finally used in substation could be identified

that should be deleted in the logical nodes curtailment process.

4. Extract data objects and attributes. In MMS request, the attributes to read or write are

associated to objects and accessed by its functional constraint. To obtain a list of allowed

request, the previous <IED.AccessPoint.Server.LDevice.LN and LN0 nodes> elements are

 D5.2
 Version 1.3

© SDN microSENSE consortium Page | 36
Public document

mapped to <DataTypeTemplates.LNodeType> elements along with Data Object types

(recursive elements) and Data Attributes. When a logical node is deleted, all its attributes

should also be deleted.

The output is a single file (substation rules file), which is an XML document containing the following

information:

• <ipaddresses> element, with a list of all IPs identified by its IED name.

• <services> element, with a list of IED names and their allowed services.

o <reportSettingsService> element, a special service for reports

o <gseSettingsService> element, a special service for reports

• <LNodesObj> element with a list of read/write objects and attributes for MMS operations

Each element in the output file has been assigned a default severity for each operation. However,

commands and associations have higher severity than request for information.

3.2.2.1.2 Priority/Severity assignation process

Input data: Substation rules file

Output data: Substation rules file (modified)

Process/daemon: guiCrawler

Although seven levels of severity have been defined for the substation rules (0 – no severity, 1 – trace,

2 – information, 3 – advice, 4 – high, 5 – severe, 6 – fatal), only 1-5 are used. The level 0 is like deleting

the rule, that is, when detected at operation time, do not report anything in any case, therefore it can

be deleted straightforward. The level 6 is reserved to operations that could damage the substation,

mainly provoked by a coordinated attack to several points of the substation and even to the control

centre.

The guiCrawler is a graphic interface to modify the default severity assigned automatically by the

sclCrawler in a smart way, grouping logical nodes or functional constraints to modify complete sets in

once. It also allows the user to deal some IEDs separately, that could be helpful to distinguish IEDs

connected to different voltage levels.

3.2.2.1.3 Logical Nodes curtailment process

Input data: Substation rules file

Output data: Enhanced SBT rules file

Process/daemon: guiCrawler

When several CID files are provided the sclCrawler output collects the whole functionality of the IEDs,

which is not only unnecessary in its deployment in the substation, but an attempt to access to an

unused logical node is considered as an attack or a wrong configuration of the invoker. One option is

preserving these nodes and mark them as 4/5 severity upon an attempt to access by means of the

Priority/Severity assignation process.

 D5.2
 Version 1.3

© SDN microSENSE consortium Page | 37
Public document

The second option is reserved if and only if the IDS is able to alert when a MMS request tries to access

a non-defined logical node in its configuration rules. In this case, the guiCrawler also allows deleting

unused nodes.

3.2.2.2 Pluggable detection engine module

The SBT-Aware is designed to feed IDS with substation specific information. This means that the

application can use any IDS for attacks detection, whose integration details are explained in the

deployment (see 0). The IDS selected for the SDN-microSENSE is Suricata (Section 3.1).

In the SDN-microSENSE, sclCrawler will be used to generate rules. These rules are evaluated against

the network traffic and an alert is sent when this traffic not fit the existing configuration in the SCL

files. So, these detection rules are customized for that specific substation.

These alerts will be sent to XL SIEM by Report Launcher.

3.2.2.3 Pluggable report launcher module

The main goal of this library is to register appropriately the different alarms found by the detection

engine. For alarm registration, a logging library has been specifically developed for the project. The

library provides methods for managing the alarms generated by the detection engine, abstracting the

caller of the intern logic of each event. Once the detection engine detects an action that shall be

recorded for later analysis it calls the library to store it conveniently. The purpose of using this library

is to decouple from the detection engine application’s source code the details of event/alarm

management and, specifically, where those alarms are stored. With this approach future event

publishing capabilities and storing locations (Databases, MQTT sending, etc) could be easily integrated.

Alarm information is stored into a string with a JSON format to be processed and analysed later by the

appropriated tools. The JSON format has been selected for events because its usage is widespread

among other detection solutions.

3.2.3 Deployment
The deployment of the AWT-Aware consist in the installation of the three modules and connecting the

pluggable modules (detection engine and report launcher), which need some extra actions to integrate

(plug) them.

3.2.3.1 SCL interpreter

This module is a multiplatform standalone application developed in Java, therefore its deployment

consists only in the JRE/JDK installation and the tool configuration. This is done by the following steps:

1. Install JVM (Java Virtual Machine)

• Go to https://www.oracle.com and navigate to Java resources

• The application was developed with Java 8, so download the latest stable Java version

compatible with Java 8 (currently, the latest version is Java 14 which can be used).

When downloading, select the OS where the program will be run.

• Once downloaded, click on the installable archive, and follow the steps to install the

JVM. No extra features are needed; the default settings are enough for the application.

2. Copy the Java Archives sclCrawler.jar and guiCrawler.jar to a specific location (e.g.

/home/sdn/sbtaware)

3. Run the program. Move to the selected location in step 2 and run the command line:

• Command line: java -jar sclCrawler.jar [-all] <rules> <scl_file>

https://www.oracle.com/

 D5.2
 Version 1.3

© SDN microSENSE consortium Page | 38
Public document

• where:

i. -all [Optional] if Data Objects and Data Attributes must be also retrieved. If

missing, only up to Logical Nodes are retrieved.

ii. <rules> One output file containing the object and attributes for the provided

SCL file

iii. <scl_file> The SCL file to parse.

• Examples:

i. java -jar sclCrawler.jar -all rules.out L1.cid

ii. java -jar sclCrawler.jar rules.out substation.scd
• By default, the format of the output data is written for Suricata. If other IDS were

installed, the JVM property IDS should be changed for the selected one. Example of

command line for Snort (notice that the -D option do not require the space for the key

to modify):

i. java -DIDS=”Snort” -jar sclCrawler.jar rules.out substation.scd

4. [Optional] Add extra information. If the cybersecurity staff wanted to adjust extra rules:

• They can do it straightforward in the output rules file,

• or they can use the graphical view for this purpose:

i. Run the command line java -jar guiCrawler.jar

ii. Open the rules file to modify/delete items

The SBT engineer must know that the substation will be monitored. This way, whenever the substation

changes, or some IED is installed, replaced or removed, or some IED configuration is updated, may

make the rules obsolete and the IDS will not work properly. In this case, the cybersecurity team must

be advised that a change was made in the substation and the rules must be regenerated, just by

running step 3 and optionally 4.

3.2.3.2 Report launcher

For setting up this reporter launcher library, it is as easy as executing “make all” and the library is built.

The library includes Unit Testing, which is also compiled using “make all” and can be individually

compiled using “make test”.

Once the library is compiled, it can be included in any C file as usual (#include “log.h”) and its methods

can be called.

3.2.3.3 Tools integration

Whenever an event or alarm is detected, the message is formatted properly by the Report Launcher

and sent to the XL-SIEM, as described in section 4.3.1 of deliverable D5.1 XL-SIEM System.

3.2.4 Output: connection to XL-SIEM, logs and taxonomy
The following tables details the information contained in the events to submit from this detector to

the XL-SIEM.

Table 3. Description for the Generic Threat Discovery log

Log name Generic Threat Discovery

Log description
This log record is reserved for communication anomalies detected by the
detection engine

 D5.2
 Version 1.3

© SDN microSENSE consortium Page | 39
Public document

Important fields Field type Possible values Field description

TSMSG UTC Time
Timestamp when the message was
recorded

TSLAUNCH UTC Time
Timestamp when the anomaly was
detected as suspicious

SEVERITY Integer 0..7 Higher value means higher severity

PAYLOAD String

Original message or formatted message if
the message is a known-pattern (e.g. ARP
Spoofing)

IPFROM String IPv4 or IPv6 Source of the message

IPTO String IPv4 or IPv6 Message destination

Table 4 Description of the SBT Cybersecurity events log

Log name SBT Cybersecurity events

Log description
This log record gathers any message which should not be present according to
the substation electric topology or its current state

Important fields Field type Possible values Field description

TSMSG UTC Time
Timestamp when the message was
recorded

TSLAUNCH UTC Time
Timestamp when the anomaly was
detected as suspicious

SEVERITY Integer 0..7 Higher value means higher severity

PAYLOAD String Original message (if desired)

PROTOCOL String
MMS, GOOSE,
REPORT

If the message that launched this event
was a GOOSE, a MMS request/response or
a report (rcb, urcb)

NODE String The LNode/contraint/dataset requested

IPFROM String IPv4, IPv6 or MAC Source of the message (MAC for GOOSE)

IPTO String IPv4, IPv6 or MAC Message destination (MAC for GOOSE)

3.3 SDN-IDPS: Nightwatch
Nightwatch is an Intrusion Detection and Classification Module (IDCM) for advanced and novel threats

to EPES. As an IDCM, Nightwatch uses artificial intelligence technologies to determine the likelihood

that an EPES has been compromised. It supports low-computational analysis and machine learning

techniques for resource constrained devices common in EPES environments. Nightwatch is specifically

developed to interface with and gather raw network data related SDN-controllers to elicit indicators

of compromise. It is using information derived from the SDN-controller to determine whether the SDN

components are under cyber-attack. Additionally, Nightwatch can determine the type of the attack

and likelihood that an SDN component has been compromised. It can detect novel attacks and known

attacks. For example, regarding high level attack categories, Nightwatch is able to detect DoS attacks

against specific SDN components; malware compromise of controllers and or specific APIs; or malicious

use of an SDN controller.

 D5.2
 Version 1.3

© SDN microSENSE consortium Page | 40
Public document

Nightwatch will be able to consume data from XL-SIEM using the XL-SIEM’s RabbitMQ message broker.

Nightwatch will use the RabbitMQ to read events from XL-SIEM agents as inputs for its intrusion

detection analysis. Security-related events from XL-SIEM will enable Nightwatch to augment its

intrusion detection process with additional information on the security posture of the system.

The resulting analysis of Nightwatch based on input from the SDN-controller and the XL-SIEM agents

will be made available to the XL-SIEM for a consolidated analysis of the security of the EPES system.

3.3.1 Input data from the SDN controller
In SDN-microSENSE, Nightwatch is receiving inputs from two sources. The SDN-controllers (via

controller API and network SPAN port) and the XL-SIEM. The interaction between Nightwatch and XL-

SIEM is further described in D3.3 EPES Honeypots and D5.1 XL-SIEM System. The present deliverable

is focussed on the interaction of Nightwatch with the SDN-controllers.

The communication between Nightwatch and the SDN-controller is made through the SDN-controller's

RYU interface for collecting controller telemetry that provides context for network-based threat

detection. The RYU Controller provides software components with application program interfaces

(APIs) that make it easy for developers to create new network management and control applications.

Nightwatch will make use of the RYU’s APIs to gather network-related data that can be used for data

analytics and where applicable aid in security assessment via correlation with raw network data

collected via the network segment SPAN port. Nightwatch will gather network-related information

using Representational State Transfer (REST) based queries from the RYU’s northbound interface. The

network information will include the network topology of the SDN switches, available network ports,

and statistical information related to the available network ports. The network-based information will

enable Nightwatch to elicit the nature of threats targeting SDN components, such as malware, service,

or resource disruption. Nightwatch’s network SPAN interface collections effectively give the module

full visibility of the network segment in which it is situated and provides the module with the ability to

filter specific communication related to SDN controllers in a dynamic manner with needed prior

configuration. Nightwatch specifically applies connection-orientated analysis of raw network data to

provide rich and contextual network telemetry data to its detection engine.

3.3.2 Internals of the tool
The architectural components of Nightwatch are shown in Figure 9. The main component of

Nightwatch is the SDN Threat Detection Engine. The Network Probe contains a network sensor for

collecting and forwarding network data telemetry from the SDN-Controller to the SDN Threat

Detection engine. The Datastream Service of the Threat Detection Engine receives input from the

Network probes. The function of the Datastream Service is used to structure the information received

by the Network probes into a format that can be consumed by the Anomaly Sensor Service.

The Anomaly Sensor Service is divided into two components, the Threat models, and the Heuristic

Analysers. The Threat models use a range of ML algorithms specifically developed and trained to detect

attack vector that can disrupt, degrade or deny SDN controller functionality and control. The Threat

models are dynamically trained in a continuous online manner with data sent and received by SDN

controller(s) and its connectivity peers, against a set of principal detection use cases by which the

models feature context are designed. The Heuristic Analyzers validate Threat model output to

determine the context of anomaly detections, and correlate information across Threat models with

additional analytics processes to determine the likelihood and type of network-based attack. The

 D5.2
 Version 1.3

© SDN microSENSE consortium Page | 41
Public document

Heuristic Analyser are developed to detect novel threats or new variants of known threats. They use

several techniques such as decomposing specific network patterns and evaluate it based on the

system’s functionality. If a certain percentage of the network pattern matches information from the

Threat models, the behavior is marked as an anomaly.

After the security assessment is completed, the SDN Threat detection Engine outputs a threat

summary, which is consumed by the XL-SIEM. The threat summary contains all the anomalies detected

by the Anomaly Sensor Service that can result in the compromise of SDN components.

Figure 9. Architecture of Nightwatch in SDN-microSENSE

3.3.3 Deployment
Nightwatch will be made available as a container-based application that will be deployable in a cloud-

native manner. Cloud-native applications take full advantage of the cloud service model. They provide

better orchestration and management of resources in dynamic environments than traditional

deployment practises.

Regarding data collection, Nightwatch module requires network connectivity to a SPAN or passive

monitoring interface tap in which consume to consume SDN network telemetry. It will generate

anomaly output events/logs that are then forwarded to remote RESTful or streaming APIs. Nightwatch

can also receive data via its streaming API interface using a publisher/subscriber model (e.g., KAFKA,

MQTT).

3.3.4 Output: connection to XL-SIEM, logs and taxonomy
Nightwatch produces one type of log related to threat detection, which contains various possible

attack classifications and meta-data.

Table 5. Description for the threat discovery log

Log name Threat discovery

Log description A log record containing the records of the anomaly detection

Important fields Field type Possible values Field description

attack_vector string
OpenFlow Packet-In
Flood

The vector used to execute
the attack

attack_type string Denial of Service The type of attack

timestamp string 1600105625

Epoch for the time of the

anomaly alert

 D5.2
 Version 1.3

© SDN microSENSE consortium Page | 42
Public document

window_start string 1600105623

Epoch for the start of the

detection window

window_stop string

1600105624

Epoch for the end of the

detection window

 D5.2
 Version 1.3

© SDN microSENSE consortium Page | 43
Public document

4 Unit Testing and validation
4.1 Modbus/TCP Unit Tests – Suricata

This subsection aims to test the efficacy of the Suricata specification rules presented in subsection

2.3.4) against Modbus/TCP cyberattacks. In particular, custom Suricata specification rules were

constructed, thereby determining the normal Modbus/TCP behaviour of a use case and detecting

potential malicious/anomalous Modbus/TCP commands. Based on subsection 2.3.2, the following unit

tests verify that Suricata can detect a) modbus/function/writeSingleCoils, b)

modbus/function/readInputRegister, c) modbus/function/writeSingleRegister, d)

modbus/function/readDiscreteInput and e) modbus/function/readCoils Modbus/TCP related

cyberattacks. The aformentioned cyberattacks described in subsection 2.3.2 will be addressed by the

machine and deep learning solutions of Task 5.3/D5.3.

Test Case ID Modbus_Suricata_01 Component Suricata (Sensor

of XL-SIEM)

Description This unit test intends to detect potential malicious or anomalous Modbus/TCP

commands, utilising custom Suricata Modbus/TCP specification rules. These

Modbus/TCP specification rules define the normal Modbus/TCP behaviour of the

Alkyonis PV Power Station (SDN-microSENSE Pilot 5 based on D2.4), where only the

Function Code 03 (0x03 - Read Holding Registers) is allowed. First, the configuration

file of Suricata (/etc/suricata/suricata.yaml) was configured to recognise normally

the Modbus/TCP keywords. Next, a specific specification rule, which defines the

aforementioned Modbus/TCP normal behaviour is defined and stored in the

configuration file (/etc/Suricata/rules/suricata.rules), which includes all

specification rules of Suricata. Then, the cyberattack modbus/function/readCoils

presented in subsection 2.3.2 is emulated, capturing in parallel the Modbus/TCP

network traffic in a pcap file. Finally, the pcap file is parsed suitably by Suricata,

detecting successfully the relevant attack.

Spec ID SPEC-F1, SPEC-F2, SPEC-F3,

SPEC-F4

Priority High

Prepared by UOWM Tested by UOWM

Pre-

condition(s)

-

Test steps

1 The configuration file of Suricata (/etc/suricata/suricata.yaml) was configured to recognise

normally the Modbus/TCP keywords. In particular, in the /etc/suricata/suricata.yaml file, the

lines related to the Modbus keywords were uncommented, as showed in the following figure.

 D5.2
 Version 1.3

© SDN microSENSE consortium Page | 44
Public document

Figure 10. Activation of the Modbus/TCP keywords testcase Modbus_Suricata_01

2 The following Suricata specification rule was used in order to detect any Modbus/TCP command,

which is not relevant to the Modbus/TCP network traffic characteristics of the Alkyonis PV

Power Station (SDN-microSENSE Pilot 5 based on D2.4). The specific rule defines that only

Modbus/TCP Function Code 03 (0x03 - Read Holding Registers) is allowed.

alert modbus any any -> any 502 (modbus: function !3; msg:"Modbus/TCP Alert - Not Allowed

Moudbus/TCP Function Code"; sid: 2;)

3 Then, the cyberattack modbus/function/readCoils is performed in an emulated environment,

which follows the Modbus/TCP network traffic characteristics of the Alkyonis PV Power Station.

For this purpose, the UOWM Smod was utilised [Radoglou-Grammatikis20+1]. In parallel, the

network traffic related to the attack is captured and stored via Wireshark in a pcap file named

malicious_pcap.pcap.

4 The pcap (malicious_pcap.pcap) is parsed by Suricata offline, utilising the following command.

sudo suricata -c /etc/suricata/suricata.yaml -r malicious_pcap.pcap

Input data A pcap file (malicious_pcap.pcap) related to the modbus/function/readCoils attack.

The following figure shows a sample of this pcap file. In particular, this pcap file

(malicious_pcap.pcap) includes 20 Modbus/TCP packets related to the

modbus/function/readCoils attack and 100 Modbus/TCP packets related to

Modbus/TCP Function Code 03 (0x03 - Read Holding Registers).

Figure 11. Pcap for modbus/function/readCoils attack for test case Modbus_Suricata_01

Result The modbus/function/readCoils attack was detected successfully by Suricata. The

detection results are stored in the eve.json file. An example of the corresponding

alerts generated by Suricata is provided below.

{"timestamp":"2020-03-

25T13:12:22.707663+0200","flow_id":1409353732485049,"pcap_cnt":6775,"event_type":

 D5.2
 Version 1.3

© SDN microSENSE consortium Page | 45
Public document

"alert","src_ip":"YY.YY.YY.YY","src_port":yy,"dest_ip":"XX.XX.XX.XX","dest_port":xx,"proto"

:"TCP","tx_id":0,"alert":{"action":"`allowed","gid":1,"signature_id":2,"rev":0,"signature":"

Modbus\/TCP Alert - Not Allowed Moudbus\/TCP Function

Code","category":"","severity":3},"app_proto":"modbus","flow":{"pkts_toserver":4,"pkts_t

oclient":3,"bytes_toserver":284,"bytes_toclient":216,"start":"2020-03-

25T13:12:22.683961+0200"}}

Before analysing the detection results, some necessary terms need to be defined.

First, True Positives (TP) denotes the number of the correct classifications that

detect the cyberattacks as intrusions. True Negatives (TN) implies the number of the

correct classifications that recognise the normal network packets as normal. On the

other side, False Negative (FN) denotes the number of incorrect classifications that

detect the malicious behaviours as normal. Finally, False Positive (FP) indicates the

number of mistaken classifications where the normal behaviours are recognised as

malicious. Based on these terms, the following metrics are defined.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
=

20 + 100

20 + 100 + 0 + 0
= 1

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 (𝑇𝑃𝑅) =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
=

20

20 + 0
= 1

𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 (𝑇𝑁𝑅) =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
=

120

120 + 0
= 1

𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 (𝐹𝑃𝑅) =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
=

0

0 + 120
= 0

𝐹1 =
2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
=

2 × 20

2 × 20 + 0 + 0
= 1

Therefore, based on these metrics, the following evaluation results are presented

Accuracy TPR TNR FPR F1

1 1 1 0 0

Since the appropriate specification rules were defined correctly and Suricata is a

signature/specification-based intrusion detection and prevention system, the

detection results are accurate completely. However, in the case of unknown

attacks or without the appropriate specification rules, then the detection results

can present FP and FN.

Test Case

Result

Achieved

Test Case ID Modbus_Suricata_02 Component Suricata (Sensor of

XL-SIEM)

Description This unit test aims to detect a modbus/function/writeSingleCoils presented in

subsection 2.3.2. To this end, as in the previous unit test, Suricata was used

determining the respective Modbus/TCP specification rules based on the

Modbus/TCP network traffic characteristics of the Alkyonis PV Power Station

(SDN-microSENSE Pilot 5 based on D2.4), where only the Function Code 03 (0x03 -

 D5.2
 Version 1.3

© SDN microSENSE consortium Page | 46
Public document

Read Holding Registers) is permitted. Although the same Suricata specification rule

was used in the previous unit test, this unit test intends to verify the applicability

of Suricata to detect modbus/function/writeSingleCoils cyberattacks.

First, the configuration file of Suricata (/etc/suricata/suricata.yaml) was edited to

activate the Modbus/TCP keywords. Then, a particular specification rule, which

determines the Modbus/TCP normal behavioural characteristics of the Alkyonis PV

Power Station is defined and stored in the configuration file

(/etc/Suricata/rules/suricata.rules). Next, the cyberattack

modbus/function/writeSingleCoils is emulated, storing in parallel the Modbus/TCP

network traffic in a pcap file. Finally, the pcap file is processed appropriately by

Suricata, recognising successfully the relevant attack.

Spec ID SPEC-F1, SPEC-F2, SPEC-

F3, SPEC-F4

Priority High

Prepared by UOWM Tested by UOWM

Pre-

condition(s)

-

Test steps

1 The configuration file of Suricata (/etc/suricata/suricata.yaml) was configured to activate the

Modbus/TCP keywords. In particular, in the /etc/suricata/suricata.yaml file, the rows relevant

to the Modbus/TCP keywords were activated, as depicted in the following figure.

Figure 12. Activation of the Modbus/TCP keywords for test case Modbus_Suricata_02

2 As in the previous case, the below Suricata specification rules was utilised in order to recognise

any Modbus/TCP command, which is not relevant to the Modbus/TCP network traffic

characteristics of the Alkyonis PV Power Station (SDN-microSENSE Pilot 5 based on D2.4). The

particular rule determines that only Modbus/TCP Function Code 03 (0x03 - Read Holding

Registers) is allowed.

alert modbus any any -> any 502 (modbus: function !3; msg:"Modbus/TCP Alert - Not Allowed

Moudbus/TCP Function Code"; sid: 2;)

3 Then, the cyberattack modbus/function/readCoils is executed in an emulated environment,

which follows the Modbus/TCP network traffic characteristics of the Alkyonis PV Power Station.

For this purpose, the UOWM Smod was utilised [Radoglou-Grammatikis20+1]. In parallel, the

 D5.2
 Version 1.3

© SDN microSENSE consortium Page | 47
Public document

network traffic relevant to the attack is captured through Wireshark in a pcap file named

malicious_pcap.pcap.

4 The pcap (malicious_pcap.pcap) is analysed by Suricata offline, using the following command.

sudo suricata -c /etc/suricata/suricata.yaml -r malicious_pcap.pcap

Input data A pcap file (malicious_pcap.pcap) related to the

modbus/function/writeSingleCoils attack. The following figure depicts a sample of

this pcap file. In particular, this pcap file (malicious_pcap.pcap) includes 30

Modbus/TCP packets related to the modbus/function/writeSingleCoils attack and

150 Modbus/TCP packets related to Modbus/TCP Function Code 03 (0x03 - Read

Holding Registers).

Figure 13. Pcap for modbus/function/writeSingleCoils attack for test case Modbus_Suricata_02

Result The modbus/function/writeSingleCoils attack was recognised successfully by

Suricata. The detection results are stored in the eve.json file. An example of the

corresponding alerts generated by Suricata is provided below.

{"timestamp":"2020-03-

25T15:14:15.615226+0200","flow_id":821675984101679,"pcap_cnt":1042,"event_type":

"alert","src_ip":"XX.XX.XX.XX","src_port":xx,"dest_ip":"YY.YY.YY.YY","dest_port":yy,"prot

o":"TCP","tx_id":0,"alert":{"action":"allowed","gid":1,"signature_id":2,"rev":0,"signature"

:"Modbus\/TCP Alert - Not Allowed Moudbus\/TCP Function

Code","category":"","severity":3},"app_proto":"modbus","flow":{"pkts_toserver":4,"pkts

_toclient":3,"bytes_toserver":284,"bytes_toclient":218,"start":"2020-03-

25T15:14:15.598319+0200"}}

Based on the aforementioned terms (TN, TP, FP and FN), the following metrics are

defined.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
=

30 + 150

30 + 150 + 0 + 0
= 1

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 (𝑇𝑃𝑅) =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
=

30

30 + 0
= 1

𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 (𝑇𝑁𝑅) =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
=

150

150 + 0
= 1

𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 (𝐹𝑃𝑅) =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
=

0

0 + 150
= 0

𝐹1 =
2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
=

2 × 30

2 × 30 + 0 + 0
= 1

Therefore, based on these metrics, the following evaluation results are presented

 D5.2
 Version 1.3

© SDN microSENSE consortium Page | 48
Public document

Accuracy TPR TNR FPR F1

1 1 1 0 0

Since the appropriate specification rules were defined properly and Suricata is a

signature/specification-based intrusion detection and prevention system, the

detection outcome is accurate completely. Nevertheless, in the case of zero-day

attacks or without the sufficient rules, then the detection results can present FP

and FN.

Test Case

Result

Achieved

Test Case ID Modbus_Suricata_03 Component Suricata (Sensor of

XL-SIEM)

Description This unit test aims at detecting a modbus/function/readInputRegister (presented in

subsection 2.3.2). Suricata was utilised, defining the corresponding Modbus/TCP

specification rules according to the normal Modbus/TCP network traffic behaviour

of the Alkyonis PV Power Station (SDN-microSENSE Pilot 5 based on D2.4), where

only the Function Code 03 (0x03 - Read Holding Registers) is allowed. Although the

same Suricata specification rule was applied in the previous unit tests, this unit test

intends to check the applicability and validity of Suricata to recognise

modbus/function/readInputRegister.

First, the configuration file of Suricata (/etc/suricata/suricata.yaml) was configured

to activate the Modbus/TCP keywords. Following, a specific specification rule, which

determines the Modbus/TCP normal behavioural characteristics of the Alkyonis PV

Power Station is defined in the configuration file

(/etc/Suricata/rules/suricata.rules). Subsequently, the cyberattack

modbus/function/readInputRegister is emulated, storing the Modbus/TCP network

traffic in a pcap file. Finally, the pcap file is parsed by Suricata, recognising the

aforementioned attack.

Spec ID SPEC-F1, SPEC-F2, SPEC-

F3, SPEC-F4

Priority High

Prepared by UOWM Tested by UOWM

Pre-

condition(s)

-

Test steps

1 The configuration file of Suricata (/etc/suricata/suricata.yaml) was configured to uncomment

the Modbus/TCP keywords. Specifically, in the /etc/suricata/suricata.yaml file, the lines related

to the Modbus/TCP keywords were uncommented, as illustrated in the following figure.

 D5.2
 Version 1.3

© SDN microSENSE consortium Page | 49
Public document

Figure 14. Activation of Modbus/TCP keywords for test case Modbus_Suricata_03

2 As in the previous case, the following Suricata specification rule was used to detect Modbus/TCP

commands, which is not relevant to the Modbus/TCP network traffic characteristics of the

Alkyonis PV Power Station (SDN-microSENSE Pilot 5 based on D2.4). The particular rule

determines that only Modbus/TCP Function Code 03 (0x03 - Read Holding Registers) is allowed.

alert modbus any any -> any 502 (modbus: function !3; msg:"Modbus/TCP Alert - Not Allowed

Moudbus/TCP Function Code"; sid: 2;)

3 Then, the cyberattack modbus/function/readInputRegister is performed in an emulated

environment, which adopts the Modbus/TCP network traffic characteristics of the Alkyonis PV

Power Station. The UOWM Smod was utilised [Radoglou-Grammatikis20+1] for the execution of

the cyberattack. In parallel, the network traffic related to the attack is captured through

Wireshark in a pcap file called malicious_pcap.pcap.

4 The pcap (malicious_pcap.pcap) is processed by Suricata offline, using the following command.

sudo suricata -c /etc/suricata/suricata.yaml -r malicious_pcap.pcap

Input data A pcap file (malicious_pcap.pcap) related to the

modbus/function/readInputRegister attack. The following figure depicts a sample

of this pcap file. In particular, this pcap file (malicious_pcap.pcap) includes 20

Modbus/TCP packets related to the modbus/function/readInputRegister attack and

100 Modbus/TCP packets related to Modbus/TCP Function Code 03 (0x03 - Read

Holding Registers).

Figure 15. Pcap for modbus/function/readInputRegister attack for test case Modbus_Suricata_03

Result The modbus/function/readInputRegister attack was detected successfully by

Suricata. The detection results are stored in the eve.json file. An example of the

corresponding alerts produced by Suricata is presented below.

 D5.2
 Version 1.3

© SDN microSENSE consortium Page | 50
Public document

{"timestamp":"2020-03-

26T17:10:54.018282+0200","flow_id":1497422194612871,"pcap_cnt":1023,"event_type":

"alert","src_ip":"XX.XX.XX.XX","src_port":xx,"dest_ip":"YY.YY.YY.YY","dest_port":yy,"proto"

:"TCP","tx_id":0,"alert":{"action":"allowed","gid":1,"signature_id":2,"rev":0,"signature":"M

odbus\/TCP Alert - Not Allowed Moudbus\/TCP Function

Code","category":"","severity":3},"app_proto":"modbus","flow":{"pkts_toserver":4,"pkts_t

oclient":3,"bytes_toserver":284,"bytes_toclient":217,"start":"2020-03-

26T17:10:53.989831+0200"}}

Based on the aforementioned terms (TN, TP, FP and FN), the following metrics are

defined.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
=

20 + 100

20 + 100 + 0 + 0
= 1

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 (𝑇𝑃𝑅) =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
=

20

20 + 0
= 1

𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 (𝑇𝑁𝑅) =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
=

120

120 + 0
= 1

𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 (𝐹𝑃𝑅) =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
=

0

0 + 120
= 0

𝐹1 =
2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
=

2 × 20

2 × 20 + 0 + 0
= 1

Therefore, based on these metrics, the following evaluation results are presented

Accuracy TPR TNR FPR F1

1 1 1 0 0

Given the appropriate specification rules were determined properly and Suricata is

a signature/specification-based intrusion detection and prevention system, the

detection results are accurate completely. However, in the case of zero-day attacks

or without the suitable specification rules, then the detection results could present

FP and FN.

Test Case

Result

Achieved

Test Case ID Modbus_Suricata_04 Component Suricata (Sensor of

XL-SIEM)

Description This unit test intends to detect a modbus/function/writeSingleRegister

(presented in subsection 2.3.2). Suricata is used, determining the respective

Modbus/TCP specification rules based on the normal Modbus/TCP network

traffic behavioural characteristics of the Alkyonis PV Power Station (SDN-

microSENSE Pilot 5 based on D2.4), where only the Function Code 03 (0x03 - Read

Holding Registers) is permitted. Although the same Suricata specification rule

was used in the previous unit tests, this unit test intends to check the applicability

and validity of Suricata to recognise modbus/function/writeSingleRegister.

 D5.2
 Version 1.3

© SDN microSENSE consortium Page | 51
Public document

The configuration file of Suricata (/etc/suricata/suricata.yaml) was edited to

uncomment the Modbus/TCP keywords (commented by default). Following, a

particular specification rule, which defines the Modbus/TCP normal behavioural

characteristics of the Alkyonis PV Power Station is determined in the

configuration file (/etc/Suricata/rules/suricata.rules). Subsequently, the

cyberattack modbus/function/writeSingleRegister is performed, capturing the

Modbus/TCP network traffic in a pcap file. Finally, the pcap file is processed by

Suricata, detecting the aforementioned attack.

Spec ID SPEC-F1, SPEC-F2,

SPEC-F3, SPEC-F4

Priority High

Prepared by UOWM Tested by UOWM

Pre-condition(s) -

Test steps

1 The configuration file of Suricata (/etc/suricata/suricata.yaml) was configured to uncomment

the Modbus/TCP keywords. Specifically, in the /etc/suricata/suricata.yaml file, the lines related

to the Modbus/TCP keywords were uncommented, as illustrated in the following figure.

Figure 16. Activation of Modbus/TCP keywords for test case Modbus_Suricata_04

2 As in the previous unit test, the below Suricata specification rule was applied to detect

Modbus/TCP commands that are not related to the Modbus/TCP network traffic of the Alkyonis

PV Power Station (SDN-microSENSE Pilot 5 based on D2.4). The specific rule defines that only

Modbus/TCP Function Code 03 (0x03 - Read Holding Registers) is allowed.

alert modbus any any -> any 502 (modbus: function !3; msg:"Modbus/TCP Alert - Not Allowed

Moudbus/TCP Function Code"; sid: 2;)

3 Next, the cyberattack modbus/function/writeSingleRegister is emulated, adopting the

Modbus/TCP network traffic of the Alkyonis PV Power Station. The UOWM Smod was used

[Radoglou-Grammatikis20+1] for the execution of the cyberattack. Simultaneously, the network

traffic related to the attack is captured through Wireshark in a pcap file called

malicious_pcap.pcap.

4 The pcap (malicious_pcap.pcap) is parsed by Suricata offline, utilising the following command.

sudo suricata -c /etc/suricata/suricata.yaml -r malicious_pcap.pcap

 D5.2
 Version 1.3

© SDN microSENSE consortium Page | 52
Public document

Input data A pcap file (malicious_pcap.pcap) related to the

modbus/function/writeSingleRegister attack. The following figure depicts a

sample of this pcap file. In particular, this pcap file (malicious_pcap.pcap)

includes 30 Modbus/TCP packets related to the

modbus/function/writeSingleRegister attack and 150 Modbus/TCP packets

related to Modbus/TCP Function Code 03 (0x03 - Read Holding Registers).

Figure 17. Pcap for modbus/function/writeSingleRegister attack for Modbus_Suricata_04

Result The modbus/function/writeSingleRegister attack was recognised by Suricata.

The detection results are stored in the eve.json file. An example of the

corresponding alerts generated by Suricata is presented below.

{"timestamp":"2020-03-

25T18:02:10.710063+0200","flow_id":967791431795084,"pcap_cnt":1388,"event_type

":"alert","src_ip":"XX.XX.XX.XX","src_port":xx,"dest_ip":"YY.YY.YY.YY","dest_port":yy,"p

roto":"TCP","tx_id":0,"alert":{"action":"allowed","gid":1,"signature_id":2,"rev":0,"signa

ture":"Modbus\/TCP Alert - Not Allowed Moudbus\/TCP Function

Code","category":"","severity":3},"app_proto":"modbus","flow":{"pkts_toserver":4,"pk

ts_toclient":3,"bytes_toserver":284,"bytes_toclient":218,"start":"2020-03-

25T18:02:10.672140+0200"}}

Based on the aforementioned terms (TN, TP, FP and FN), the following metrics

are defined.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
=

30 + 150

30 + 150 + 0 + 0
= 1

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 (𝑇𝑃𝑅) =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
=

30

30 + 0
= 1

𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 (𝑇𝑁𝑅) =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
=

150

150 + 0
= 1

𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 (𝐹𝑃𝑅) =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
=

0

0 + 150
= 0

𝐹1 =
2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
=

2 × 30

2 × 30 + 0 + 0
= 1

Therefore, based on these metrics, the following evaluation results are

presented

Accuracy TPR TNR FPR F1

1 1 1 0 0

Since the appropriate specification rules were defined correctly and Suricata is a

signature/specification-based intrusion detection and prevention system, the

 D5.2
 Version 1.3

© SDN microSENSE consortium Page | 53
Public document

detection results are accurate completely. However, in the case of zero-day

attacks or without the appropriate specification rules, then the detection results

could present FP and FN.

Test Case Result Achieved

Test Case ID Modbus_Suricata_05 Component Suricata (Sensor of

XL-SIEM)

Description This unit test intends to detect a modbus/function/readDiscreteInput (presented

in subsection 2.3.2). Suricata is applied, specifying the appropriate Modbus/TCP

specification rules according to the normal Modbus/TCP network traffic of the

Alkyonis PV Power Station (SDN-microSENSE Pilot 5 based on D2.4), where only

the Function Code 03 (0x03 - Read Holding Registers) is used. Although the same

Suricata specification rule was utilised in the previous unit tests, this unit test

aims at validating that Suricata can recognise

modbus/function/readDiscreteInput attacks.

The configuration file of Suricata (/etc/suricata/suricata.yaml) was configured to

activate the Modbus/TCP keywords (commented by default). Next, a

specification rule defining the Modbus/TCP normal behaviour of the Alkyonis PV

Power Station is defined in the configuration file

(/etc/Suricata/rules/suricata.rules). Next, the cyberattack

modbus/function/readDiscreteInput is emulated, capturing and storing the

Modbus/TCP network traffic in a pcap file. Finally, the pcap file is parsed by

Suricata, recognising the aforementioned attack.

Spec ID SPEC-F1, SPEC-F2,

SPEC-F3, SPEC-F4

Priority High

Prepared by UOWM Tested by UOWM

Pre-condition(s) -

Test steps

 D5.2
 Version 1.3

© SDN microSENSE consortium Page | 54
Public document

1 The configuration file of Suricata (/etc/suricata/suricata.yaml) was configured to uncomment

the Modbus/TCP keywords. More precisely, in the /etc/suricata/suricata.yaml file, the rows of

the Modbus/TCP keywords were activated, as depicted in the following figure.

Figure 18. Activation of Modbus/TCP keywords for test case Modbus_Suricata_05

2 As in the previous unit test, the following Suricata specification rule was used to recognise the

Modbus/TCP commands that are not relevant to the Modbus/TCP network traffic of the

Alkyonis PV Power Station (SDN-microSENSE Pilot 5 based on D2.4). The particular rule specifies

that only Modbus/TCP Function Code 03 (0x03 - Read Holding Registers) is allowed.

alert modbus any any -> any 502 (modbus: function !3; msg:"Modbus/TCP Alert - Not Allowed

Moudbus/TCP Function Code"; sid: 2;)

3 Next, the cyberattack modbus/function/readDiscreteInput is emulated, adopting the

Modbus/TCP network traffic of the Alkyonis PV Power Station. The UOWM Smod was used

[Radoglou-Grammatikis20+1] for the execution of the cyberattack. Simultaneously, the network

traffic related to the attack is captured through Wireshark in a pcap file called

malicious_pcap.pcap.

4 The pcap (malicious_pcap.pcap) is parsed by Suricata offline, utilising the following command.

sudo suricata -c /etc/suricata/suricata.yaml -r malicious_pcap.pcap

Input data A pcap file (malicious_pcap.pcap) relevant to the

modbus/function/readDiscreteInput attack. The following figure illustrates a

sample of this pcap file. In particular, this pcap file (malicious_pcap.pcap)

includes 40 Modbus/TCP packets related to the

modbus/function/writeSingleRegister attack and 150 Modbus/TCP packets

related to Modbus/TCP Function Code 03 (0x03 - Read Holding Registers).

Figure 19. Pcap for modbus/function/readDiscreteInput attack for test case Modbus_Suricata_05

 D5.2
 Version 1.3

© SDN microSENSE consortium Page | 55
Public document

Result The modbus/function/readDiscreteInput attack was detected normally by

Suricata. The detection results are stored in the eve.json file. An example of the

respective alerts produced by Suricata is depicted below.

{"timestamp":"2020-03-

26T14:13:25.346664+0200","flow_id":586922789774764,"pcap_cnt":1999,"event_type

":"alert","src_ip":"XX.XX.XX.XX","src_port":xx,"dest_ip":"YY.YY.YY.YY","dest_port":yy,"p

roto":"TCP","tx_id":0,"alert":{"action":"allowed","gid":1,"signature_id":2,"rev":0,"signa

ture":"Modbus\/TCP Alert - Not Allowed Moudbus\/TCP Function

Code","category":"","severity":3},"app_proto":"modbus","flow":{"pkts_toserver":4,"pk

ts_toclient":3,"bytes_toserver":284,"bytes_toclient":216,"start":"2020-03-

26T14:13:25.337324+0200"}}

Based on the aforementioned terms (TN, TP, FP and FN), the following metrics

are defined.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
=

40 + 150

40 + 150 + 0 + 0
= 1

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 (𝑇𝑃𝑅) =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
=

40

40 + 0
= 1

𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 (𝑇𝑁𝑅) =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
=

150

150 + 0
= 1

𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 (𝐹𝑃𝑅) =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
=

0

0 + 150
= 0

𝐹1 =
2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
=

2 × 40

2 × 40 + 0 + 0
= 1

Therefore, based on these metrics, the following evaluation results are

presented

Accuracy TPR TNR FPR F1

1 1 1 0 0

Since the appropriate specification rules were defined correctly and Suricata is a

signature/specification-based intrusion detection and prevention system, the

detection results are accurate completely. However, in the case of zero-day

attacks or without the appropriate specification rules, then the detection results

could present FP and FN.

Test Case Result Achieved

4.2 IEC104 Unit Tests – Suricata

The goal of this subsection is to verify the effectiveness of the Suricata specification rules presented in

subsection 2.2.4) against IEC 60870-5-104 cyberattacks. In particular, both predefined and custom

Suricata specification rules were constructed that can detect the following cyberattacks, C_CI_NA_1,

C_SE_NA_1 and C_SC_NA_1. The remaining cyberattacks, namely M_SP_NA_1_DoS, C_SE_NA_1_DoS,

C_SC_NA_1_DoS and C_CI_NA_1_DoS will be adopted by the ML solutions of Task 5.3/D5.3.

 D5.2
 Version 1.3

© SDN microSENSE consortium Page | 56
Public document

Test Case ID IEC104_Suricata_01 Component Suricata (Sensor of XL-

SIEM)

Description This unit test intends to detect the C_CI_NA_1 cyberattack presented in subsection

2.2.2. To this end, on the one hand, a particular Suricata IEC 60870-5-104-related

specification rule is used from subsection 2.2.4 and Annex 3. On the other hand, a

malicious IEC 60870-5-104-related network traffic data (pcap file) from the UOWM

IEC 60870-5-104 intrusion detection dataset is adopted.

First, a particular specification rule related to C_CI_NA_1 is defined and stored in

the configuration file (/etc/Suricata/rules/suricata.rules), which contains all

specification rules of Suricata. Finally, the pcap file of the UOWM IEC 60870-5-104

intrusion detection dataset is parsed suitably by Suricata, detecting successfully the

relevant attack.

Spec ID SPEC-F1, SPEC-F2, SPEC-F3, SPEC-F4 Priority High

Prepared by SID Tested by SID

Pre-

condition(s)

-

Test steps

1 The following Suricata specification rule was used to detect the C_CI_NA_1 attack presented

in subsection 2.2.2.

alert tcp any [1024:] <> any 2404 (msg:"PROTOCOL-SCADA IEC 104 counter interrogation command";

flow:established; content:"|68|"; content:"|65|"; within:1; distance:5;

reference:url,blog.snort.org/2016/12/iec60870-5-104-protocol-detection-rules.html;

classtype:protocol-command-decode; sid:41075; rev:4;)

2 The pcap (malicious_pcap.pcap) of the UOWM IEC 60870-5-104 intrusion detection dataset is

parsed by Suricata offline, utilising the following command.

sudo suricata -c /etc/suricata/suricata.yaml -r malicious_pcap.pcap

Input data A pcap file (malicious_pcap.pcap) of the UOWM IEC 60870-5-104 intrusion

detection dataset. The following figure depicts a sample of this pcap file. In

particular, this pcap file (malicious_pcap.pcap) includes 50 C_CI_NA_1 packets and

150 normal IEC 60870-5-104 packets.

Figure 20. Pcap for UOWM IEC 60870-5-104 dataset for test case IEC104_Suricata_01

 D5.2
 Version 1.3

© SDN microSENSE consortium Page | 57
Public document

Result The C_CI_NA_1 was recognised successfully by Suricata. The detection results are

stored in the eve.json file. The corresponding alert generated by Suricata is provided

below.

{"timestamp":"2020-04-

26T13:40:29.040698+0300","flow_id":1057454856209836,"pcap_cnt":2391,"event_type":

"alert","src_ip":"XX.XX.XX.XX","src_port":XX,"dest_ip":"YY.YY.YY.YY","dest_port":YY,"proto

":"TCP","alert":{"action":"allowed","gid":1,"signature_id":41075,"rev":4,"signature":"PROT

OCOL-SCADA IEC 104 counter interrogation command","category":"Generic Protocol

Command

Decode","severity":3},"flow":{"pkts_toserver":5,"pkts_toclient":2,"bytes_toserver":360,"by

tes_toclient":146,"start":"2020-04-26T13:40:18.984492+0300"}}

Based on the aforementioned terms (TN, TP, FP and FN), the following metrics are

defined.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
=

50 + 150

50 + 150 + 0 + 0
= 1

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 (𝑇𝑃𝑅) =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
=

50

50 + 0
= 1

𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 (𝑇𝑁𝑅) =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
=

150

150 + 0
= 1

𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 (𝐹𝑃𝑅) =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
=

0

0 + 150
= 0

𝐹1 =
2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
=

2 × 50

2 × 50 + 0 + 0
= 1

Therefore, based on these metrics, the following evaluation results are presented

Accuracy TPR TNR FPR F1

1 1 1 0 0

Since the appropriate specification rules were defined correctly and Suricata is a

signature/specification-based intrusion detection and prevention system, the

detection results are accurate completely. However, in the case of zero-day

attacks or without the appropriate specification rules, then the detection results

could present FP and FN.

Test Case

Result

Achieved

Test

Case ID

IEC104_Suricata_02 Component Suricata (Sensor of

XL-SIEM)

Descript

ion

This unit test aims to recognise the C_SE_NA_1 cyberattack presented in subsection

2.2.2. To this end, a specific Suricata IEC 60870-5-104-related specification rule is applied

from subsection 2.2.4 and Annex 3. On the other side, a malicious IEC 60870-5-104-

related network traffic data (pcap file) from the UOWM IEC 60870-5-104 intrusion

detection dataset is used.

 D5.2
 Version 1.3

© SDN microSENSE consortium Page | 58
Public document

First, a particular specification rule related to C_SE_NA_1 is defined and stored in the

configuration file (/etc/Suricata/rules/suricata.rules), which includes all specification

rules of Suricata. Finally, the pcap file of the UOWM IEC 60870-5-104 intrusion detection

dataset is processed appropriately by Suricata, recognising successfully the relevant

attack.

Spec ID SPEC-F1, SPEC-F2, SPEC-F3, SPEC-F4 Priority High

Prepare

d by

SID Tested by SID

Pre-

conditio

n(s)

-

Test steps

1 The following Suricata specification rule was utilised in order to recognise the C_SE_NA_1

attack described in subsection 2.2.2.

alert tcp any [1024:] <> any 2404 (msg:"PROTOCOL-SCADA IEC 104 C_SE_NA_1"; flow:established;

content:"|68|"; depth:1; content:"|30|"; within:1; distance:5;

reference:url,blog.snort.org/2016/12/iec60870-5-104-protocol-detection-rules.html;

classtype:protocol-command-decode; sid:52174; rev:1;)

2 The pcap (malicious_pcap.pcap) of the UOWM IEC 60870-5-104 intrusion detection dataset is

analysed by Suricata, using the following command.

sudo suricata -c /etc/suricata/suricata.yaml -r malicious_pcap.pcap

Input

data

A pcap file (malicious_pcap.pcap) of the UOWM IEC 60870-5-104 intrusion detection

dataset. The following figure illustrates a sample of this pcap file. In particular, this pcap

file (malicious_pcap.pcap) includes 20 C_SE_NA_1_1 packets and 100 normal IEC 60870-

5-104 packets.

Figure 21. Pcap file of UOWM IEC 60870-5-104 dataset for test case IEC104_Suricata_02

Result The C_SE_NA_1 was recognised successfully by Suricata. The detection results are stored

in the eve.json file. The corresponding alert generated by Suricata is provided below.

{"timestamp":"2020-04-

27T18:15:11.108586+0300","flow_id":695148895097382,"pcap_cnt":672,"event_type":"alert","

src_ip":"XX.XX.XX.XX","src_port":XX,"dest_ip":"XX.XX.XX.XX","dest_port":XX,"proto":"TCP","flow

":{"pkts_toserver":5,"pkts_toclient":2,"bytes_toserver":360,"bytes_toclient":146,"start":"2020-

04-

27T18:15:01.086566+0300"},"alert":{"action":"allowed","gid":1,"signature_id":52174,"rev":1,"si

 D5.2
 Version 1.3

© SDN microSENSE consortium Page | 59
Public document

gnature":"PROTOCOL-SCADA IEC 104 C_SE_NA_1","category":"Generic Protocol Command

Decode","severity":3}}

Based on the aforementioned terms (TN, TP, FP and FN), the following metrics are

defined.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
=

20 + 100

20 + 100 + 0 + 0
= 1

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 (𝑇𝑃𝑅) =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
=

20

20 + 0
= 1

𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 (𝑇𝑁𝑅) =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
=

100

100 + 0
= 1

𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 (𝐹𝑃𝑅) =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
=

0

0 + 100
= 0

𝐹1 =
2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
=

2 × 20

2 × 20 + 0 + 0
= 1

Therefore, based on these metrics, the following evaluation results are presented

Accuracy TPR TNR FPR F1

1 1 1 0 0

Since the appropriate specification rules were defined correctly and Suricata is a

signature/specification-based intrusion detection and prevention system, the detection

results are accurate completely. However, in the case of zero-day attacks or without the

appropriate specification rules, then the detection results could present FP and FN.

Test

Case

Result

Achieved

Test Case

ID

IEC104_Suricata_03 Component Suricata (Sensor of

XL-SIEM)

Description This unit test intends to detect the C_SC_NA_1 cyberattack explained in subsection

2.2.2. A particular Suricata IEC 60870-5-104-related specification rule is utilised from

subsection 2.2.4 and Annex 3. In contrast, a malicious IEC 60870-5-104-related

network traffic data (pcap file) from the UOWM IEC 60870-5-104 intrusion detection

dataset is used.

First, an appropriate specification rule relevant to C_SC_NA_1 is defined in the

configuration file (/etc/Suricata/rules/suricata.rules), which contains all specification

rules of Suricata. Finally, the pcap file of the UOWM IEC 60870-5-104 intrusion

detection dataset is parsed by Suricata, recognising successfully the relevant attack.

Spec ID SPEC-F1, SPEC-F2, SPEC-F3, SPEC-

F4

Priority High

Prepared

by

SID Tested by SID

 D5.2
 Version 1.3

© SDN microSENSE consortium Page | 60
Public document

Pre-

condition

(s)

-

Test steps

1 The following Suricata specification rule was used in to detect the C_SC_NA_1 attack

described in subsection 2.2.2.

alert tcp any [1024:] <> any 2404 (msg:"PROTOCOL-SCADA IEC 104 C_SC_NA_1"; flow:established;

content:"|68|"; depth:1; content:"|2D|"; within:1; distance:5;

reference:url,blog.snort.org/2016/12/iec60870-5-104-protocol-detection-rules.html;

classtype:protocol-command-decode; sid:52171; rev:1;)

2 The pcap (malicious_pcap.pcap) of the UOWM IEC 60870-5-104 intrusion detection dataset

is parsed by Suricata, utilising the below command.

sudo suricata -c /etc/suricata/suricata.yaml -r malicious_pcap.pcap

Input data A pcap file (malicious_pcap.pcap) of the UOWM IEC 60870-5-104 intrusion detection

dataset. The following figure illustrates a sample of this pcap file. In particular, this

pcap file (malicious_pcap.pcap) includes 30 C_SC_NA_1 packets and 100 normal IEC

60870-5-104 packets.

Figure 22. Pcap file of UOWM IEC 60870-5-104 dataset for test case IEC104_Suricata_03

Result The C_SE_NA_1 was recognised successfully by Suricata. The detection results are

stored in the eve.json file. The corresponding alert generated by Suricata is provided

below.

{"timestamp":"2020-04-

28T21:24:59.491102+0300","flow_id":375306941721969,"pcap_cnt":6956,"event_type":"ale

rt","src_ip":"XX.XX.XX.XX","src_port":XX,"dest_ip":"XX.XX.XX.XX","dest_port":XX,"proto":"TC

P","flow":{"pkts_toserver":6,"pkts_toclient":3,"bytes_toserver":426,"bytes_toclient":228,"st

art":"2020-04-

28T21:24:49.355697+0300"},"alert":{"action":"allowed","gid":1,"signature_id":52171,"rev":1

,"signature":"PROTOCOL-SCADA IEC 104 C_SC_NA_1","category":"Generic Protocol

Command Decode","severity":3}}

Based on the aforementioned terms (TN, TP, FP and FN), the following metrics are

defined.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
=

30 + 100

30 + 100 + 0 + 0
= 1

 D5.2
 Version 1.3

© SDN microSENSE consortium Page | 61
Public document

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 (𝑇𝑃𝑅) =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
=

30

30 + 0
= 1

𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 (𝑇𝑁𝑅) =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
=

100

100 + 0
= 1

𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 (𝐹𝑃𝑅) =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
=

0

0 + 100
= 0

𝐹1 =
2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
=

2 × 30

2 × 30 + 0 + 0
= 1

Therefore, based on these metrics, the following evaluation results are presented

Accuracy TPR TNR FPR F1

1 1 1 0 0

Since the appropriate specification rules were defined correctly and Suricata is a

signature/specification-based intrusion detection and prevention system, the

detection results are accurate completely. However, in the case of zero-day attacks

or without the appropriate specification rules, then the detection results could

present FP and FN.

Test Case

Result

Achieved

Test Case

ID

IEC104_Suricata_04 Component Suricata (XL SIEM

Sensor)

Description An appropriate python script called SIREN loads a pcap file with only IEC 60870-5-104

normal traffic, thereby identifying the IEC 60970-5-104 packets’ and specifying

Suricata IEC 60870-5-104 specification rules that define the normal behaviour of an

emulated environment. These Suricata specification rules are applied against a

malicious pcap file, which includes IEC 60970-5-104 that are not contained in the

initial, normal pcap file. Therefore, the Suricata specification rule identifies the IEC

60970-5-104 anomalies.

Spec IDs SPEC-F1, SPEC-F2, SPEC-

F3, SPEC-F4

Priority Medium

Prepared

by

SID Tested by SID

Pre-

condition(s

)

The initial pcap file includes only normal IEC 60970-5-104 packets.

Test steps

1 SIREN loads a pcap file with only IEC 60870-5-104 normal traffic and exports the following IEC

60870-5-104 specification rules.

 D5.2
 Version 1.3

© SDN microSENSE consortium Page | 62
Public document

alert tcp any any <> any 2404 (msg:"PROTOCOL-SCADA IEC 104 C_IC_NA_1"; content:"|68|",depth 1;

content:"|64|",within 1,distance 5; reference:Sidroco_Holdings_IEC104_RUles; sid:41078; rev:1;)

alert tcp any any <> any 2404 (msg:"PROTOCOL-SCADA IEC 104 C_SC_NA_1"; content:"|68|",depth 1;

content:"|2D|",within 1,distance 5; reference:Sidroco_Holdings_IEC104_RUles; sid:41079; rev:1;)

2 The new rules are inserted into the configuration file (/etc/Suricata/rules/suricata.rules), which

includes all specification rules of Suricata.

3 The malicious pcap file (malicious_pcap.pcap) of the UOWM IEC 60870-5-104 intrusion

detection dataset is parsed by Suricata, utilising the below command.

sudo suricata -c /etc/suricata/suricata.yaml -r malicious_pcap.pcap

Input data A pcap file (malicious_pcap.pcap) of the UOWM IEC 60870-5-104 intrusion detection

dataset. The following figure illustrates a sample of this pcap file.

Figure 23. Pcap file of UOWM IEC 60870-5-104 dataset for test case IEC104_Suricata_04

Result The C_SE_NA_1 was recognised successfully by Suricata. The detection results are

stored in the eve.json file. The corresponding alert generated by Suricata is provided

below.

{"timestamp":"2020-04-

28T21:24:59.491102+0300","flow_id":375306941721969,"pcap_cnt":6956,"event_type":"ale

rt","src_ip":"XX.XX.XX.XX","src_port":XX,"dest_ip":"XX.XX.XX.XX","dest_port":XX,"proto":"TC

P","flow":{"pkts_toserver":6,"pkts_toclient":3,"bytes_toserver":426,"bytes_toclient":228,"st

art":"2020-04-

28T21:24:49.355697+0300"},"alert":{"action":"allowed","gid":1,"signature_id":52171,"rev":1

,"signature":"PROTOCOL-SCADA IEC 104 C_SC_NA_1","category":"Generic Protocol

Command Decode","severity":3}}

Test Case

Result

Achieved

4.3 DNP3 Unit Tests – Suricata

This subsection intends to examine and verify the efficiency of the Suricata specification rules

presented in subsection 2.3.4 and Annex 2 against the DNP3 cyberattacks presented in subsection

2.4.2. In particular, the following unit tests are related to the a) DNP3 Disable Unsolicited Messages

Attack, b) DNP3 Cold Restart Message Attack, c) DNP3 Info and d) DNP3 enumerate. On the other side,

the DNP3 Warm Restart Message Attack will be examined in Task 5.3/D5.3.

 D5.2
 Version 1.3

© SDN microSENSE consortium Page | 63
Public document

Test Case

ID

DNP3_Suricata_01 Component Suricata (Sensor of

XL-SIEM)

Description This unit test intends to detect a DNP3 Disable Unsolicited Messages Attack presented

in subsection 2.4.2. To this end, on the one hand, a particular Suricata DNP3-related

specification rule is used from subsection 2.4.4 and Annex 2. On the other hand, the

malicious DNP3-related network traffic data (pcap file) of [Pliatsios20] is adopted.

First, the configuration file of Suricata (/etc/suricata/suricata.yaml) was configured to

consider normally the DNP3 keywords. Next, a specific specification rule related to

the DNP3 Disable Unsolicited Messages Attack is defined and stored in the

configuration file (/etc/Suricata/rules/suricata.rules), which contains all specification

rules of Suricata. Finally, the pcap file of [Pliatsios20] is parsed suitably by Suricata,

detecting successfully the relevant attack.

Spec ID SPEC-F1, SPEC-F2, SPEC-F3,

SPEC-F4

Priority High

Prepared by 0INF Tested by 0INF

Pre-

condition(s)

-

Test steps

1 The configuration file of Suricata (/etc/suricata/suricata.yaml) was edited to consider the DNP3

keywords. In particular, in the /etc/suricata/suricata.yaml file, the rows of the DNP3 keywords

were uncommented, as depicted in the following figure.

Figure 24. Activation of the DNP3 keywords of Suricata for test case DNP3_Suricata_01

2 The following Suricata specification rule was used in order to detect the DNP3 Disable Unsolicited

Messages Attack presented in subsection 2.4.2.

alert tcp $DNP3_SERVER 20000 -> $DNP3_CLIENT any (flow:established; content:"|82|"; offset:12;

depth:1; msg:"SCADA_IDS: DNP3 - Unsolicited Response Storm"; threshold: type threshold, track by_src,

count 5, seconds 10; reference:url,digitalbond.com/tools/quickdraw/dnp3-rules; classtype:attempted-

dos; sid:1111203; rev:1; priority:2;)

3 The pcap (malicious_pcap.pcap) of [Pliatsios20] is parsed by Suricata offline, utilising the

following command.

sudo suricata -c /etc/suricata/suricata.yaml -r malicious_pcap.pcap

Input data A pcap file (malicious_pcap.pcap) of [Pliatsios20]. The following figure depicts a

sample of this pcap file. In particular, this pcap file (malicious_pcap.pcap) includes

 D5.2
 Version 1.3

© SDN microSENSE consortium Page | 64
Public document

30 packets related to DNP3 Disable Unsolicited Messages Attack and 100 normal

DNP3 packets

Figure 25. Pcap of [Pliatsios20] for test case DNP3_Suricata_01

Result The DNP3 Disable Unsolicited Messages Attack was recognised successfully by

Suricata. The detection results are stored in the eve.json file. The corresponding

alert generated by Suricata is provided below.

{"timestamp":"2017-02-

14T01:28:54.950977+0200","flow_id":706430872485681,"pcap_cnt":1428,"event_type":

"alert","src_ip":"XX.XX.XX.XX","src_port":XX,"dest_ip":"XX.XX.XX.XX","dest_port":XX,"pro

to":"TCP","alert":{"action":"allowed","gid":1,"signature_id":1111203,"rev":1,"signature":

"SCADA_IDS: DNP3 - Unsolicited Response Storm","category":"Attempted Denial of

Service","severity":2},"flow":{"pkts_toserver":2,"pkts_toclient":2,"bytes_toserver":140,"

bytes_toclient":157,"start":"2017-02-14T01:28:54.950065+0200"}}

Based on the aforementioned terms (TN, TP, FP and FN), the following metrics are

defined.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
=

30 + 100

30 + 100 + 0 + 0
= 1

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 (𝑇𝑃𝑅) =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
=

30

30 + 0
= 1

𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 (𝑇𝑁𝑅) =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
=

100

100 + 0
= 1

𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 (𝐹𝑃𝑅) =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
=

0

0 + 100
= 0

𝐹1 =
2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
=

2 × 30

2 × 30 + 0 + 0
= 1

Therefore, based on these metrics, the following evaluation results are presented

Accuracy TPR TNR FPR F1

1 1 1 0 0

Since the appropriate specification rules were defined correctly and Suricata is a

signature/specification-based intrusion detection and prevention system, the

detection results are accurate completely. However, in the case of zero-day

attacks or without the appropriate specification rules, then the detection results

could present FP and FN.

Test Case

Result

Achieved

 D5.2
 Version 1.3

© SDN microSENSE consortium Page | 65
Public document

Test Case ID DNP3_Suricata_02 Component Suricata (Sensor

of XL-SIEM)

Description This unit test aims to recognise a DNP3 Cold Restart Message Attack described in

subsection 2.4.2. To this end, a specific Suricata DNP3-related specification rule is

utilised from subsection 2.4.4 and Annex 2. On the other hand, the malicious DNP3-

related network traffic data (pcap file) of [Pliatsios20] is used.

First, the configuration file of Suricata (/etc/suricata/suricata.yaml) was edited to

take into account the DNP3 keywords. Then, a particular specification rule relevant

to the DNP3 Cold Restart Message Attack is defined in the configuration file

(/etc/Suricata/rules/suricata.rules), which comprises all specification rules of

Suricata. Finally, the pcap file of [Pliatsios20] is processed appropriately by Suricata,

thus detecting successfully the relevant attack.

Spec ID SPEC-F1, SPEC-F2, SPEC-F3, SPEC-

F4

Priority High

Prepared by 0INF Tested by 0INF

Pre-

condition(s)

-

Test steps

1 The configuration file of Suricata (/etc/suricata/suricata.yaml) was configured to take into

account the DNP3 keywords. In particular, in the /etc/suricata/suricata.yaml file, the lines of the

DNP3 keywords were uncommented, as illustrated in the following figure.

Figure 26. Activation of the DNP3 keywords of Suricata for test case DNP3_Suricata_02

2 The following Suricata specification rule was adopted to recognise the DNP3 Cold Restart

Message Attack described in subsection 2.4.2.

alert tcp $DNP3_CLIENT any -> $DNP3_SERVER 20000 (msg:"SCADA_IDS: DNP3 - Cold Restart From

Authorized Client"; dnp3_func:13; reference:url,digitalbond.com/tools/quickdraw/dnp3-rules;

classtype:attempted-dos; sid:11112041; rev:1; priority:2;)

3 The pcap (malicious_pcap.pcap) of [Pliatsios20] is processed by Suricata offline, using the

following command.

sudo suricata -c /etc/suricata/suricata.yaml -r malicious_pcap.pcap

Input data A pcap file (malicious_pcap.pcap) of [Pliatsios20]. The following figure shows a

sample of this pcap file. In particular, this pcap file (malicious_pcap.pcap) includes

 D5.2
 Version 1.3

© SDN microSENSE consortium Page | 66
Public document

20 packets related to DNP3 Cold Restart Message Attack and 150 normal DNP3

packets.

Figure 27. Pcap of [Pliatsios20] for test case DNP3_Suricata_02

Result The DNP3 Cold Restart Message Attack was detected successfully by Suricata. The

detection results are stored in the eve.json file. The corresponding alert produced

by Suricata is provided below.

{"timestamp":"2017-02-

14T06:24:28.099147+0200","flow_id":2144573915774774,"pcap_cnt":21984,"event_type"

:"alert","src_ip":"XX.XX.XX.XX","src_port":XX,"dest_ip":"XX.XX.XX.XX","dest_port":XX,"prot

o":"TCP","tx_id":7,"alert":{"action":"allowed","gid":1,"signature_id":11112041,"rev":1,"sig

nature":"SCADA_IDS: DNP3 - Cold Restart From Authorized Client","category":"Attempted

Denial of

Service","severity":2},"dnp3":{"request":{"type":"request","control":{"dir":true,"pri":true,"

fcb":false,"fcv":false,"function_code":4},"src":1,"dst":10,"application":{"control":{"fir":true,

"fin":true,"con":false,"uns":false,"sequence":5},"function_code":13,"objects":[],"complete"

:true}}},"app_proto":"dnp3","flow":{"pkts_toserver":18,"pkts_toclient":13,"bytes_toserver

":1358,"bytes_toclient":1632,"start":"2017-02-14T06:24:17.704310+0200"}}

Based on the aforementioned terms (TN, TP, FP and FN), the following metrics are

defined.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
=

20 + 150

20 + 150 + 0 + 0
= 1

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 (𝑇𝑃𝑅) =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
=

20

20 + 0
= 1

𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 (𝑇𝑁𝑅) =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
=

150

150 + 0
= 1

𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 (𝐹𝑃𝑅) =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
=

0

0 + 150
= 0

𝐹1 =
2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
=

2 × 20

2 × 20 + 0 + 0
= 1

Therefore, based on these metrics, the following evaluation results are presented

Accuracy TPR TNR FPR F1

1 1 1 0 0

Since the appropriate specification rules were defined correctly and Suricata is a

signature/specification-based intrusion detection and prevention system, the

detection results are accurate completely. However, in the case of zero-day attacks

 D5.2
 Version 1.3

© SDN microSENSE consortium Page | 67
Public document

or without the appropriate specification rules, then the detection results could

present FP and FN.

Test Case

Result

Achieved

Test Case ID DNP3_Suricata_03 Component Suricata (Sensor of XL-

SIEM)

Description This unit test intends to recognise the DNP3 Info attack explained in subsection

2.4.2. To this end, a particular Suricata DNP3-related specification rule is used from

subsection 2.4.4 and Annex 2. In contrast, the DNP3-related network traffic data

(pcap file) of [Pliatsios20] is utilised as the malicious DNP3-related network traffic.

First, the configuration file of Suricata (/etc/suricata/suricata.yaml) was edited to

take into consideration the DNP3 keywords. Subsequently, a specification rule

related to the DNP3 Info attack is defined and stored in the configuration file

(/etc/Suricata/rules/suricata.rules), which includes all specification rules of Suricata.

Finally, the pcap file of [Pliatsios20] is parsed by Suricata, thus recognising

successfully the relevant attack.

Spec ID SPEC-F1, SPEC-F2, SPEC-F3, SPEC-

F4

Priority Medium

Prepared by 0INF Tested by 0INF

Pre-

condition(s)

-

Test steps

1 The configuration file of Suricata (/etc/suricata/suricata.yaml) was configured to take into

consideration the DNP3 keywords. Specifically, in the /etc/suricata/suricata.yaml file, the rows

of the DNP3 keywords were activated, as illustrated in the following figure.

Figure 28. Activation of the DNP3 keywords of Suricata for test case DNP3_Suricata_03

2 The following Suricata specification rule was adopted to recognise the DNP3 Info attack, which

is described in subsection 2.4.2.

alert tcp $DNP3_SERVER 20000 -> any any (flow:established; content:"|81|"; offset:12; depth:1;

pcre:"/[\S\s]{1}(\x01)/iAR"; msg:"SCADA_IDS: DNP3 - Function Code Scan"; threshold: type threshold,

track by_src, count 3, seconds 60; reference:url,digitalbond.com/tools/quickdraw/dnp3-rules;

classtype:attempted-recon; sid:1111214; rev:1; priority:2;)

 D5.2
 Version 1.3

© SDN microSENSE consortium Page | 68
Public document

3 The pcap (malicious_pcap.pcap) of [Pliatsios20] is analysed by Suricata offline, using the

following command. In particular, this pcap file (malicious_pcap.pcap) includes 20 packets

related to DNP3 Info attack and 100 normal DNP3 packets.

sudo suricata -c /etc/suricata/suricata.yaml -r malicious_pcap.pcap

Input data A pcap file (malicious_pcap.pcap) of [Pliatsios20]. The following figure shows a

sample of this pcap file.

Figure 29. Pcap of [Pliatsios20] for test case DNP3_Suricata_03

Result The DNP3 Info attack was recognised successfully by Suricata. The detection results

are stored in the eve.json file. The respective alert generated by Suricata is shown

below.

{"timestamp":"2017-02-

14T06:24:28.538383+0200","flow_id":2144573915774774,"pcap_cnt":21987,"event_type"

:"alert","src_ip":"XX.XX.XX.XX","src_port":XX,"dest_ip":"XX.XX.XX.XX","dest_port":XX,"prot

o":"TCP","alert":{"action":"allowed","gid":1,"signature_id":1111214,"rev":1,"signature":"S

CADA_IDS: DNP3 - Function Code Scan","category":"Attempted Information

Leak","severity":2},"app_proto":"dnp3","flow":{"pkts_toserver":18,"pkts_toclient":16,"byt

es_toserver":1358,"bytes_toclient":1864,"start":"2017-02-14T06:24:17.704310+0200"}}

Based on the aforementioned terms (TN, TP, FP and FN), the following metrics are

defined.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
=

20 + 100

20 + 100 + 0 + 0
= 1

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 (𝑇𝑃𝑅) =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
=

20

20 + 0
= 1

𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 (𝑇𝑁𝑅) =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
=

100

100 + 0
= 1

𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 (𝐹𝑃𝑅) =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
=

0

0 + 100
= 0

𝐹1 =
2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
=

2 × 20

2 × 20 + 0 + 0
= 1

Therefore, based on these metrics, the following evaluation results are presented

Accuracy TPR TNR FPR F1

1 1 1 0 0

Since the appropriate specification rules were defined correctly and Suricata is a

signature/specification-based intrusion detection and prevention system, the

detection results are accurate completely. However, in the case of zero-day attacks

 D5.2
 Version 1.3

© SDN microSENSE consortium Page | 69
Public document

or without the appropriate specification rules, then the detection results could

present FP and FN.

Test Case

Result

Achieved

Test Case ID DNP3_Suricata_04 Component Suricata (Sensor of

XL-SIEM)

Description This unit test aims at detecting the DNP3 Enumerate attack, which is

presented in subsection 2.4.2. A particular Suricata DNP3-related

specification rule is used from subsection 2.4.4 and Annex 2. On the contrary,

the DNP3-related network traffic data (pcap file) of [Pliatsios20] is used as

the malicious DNP3-related network traffic.

First, the configuration file of Suricata (/etc/suricata/suricata.yaml) was

configured to consider the DNP3 keywords. Next, a specification rule related

to the DNP3 Enumerate attack is specified in the configuration file

(/etc/Suricata/rules/suricata.rules), which contains all specification rules of

Suricata. Finally, the pcap file of [Pliatsios20] is analysed by Suricata, thereby

detecting the relevant attack.

Spec ID SPEC-F1, SPEC-F2, SPEC-F3,

SPEC-F4

Priority Medium

Prepared by 0INF Tested by 0INF

Pre-condition(s) -

Test steps

1 The configuration file of Suricata (/etc/suricata/suricata.yaml) was edited to consider the DNP3

keywords. More precisely, in the /etc/suricata/suricata.yaml file, the lines related to the DNP3

keywords were uncommented, as depicted in the following figure.

Figure 30. Activation of the DNP3 keywords of Suricata for test case DNP3_Suricata_04

2 The following Suricata specification rule was used to detect the DNP3 Enumerate attack, which

is presented in subsection 2.4.2.

alert tcp $DNP3_SERVER 20000 -> any any (flow:established; content:"|81|"; offset:12; depth:1;

pcre:"/[\S\s]{1}(\x01)/iAR"; msg:"SCADA_IDS: DNP3 - Function Code Scan"; threshold: type threshold,

track by_src, count 3, seconds 60; reference:url,digitalbond.com/tools/quickdraw/dnp3-rules;

classtype:attempted-recon; sid:1111214; rev:1; priority:2;)

 D5.2
 Version 1.3

© SDN microSENSE consortium Page | 70
Public document

3 The pcap (malicious_pcap.pcap) of [Pliatsios20] is parsed by Suricata, utilising the following

command.

sudo suricata -c /etc/suricata/suricata.yaml -r malicious_pcap.pcap

Input data A pcap file (malicious_pcap.pcap) of [Pliatsios20]. The following figure illustrates a

sample of this pcap file. In particular, this pcap file (malicious_pcap.pcap) includes 40

packets related to DNP3 Enumerate attack and 100 normal DNP3 packets.

Figure 31. Pcap of [Pliatsios20] for test case DNP3_Suricata_04

Result The DNP3 Info attack was detected successfully by Suricata. The detection results are

stored in the eve.json file. The corresponding alert produced by Suricata is depicted

below.

{"timestamp":"2017-02-

14T06:24:28.538383+0200","flow_id":2144573915774774,"pcap_cnt":21987,"event_type":"

alert","src_ip":"XX.XX.XX.XX","src_port":XX,"dest_ip":"XX.XX.XX.XX","dest_port":XX,"proto":"

TCP","alert":{"action":"allowed","gid":1,"signature_id":1111214,"rev":1,"signature":"SCADA

_IDS: DNP3 - Function Code Scan","category":"Attempted Information

Leak","severity":2},"app_proto":"dnp3","flow":{"pkts_toserver":18,"pkts_toclient":16,"bytes

_toserver":1358,"bytes_toclient":1864,"start":"2017-02-14T06:24:17.704310+0200"}}

Based on the aforementioned terms (TN, TP, FP and FN), the following metrics are

defined.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
=

40 + 100

40 + 100 + 0 + 0
= 1

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 (𝑇𝑃𝑅) =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
=

40

40 + 0
= 1

𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 (𝑇𝑁𝑅) =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
=

100

100 + 0
= 1

𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 (𝐹𝑃𝑅) =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
=

0

0 + 100
= 0

𝐹1 =
2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
=

2 × 40

2 × 40 + 0 + 0
= 1

Therefore, based on these metrics, the following evaluation results are presented

Accuracy TPR TNR FPR F1

1 1 1 0 0

Since the appropriate specification rules were defined correctly and Suricata is a

signature/specification-based intrusion detection and prevention system, the

detection results are accurate completely. However, in the case of zero-day attacks

 D5.2
 Version 1.3

© SDN microSENSE consortium Page | 71
Public document

or without the appropriate specification rules, then the detection results could

present FP and FN.

Test Case

Result

Achieved

4.4 IEC 61850 Unit Tests – STB-Aware

This subsection intends to examine up to what extent the IEC 61850 detection tool described in Error!

Reference source not found. is able to detect any undesired MMS message (report and request) that

should not be present in the substation. The result of the tests is evaluated according to the substation

electric topology, as well as the logical nodes (and devices) which control the switchgear. Therefore,

all tests are divided into two steps. In the first one, the sclCrawler extracts the substation information

and is dumped in a file, which can be restricted or not by the substation engineer. In the second step,

the detection tool is listening to the communications channels in order to detect any MMS not present

in the file.

As explained in Error! Reference source not found., the SCL interpreter output is a file whose data

model must be interpretable in by the detection tool. Therefore, the file structure depends on the

detection engine and the way this engine loads the data when generating rules. In the tests, the

sclCrawler writes the file in XML files, where reports and request are dumped in XML CDATA sections.

The detection tool is a Suricata, which reads the file and runs a LUA script upon MMS (port 102),

launching an alert whenever a request is not present in the CDATA sections.

Test Case ID 61850_SBT_Config Components sclCrawler

Description This unit test extracts the allowed MMS messages that can be present in the

substation. Although it is not a detection test case, the aim of this test is just

extract information and check whether the reports, nodes, functions, etc. is

present in the output file.

Spec ID SPEC-F1, SPEC-F2, SPEC-F3,

SPEC-F4

Priority Medium

Prepared by Tecnalia Tested by Tecnalia

Pre-condition(s) - Example of SCL extracted from TC 57 group for integration testing (21 IEDs)

Test steps

1 Run the sclCrawler with the substation file: IOP_2019_HV_2.scd:

java –jar sclCrawler.jar -all dump.txt IOP_2019_HV_2.scd

2 Open the output file dump.txt to see the nodes.

3 Check that the <ipaddresses> has 21 elements, whose names are the IED_name in the SCL file

and with the correct IPs.

 D5.2
 Version 1.3

© SDN microSENSE consortium Page | 72
Public document

4 Check that <services> contains 21 elements with all the services for each IED.

5 Check that <reportSettingsService> only contains IEDs with configured reports (16 elements)

with all the settings for them.

6 Check that <GOOSE> contains all GOOSEs identifications, which IED generates it and, when

available, which IEDs consume them.

7 Check that <Report> contains all reports clasified by IED

8 Check that <LNodesObj> contains all texts that can be present in a MMS communication

(including bay, node names, variable and functional constraint)

Input data The proper substation configuration (SCD) file: IOP_2019_HV_2.scd

Result An XML file containing all data:

Figure 32. sclCrawler output (XML containing CDATA for MMS)

Test Case

Result

Achieved

Test Case ID 61850_IED_Sniffing Components Suricata (Sensor of

XL-SIEM) adapted

for LUA scripting

 D5.2
 Version 1.3

© SDN microSENSE consortium Page | 73
Public document

Description This unit test aims at detecting an MMS message trying to request for a

control switch that is not configured, and therefore not present in the

sclCrawler output file.

Spec ID SPEC-F1, SPEC-F2, SPEC-F3,

SPEC-F4

Priority Medium

Prepared by Tecnalia Tested by Tecnalia

Pre-condition(s) - A real IED, installed in a substation with a mirror port for attack detection

Test steps

1 Run the sclCrawler with the CID file: L1.scd:

java –jar sclCrawler.jar -all substrings_xxx_xxx_x_11.txt l1.cid

2 Open the output file substrings_192_168_2_11.txt to see the nodes and delete the data which

shows the physical node state LPHD1.PhyHealth:

Figure 33. Extract from sclCrawler otuput for bay 1 CID file

3 Configure Suricata to import substrings_192_168_2_11.txt

 D5.2
 Version 1.3

© SDN microSENSE consortium Page | 74
Public document

Figure 34. LUA script to add substation specific information

4 Connect Suricata to a switch mirror port connected to the bay 1 IED

5 Configure Suricata only to watch the bay 1:

TCP, XX.XX.XX.11, port YY2

6 Apply substation rules for bay1:

alert tcp any any -> XX.XX.XX.11 YY2 (msg:"Accessed variable not in

configuration "; luajit:script1.lua; sid:101010; rev:1;)

7 Check that an alert is launched only when the SCADA checks the bay 1

Input data The configured IED for the substation (CID) file for bay 1: L1.cid

The LUA script:IED for the substation (CID) file for bay 1: script1.lua

Real substation on-line traffic (mirror port connected to the Suricata)

Result An alert is launched when the SCADA tries to check the state:

Figure 35. Alert launched when checking the state

Test Case

Result

Achieved

 D5.2
 Version 0.6

© SDN microSENSE consortium Page | 75
Public document

5 Innovation Summary
Table 6 summarizes the protocols that have been considered in this deliverable, mapped to the main attacks threating these protocols and linked to the

attacks tools used in SDN-microSENSE. The information contained in this table also summarizes the main innovations carried in this task, which are related to

the detection of incidents associated to widely used EPES protocols, both using standard rule based approaches (as described in this document) or machine

learning based (as described in D5.3 [SDN53]

Table 6. Summary of protocols attacks and tools involved

Protocol Attacks
Category

Attack description Attacker tool Available datasets Attack detector

IEC 61850 DoS Flood made-up GOOSE frames to congest the
substation network.

Ettercap

https://www
.ettercap-
project.org/

IEC61850 Security
Dataset
(https://github.com/smar
tgridadsc/IEC61850Securi
tyDataset)

ML Model (T5.3)

Tecnalia tool (T5.2)

Message
Suppression

Man in the middle, session hijacking, Interception of
information.

A message suppression (MS) attack refers to the
hijacking of the communication channel by
modifying the GOOSE header fields to prevent
legitimate IEDs from receiving critical messages or
updates. (sqNum, stNum)

Scapy Script IEC61850 Security
Dataset
(https://github.com/smar
tgridadsc/IEC61850Securi
tyDataset)

ML Model (T5.3)

Tecnalia tool (T5.2)

Data Injection Unauthorised Access, Information leakage, Failure
of devices and systems, Manipulation of
information, Replay of messages.

Data injection refers to the process of injecting

Scapy Script IEC61850 Security
Dataset
(https://github.com/smar
tgridadsc/IEC61850Securi
tyDataset)

ML Model (T5.3)

Tecnalia tool (T5.2)

https://github.com/smartgridadsc/IEC61850SecurityDataset
https://github.com/smartgridadsc/IEC61850SecurityDataset
https://github.com/smartgridadsc/IEC61850SecurityDataset
https://github.com/smartgridadsc/IEC61850SecurityDataset
https://github.com/smartgridadsc/IEC61850SecurityDataset
https://github.com/smartgridadsc/IEC61850SecurityDataset
https://github.com/smartgridadsc/IEC61850SecurityDataset
https://github.com/smartgridadsc/IEC61850SecurityDataset
https://github.com/smartgridadsc/IEC61850SecurityDataset

 D5.2
 Version 0.9

© SDN microSENSE consortium Page | 76
Public document

modified network payloads into the network to
negatively impact the power grid stability or to
mask unauthorized changes.

IEC
60870-5-
101/104

Network
Reconnaissanc
e and
Information
Gathering

Discovery:
Attempts to identify IEC 60870-5-104 ICS protocol.

Nmap NSE Not needed Suricata (T5,2)

DoS

DoS against IEC104 (m_sp_na_1_DoS) IEC Server
Simulator

UOWM IEC104 Dataset Common ML Model
provided (T5.3)

DoS against IEC104 (c_ci_na_1_DoS) Bash script
based on
Metasploit

UOWM IEC104 Dataset Common ML Model
provided (T5.3)

DoS against IEC104 (c_se_na_1_DoS) Bash script
based on
Metasploit

UOWM IEC104 Dataset Common ML Model
provided (T5.3)

DoS against IEC104 (c_sc_na_1_DoS) Bash script
based on
Metasploit

UOWM IEC104 Dataset Common ML Model
provided (T5.3)

Unauthorised
Access,
Information
leakage,
Failure of
devices and
systems,
Manipulation
of information

Malicious IEC104 command (c_ci_na_1) Metasploit,
Bash script
based on
Metasploit

UOWM IEC104 Dataset Common ML Model
provided (T5.3)

Malicious IEC 104 (c_se_na_1) Metasploit,
Bash script
based on
Metasploit

UOWM IEC104 Dataset Common ML Model
provided (T5.3)

Malicious IEC 104 (c_sc_na_1) Metasploit,
Bash script

UOWM IEC104 Dataset Common ML Model
provided (T5.3)

 D5.2
 Version 0.9

© SDN microSENSE consortium Page | 77
Public document

based on
Metasploit

DNP3

Network
Reconnaissanc
e and
Information
Gathering

dnp3-enumerate:
This attack enumerates those assets using DNP3

Nmap NSE Not needed Suricata (T5.2)

dnp3-info
This attack sends a command to query through the
first 100 addresses of DNP3 to see if a valid response
is given. If a valid response is given it will then parse
the results based on function ID and other data.

Nmap NSE Not needed Suricata (T5.2)

Unauthorised
Access, Failure
of devices and
systems,
Manipulation
of information

DNP3 Disable Unsolicited Messages Attack:
The attacker implements this attack by first
initiating a connection with the outstation node (the
victim) posing as the Master node. He then sends a
message with function code 21 (disable unsolicited
messages) to the outstation requesting the
outstation to disable all unsolicited messages. At
this point the outstation will not be able to send any
alarming messages to the Master in case there is a
failure or abnormal operation in the outstation
node.

OpenDNP3 UOWM DNP3 Dataset Common ML Model
provided (T5.3)

DNP3 Cold Restart Message Attack:
When DNP3 Cold Restart request command is
received by the outstation and the packet is
confirmed to have originated from the master, the
outstation then performs a full restart on
completion of the communications sequence. The
outstation will also send a reply to the master with
the time the outstation is available before
restarting. This attack involves sending a command

OpenDNP3 UOWM DNP3 Dataset Common ML Model
provided (T5.3)

 D5.2
 Version 0.9

© SDN microSENSE consortium Page | 78
Public document

called Cold Restart to an outstation which causes
the outstation to restart completely

DNP3 Warm Restart Message Attack OpenDNP3 UOWM DNP3 Dataset Common ML Model
provided (T5.3)

Modbus

DoS

 modbus/dos/writeSingleCoils:

The modbus/dos/writeSingleCoils attack is a DoS
which send continuously malicious Modbus packets
(function code 5) to the target system.

UOWM
Smod

UOWM Modbus Dataset Common ML Model
provided (T5.3)

Smod CERTH SPEAR-Smart
home Dataset

ML Model (T5.3)

modbus/dos/writeSingleRegister:

The modbus/dos/writeSingleRegister is a DoS
attack, which sends continuously malicious Modbus
packets (function code 06) to the target system.

UOWM
Smod

UOWM Modbus Dataset Common ML Model
provided (T5.3)

Smod CERTH SPEAR-Smart
home Dataset

ML Model (T5.3)

Unauthorised
Access, Failure
of devices and
systems,
Manipulation
of
information:

modbus/function/writeSingleCoils

The modbus/function/writeSingleCoils aims to
change the value of a coil.

UOWM
Smod

UOWM Modbus Dataset Common ML Model
provided (T5.3)

Smod CERTH SPEAR-Smart
home Dataset

ML Model (T5.3)

modbus/function/writeSingleRegister

The modbus/function/write Single Register attack
changes the values of a single holding register.

UOWM
Smod

UOWM Modbus Dataset Common ML Model
provided (T5.3)

Smod CERTH SPEAR-Smart
home Dataset

ML Model (T5.3)

UID brute force attack against PV/Battery inverters’
RPI Unauthorised
Access, Failure of devices and systems,
Manipulation of information

Smod CERTH SPEAR-Smart
home Dataset

ML Model (T5.3)

 D5.2
 Version 0.9

© SDN microSENSE consortium Page | 79
Public document

Unauthorised
Access,
Information
leakage

modbus/function/readCoils

The modbus/function/readCoils attack reads the
value of a specific coil.

UOWM
Smod

UOWM Modbus Dataset Common ML Model
provided (T5.3)

Smod CERTH SPEAR-Smart
home Dataset

ML Model (T5.3)

modbus/function/readDiscreteInput

The modbus/function/readDiscreteInput can
extract the values of the discrete inputs supported
by the target.

UOWM
Smod

UOWM Modbus Dataset Common ML Model
provided (T5.3)

Smod CERTH SPEAR-Smart
home Dataset

ML Model (T5.3)

modbus/function/readHoldingRegister

The modbus/function/readHoldingRegister can
return the values of the holding registers supported
by the target system.

UOWM
Smod

UOWM Modbus Dataset Common ML Model
provided (T5.3)

Smod CERTH SPEAR-Smart
home Dataset

ML Model (T5.3)

modbus/function/readInputRegister

The modbus/function/readInputRegister reads the
values of the input registers.

UOWM
Smod

UOWM Modbus Dataset Common ML Model
provided (T5.3)

Smod CERTH SPEAR-Smart
home Dataset

ML Model (T5.3)

Network
Reconnaissanc
e and
Information
Gathering

modbus/scanner/getfunc

This attack discovers the functions codes supported
by the target system.

UOWM
Smod

UOWM Modbus Dataset Common ML Model
provided (T5.3)

Smod CERTH SPEAR-Smart
home Dataset

ML Model (T5.3)

modbus/scanner/uidc

This attack enumerates the UIDs supported by the
target system.

UOWM
Smod

UOWM Modbus Dataset Common ML Model
provided (T5.3)

Smod CERTH SPEAR-Smart
home Dataset

ML Model (T5.3)

modbus/scanner/discover

UOWM
Smod

UOWM Modbus Dataset Common ML Model
provided (T5.3)

 D5.2
 Version 0.9

© SDN microSENSE consortium Page | 80
Public document

This attack identifies if Modbus runs in the target
system.

Smod CERTH SPEAR-Smart
home Dataset

ML Model (T5.3)

Network
Reconnaissanc
e and
Information
Gathering

auxiliary/scanner/scada/modbusclient

This attack exploits a Modbus vulnerability that
allows to an unauthorized actor to read or write
against the Modbus slave targeted

Metasploit Not needed Suricata (T5.2)

MQTT DoS DoS attacks against MQTT broker: Connect flood
Attacker sends multiple connection messages to
exhaust server resources

Python
scripts

CERTH SPEAR-Smart
home Dataset

ML Model (T5.3)

DoS attacks against MQTT broker: Large payload
attack
Attacker publishes spam messages repeatedly to a
specific topic, legitimate users cannot publish

Python
scripts

CERTH SPEAR-Smart
home Dataset

ML Model (T5.3)

Man in the
middle

MITM attack against gateways

Attacker intercepts the communications, filters and
dumpers the measurements send/received by
gateway

Python
scripts

CERTH SPEAR-Smart
home Dataset

ML Model (T5.3)

Unauthorised
Access, Failure
of devices and
Systems,
Manipulation
of information

Unauthorized publishing to smart devices

Attacker connects to the broker, subscribes to all
topics and publish unauthorized commands

Python
scripts

CERTH SPEAR-Smart
home Dataset

ML Model (T5.3)

 D5.2
 Version 0.9

© SDN microSENSE consortium Page | 81
Public document

BACnet Unauthorised
Access, Failure
of devices and
Systems,
Manipulation
of information

Fuzzying Attack

An attacker utilizes a python script in order to
continuously send BACnet packets with different
parameters each time in order to discover
vulnerabilities.

Open source
BACnet
fuzzer from
VDA Labs

CERTH SPEAR-Smart
home Dataset

ML Model (T5.3)

DoS Reflected DoS – Flooding attack BACnetstack
0.8.6

CERTH SPEAR-Smart
home Dataset

ML Model (T5.3)

NTP Time
manipulation

Clock time skimming attack Delorean CERTH SPEAR-Smart
home Dataset

ML Model (T5.3)

Kiss of death packet elicitation attack Scapy CERTH SPEAR-Smart
home Dataset

ML Model (T5.3)

Radius Unauthorised
Access, Failure
of devices and
Systems,
Manipulation
of information

Radius User-Password based password Attack.

This attack assumes that the attacker has access to
the Radius packets and is able to capture them and
aims to crack a valid user’s password by trying to
authenticate with a known possibly wrong
password and extracting information from the
captured packets

Python script CERTH SPEAR-Smart
home Dataset

ML Model (T5.3)

no
specific
protocol

Ransomware

Ransomwares are the type of malwares that
prevent or limit users from accessing their system
or their files unless a ransom is paid. 18
Ransomware infection scenarios and 1
cryptomining infection scenario are examined.

RanSIM tool CERTH FORTIKA Dataset ML Model (T5.3)

no
specific
protocol

web based
attacks

Cross Site Scripting (XSS), Bruteforce, Portscan Kali Linux CERTH FORTIKA Dataset ML Model (T5.3)

 D5.2
 Version 0.9

© SDN microSENSE consortium Page | 82
Public document

HTTP 1.1 Unauthorized
access

An unauthorized actor could request access to
sensitive information (e.g. meter information)

No tool is
expected to
be
developed

Not needed Logs that could
potentially indicate this
are generated by the OPF
(T5.4)

HTTP 2 Access
bruteforcing

An attacker could try to bruteforce the system to
find any potential vulnerability in the RBAC system
that could to lead to granting access to secured
assets

No tool is
expected to
be
developed

Not needed Logs that could
potentially indicate this
are generated by the OPF
(T5.4)

TLS
1.3/1.2

Anomaly on
data request
usage

An attacker that has successfully infiltrated in the
network with valid credentials could try to dump all
the database to perform exfiltration attacks

No tool is
expected to
be
developed

Not needed Logs that could
potentially indicate this
are generated by the OPF
(T5.4)

 D5.2
 Version 0.8

© SDN microSENSE consortium Page | 83
Public document

6 Conclusions
This deliverable has presented the results of T5.2, focused on the detection of cyber incidents

threatening protocols that are specific of the EPES domain. The protocols IEC61850, IEC60870-5-

101/104, Modbus and DNP3 are described in detail, also detailing the main attacks they are exposed

to. This deliverable also presents the results of the mechanisms developed to detect those attacks,

describing the techniques that are integrated in several of the tools that are also described in this

deliverable.

More specifically, three tools are described in this deliverable, which incorporates the mechanisms

developed to detect cyber incidents in the EPES domain. One of them, Nightwatch, is an SDN based

IDPS, which uses information retrieved from SDN controllers to detect anomalies and trigger events

collected by the XL-EPDS for its correlation, as it is described in D5.1. The other two tools (Suricata and

SBT Aware) monitors network traffic and are based on rules. To this end, additional rules have been

created to detect incidents associated to the protocols mentioned above. All of them reports their

verdicts to the XL-EPDS, which interpret those events, correlates them and trigger the corresponding

alerts in case of certain pattern matching (for example, two events from different tools associated to

the same incident during certain a certain time window).

The results included in this deliverable are continued in T5.3 and T5.4, where additional tools are

developed to detect some of the attacks listed here. More specifically, T5.3 focuses on the

development of machine learning algorithms to detect cyber incidents, while T5.4 focuses on the

detection of privacy-related incidents.

Therefore, the results described in this deliverable, together with the results of T5.3 and T5.4, are used

as input for the components described in T5.1, which output is used as input for the components of

T5.5, closing the loop of the cyber incident detection platform included in SDN-microSENSE and

developed in WP5.

 D5.2
 Version 0.9

© SDN microSENSE consortium Page | 84
Public document

7 References
[Bhatia14] S. Bhatia, N. Kush, C. Djamaludin, A. Akande, and E. Foo, “Practicalmodbus flooding attack

and detection,” inProceedings of the TwelfthAustralasian Information Security Conference (AISC

2014)[Conferencesin Research and Practice in Information Technology, Volume 149].Australian

Computer Society, Inc., 2014, pp. 57–65.

[Bristow08] M. Bristow, “Modscan: a scada modbus network scanner,” inDefCon-16Conf., Las Vegas,

NV, 2008.

[Clarke04] G. Clarke, D. Reyndes and E. Wright, Practical modern SCADA protocols. London, Elsevier,

2004.

[East09] S. East, J. Butts, M. Papa, S. Shenoi, A taxonomy of attacks on the dnp3 protocol“, in: C.

Palmer, S. Shenoi (Eds.), Critical Infrastructure Protection III, Springer Berlin Heidelberg, Berlin,

Heidelberg, 2009, pp.67–81.

[Huitsing08] P. Huitsing, R. Chandia, M. Papa, and S. Shenoi, “Attack taxonomies for the modbus

protocols,”International Journal of Critical InfrastructureProtection, vol. 1, pp. 37–44, 12 2008.

[IEC60870-104] Introduction to the IEC 60870-5-104 standard. Available at

https://www.ensotest.com/iec-60870-5-104/introduction-to-the-iec-60870-5-104-standard

[Accessed Sep 2020].

[IEC61850] Introduction to the IEC 61850 standard. Available at https://www.ensotest.com/iec-

61850/introduction-to-iec-61850-protocol/ [Accessed Sep 2020].

[IEC62351] IEC TS 62351-1. TECHNICAL SPECIFICATION. Power systems management and associated

information exchange – Data and communications security. Part 1: Communication network and

system security – Introduction to security issues. 2007.

[IECTC57] IEC TC57 WG15. IEC 62351 Security Standards for the Power System Information

Infrastructure, Feb 2016

[Igbe17] O. Igbe, I. Darwish and T. Saadawi, "Deterministic Dendritic Cell Algorithm Application to

Smart Grid Cyber-Attack Detection", 2017 IEEE 4th International Conference on Cyber Security and

Cloud Computing (CSCloud), 2017. Available: 10.1109/cscloud.2017.12 [Accessed Sep 2020].

[Kabir16] Kabir-Querrec, Maëlle, et al. "A test bed dedicated to the study of vulnerabilities in IEC 61850

power utility automation networks." 2016 IEEE 21st International Conference on Emerging

Technologies and Factory Automation (ETFA). IEEE, 2016.

[Modbus15] Modbus-IDA, “Modbus application protocol specification v1. 1b3,”2015

[Nyasore20] O. N. Nyasore, P. Zavarsky, B. Swar, R. Naiyeju and S. Dabra, "Deep Packet Inspection in

Industrial Automation Control System to Mitigate Attacks Exploiting Modbus/TCP Vulnerabilities,"

2020 IEEE 6th Intl Conference on Big Data Security on Cloud (BigDataSecurity), IEEE Intl Conference on

High Performance and Smart Computing, (HPSC) and IEEE Intl Conference on Intelligent Data and

Security (IDS), Baltimore, MD, USA, 2020, pp. 241-245, doi: 10.1109/BigDataSecurity-HPSC-

IDS49724.2020.00051.

https://www.ensotest.com/iec-60870-5-104/introduction-to-the-iec-60870-5-104-standard/?noredirect=en_US
https://www.ensotest.com/iec-61850/introduction-to-iec-61850-protocol/.(lat
https://www.ensotest.com/iec-61850/introduction-to-iec-61850-protocol/.(lat

 D5.2
 Version 0.9

© SDN microSENSE consortium Page | 85
Public document

[Pliatsios20] D. Pliatsios, P. Sarigiannidis, T. Lagkas and A. G. Sarigiannidis, "A Survey on SCADA

Systems: Secure Protocols, Incidents, Threats and Tactics," in IEEE Communications Surveys &

Tutorials, vol. 22, no. 3, pp. 1942-1976, thirdquarter 2020, doi: 10.1109/COMST.2020.2987688.

[Radoglou-Grammatikis19] P. Radoglou-Grammatikis, P. Sarigiannidis, I. Giannoulakis, E. Kafetzakis

and E. Panaousis, "Attacking IEC-60870-5-104 SCADA Systems," 2019 IEEE World Congress on Services

(SERVICES), Milan, Italy, 2019, pp. 41-46, doi: 10.1109/SERVICES.2019.00022.

[Radoglou-Grammatikis20] P. Radoglou-Grammatikis, P. Sarigiannidis, G. Efstathopoulos, P.-

A.Karypidis, and A. Sarigiannidis, “Diderot: An intrusion detection andprevention system for dnp3-

based scada systems,” inProceedings of the15th International Conference on Availability, Reliability

and Security,ser. ARES ’20.New York, NY, USA: Association for ComputingMachinery, 2020.

[Radoglou-Grammatikis20+1] P. Radoglou-Grammatikis, I. Siniosoglou, T. Liatifis, A. Korouniadis, K.

Rompolos, P. Sarigiannidis, ‘Implementation and Detection of Modbus Cyberattacks: A Case Study’,

Proceedings of 10th International Conference on Modern Circuits and Systems Technologies

(MOCAST), 2020.

[SDN22] SDN-microSENSE Deliverable D2.2. User & Stakeholder, Security and Privacy Requirements

2020

[SDN23] SDN-microSENSE Deliverable D2.3 Platform Specifications and Architecture. 2020

[SDN24] SDN-microSENSE Deliverable D2.4 Pilot, Demonstration & Evaluation Strategy. 2020

[SDN33] SDN-microSENSE Deliverable D3.3 EPES Honeypots. 2020

[SDN51] SDN-microSENSE Deliverable D5.1 XL-SIEM System. 2020

[SDN53] SDN-microSENSE Deliverable D5.3 ADS and CLS Discøvery Systems. 2020

[SDN54] SDN-microSENSE Deliverable D5.4. Overlay Privacy Framework. 2020

[SDN55] SDN-microSENSE Deliverable D5.4. Cloud-based Anonymous Repository of Incidents. 2020

[Voyiatzis15] A. G. Voyiatzis, K. Katsigiannis, and S. Koubias, “A modbus/tcpfuzzer for testing

internetworked industrial systems,” in2015 IEEE 20thConference on Emerging Technologies &

Factory Automation (ETFA).IEEE, 2015, pp. 1–6.

[Wong17] K. Wong, C. Dillabaugh, N. Seddigh and B. Nandy, "Enhancing Suricata intrusion detection

system for cyber security in SCADA networks," 2017 IEEE 30th Canadian Conference on Electrical and

Computer Engineering (CCECE), Windsor, ON, 2017, pp. 1-5, doi: 10.1109/CCECE.2017.7946818.

[Yang17] Y. Yang, K. McLaughlin, T. Littler, S. Sezer, B. Pranggono and H. F. Wang, "Intrusion Detection

System for IEC 60870-5-104 based SCADA networks," 2013 IEEE Power & Energy Society General

Meeting, Vancouver, BC, 2013, pp. 1-5, doi: 10.1109/PESMG.2013.6672100.

 D5.2
 Version 0.9

© SDN microSENSE consortium Page | 86
Public document

Annex I: IEC104 Suricata Signature/Specification Rules

The following table lists the new rules created for Suricata to detect IEC104 related attacks.

1

alert tcp $HOME_NET any -> $EXTERNAL_NET 2404 (msg:"PROTOCOL-SCADA IEC 104
traffic to/from EXTERNAL_NET"; flow:established; content:"|68|"; depth:1;
reference:url,blog.snort.org/2016/12/iec60870-5-104-protocol-detection-
rules.html; classtype:protocol-command-decode; sid:41079; rev:4;)

2

alert tcp $EXTERNAL_NET any -> $HOME_NET 2404 (msg:"PROTOCOL-SCADA IEC 104
traffic to/from EXTERNAL_NET"; flow:established; content:"|68|"; depth:1;
reference:url,blog.snort.org/2016/12/iec60870-5-104-protocol-detection-
rules.html; classtype:protocol-command-decode; sid:41078; rev:4;)

3

alert tcp any [1024:] <> any 2404 (msg:"PROTOCOL-SCADA IEC 104 unknown
ASDU type detected"; flow:established; content:"|68|";
pcre:"/\x68.{5}[\x16-\x1D\x29-\x2C\x34-\x39\x41-\x45]/";
reference:url,blog.snort.org/2016/12/iec60870-5-104-protocol-detection-
rules.html; classtype:protocol-command-decode; sid:41077; rev:4;)

4

alert tcp any [1024:] <> any 2404 (msg:"PROTOCOL-SCADA IEC 104 double
command issued"; flow:established; content:"|68|";
pcre:"/\x68.{5}[\x2e\x3b]/";
reference:url,blog.snort.org/2016/12/iec60870-5-104-protocol-detection-
rules.html; classtype:protocol-command-decode; sid:41076; rev:4;)

5

alert tcp any [1024:] <> any 2404 (msg:"PROTOCOL-SCADA IEC 104 counter
interrogation command"; flow:established; content:"|68|"; content:"|65|";
within:1; distance:5; reference:url,blog.snort.org/2016/12/iec60870-5-104-
protocol-detection-rules.html; classtype:protocol-command-decode;
sid:41075; rev:4;)

6

alert tcp any [1024:] <> any 2404 (msg:"PROTOCOL-SCADA IEC 104 clock sync
command"; flow:established; content:"|68|"; content:"|67|"; within:1;
distance:5; reference:url,blog.snort.org/2016/12/iec60870-5-104-protocol-
detection-rules.html; classtype:protocol-command-decode; sid:41074;
rev:4;)

7

alert tcp any [1024:] <> any 2404 (msg:"PROTOCOL-SCADA IEC 104 bitstring
of 32 bits"; flow:established; content:"|68|";
pcre:"/\x68.{5}[\x33\x40\x07\x21]/";
reference:url,blog.snort.org/2016/12/iec60870-5-104-protocol-detection-
rules.html; classtype:protocol-command-decode; sid:41073; rev:4;)

8

alert tcp any [1024:] <> any 2404 (msg:"PROTOCOL-SCADA IEC 104 Test
command with time tag"; flow:established; content:"|68|"; content:"|6B|";
within:1; distance:5; reference:url,blog.snort.org/2016/12/iec60870-5-104-
protocol-detection-rules.html; classtype:protocol-command-decode;
sid:41072; rev:4;)

9

alert tcp any [1024:] <> any 2404 (msg:"PROTOCOL-SCADA IEC 104 Step point
information"; flow:established; content:"|68|";
pcre:"/\x68.{5}[\x05\x20]/";
reference:url,blog.snort.org/2016/12/iec60870-5-104-protocol-detection-
rules.html; classtype:protocol-command-decode; sid:41071; rev:4;)

10

alert tcp any [1024:] <> any 2404 (msg:"PROTOCOL-SCADA IEC 104 Single
point information"; flow:established; content:"|68|";
pcre:"/\x68.{5}[\x14\x01\x1e]/";
reference:url,blog.snort.org/2016/12/iec60870-5-104-protocol-detection-
rules.html; classtype:protocol-command-decode; sid:41070; rev:4;)

 D5.2
 Version 0.9

© SDN microSENSE consortium Page | 87
Public document

11

alert tcp any [1024:] <> any 2404 (msg:"PROTOCOL-SCADA IEC 104 Single
command"; flow:established; content:"|68|"; pcre:"/\x68.{5}[\x2d\x3a]/";
reference:url,blog.snort.org/2016/12/iec60870-5-104-protocol-detection-
rules.html; classtype:protocol-command-decode; sid:41069; rev:4;)

12

alert tcp any [1024:] <> any 2404 (msg:"PROTOCOL-SCADA IEC 104 Set point
command"; flow:established; content:"|68|";
pcre:"/\x68.{5}[\x30\x31\x32\x3d\x3e\x3f]/";
reference:url,blog.snort.org/2016/12/iec60870-5-104-protocol-detection-
rules.html; classtype:protocol-command-decode; sid:41068; rev:4;)

13

alert tcp any [1024:] <> any 2404 (msg:"PROTOCOL-SCADA IEC 104 Rest
process command"; flow:established; content:"|68|"; content:"|69|";
within:1; distance:5; reference:url,blog.snort.org/2016/12/iec60870-5-104-
protocol-detection-rules.html; classtype:protocol-command-decode;
sid:41067; rev:4;)

14

alert tcp any [1024:] <> any 2404 (msg:"PROTOCOL-SCADA IEC 104 Regulating
step command"; flow:established; content:"|68|";
pcre:"/\x68.{5}[\x2f\x3c]/";
reference:url,blog.snort.org/2016/12/iec60870-5-104-protocol-detection-
rules.html; classtype:protocol-command-decode; sid:41066; rev:4;)

15

alert tcp any [1024:] <> any 2404 (msg:"PROTOCOL-SCADA IEC 104 Read
command"; flow:established; content:"|68|"; content:"|66|"; within:1;
distance:5; reference:url,blog.snort.org/2016/12/iec60870-5-104-protocol-
detection-rules.html; classtype:protocol-command-decode; sid:41065;
rev:4;)

16

alert tcp any [1024:] <> any 2404 (msg:"PROTOCOL-SCADA IEC 104 Query Log";
flow:established; content:"|68|"; pcre:"/\x68.{5}[\x7a\x7f]/";
reference:url,blog.snort.org/2016/12/iec60870-5-104-protocol-detection-
rules.html; classtype:protocol-command-decode; sid:41064; rev:4;)

17

alert tcp any [1024:] <> any 2404 (msg:"PROTOCOL-SCADA IEC 104 Parameter
value"; flow:established; content:"|68|";
pcre:"/\x68.{5}[\x71\x6e\x6f\x70]/";
reference:url,blog.snort.org/2016/12/iec60870-5-104-protocol-detection-
rules.html; classtype:protocol-command-decode; sid:41063; rev:4;)

18

alert tcp any [1024:] <> any 2404 (msg:"PROTOCOL-SCADA IEC 104 Packed
start events"; flow:established; content:"|68|";
pcre:"/\x68.{5}[\x26\x27\x28]/";
reference:url,blog.snort.org/2016/12/iec60870-5-104-protocol-detection-
rules.html; classtype:protocol-command-decode; sid:41062; rev:4;)

19

alert tcp any [1024:] <> any 2404 (msg:"PROTOCOL-SCADA IEC 104 Measured
value"; flow:established; content:"|68|";
pcre:"/\x68.{5}[\x09\x0b\x0d\x15\x22\x23\x24]/";
reference:url,blog.snort.org/2016/12/iec60870-5-104-protocol-detection-
rules.html; classtype:protocol-command-decode; sid:41061; rev:4;)

20

alert tcp any [1024:] <> any 2404 (msg:"PROTOCOL-SCADA IEC 104 List
directory"; flow:established; content:"|68|"; content:"|7E|"; within:1;
distance:5; reference:url,blog.snort.org/2016/12/iec60870-5-104-protocol-
detection-rules.html; classtype:protocol-command-decode; sid:41060;
rev:6;)

21

alert tcp any [1024:] <> any 2404 (msg:"PROTOCOL-SCADA IEC 104 Last
section"; flow:established; content:"|68|"; content:"|7B|"; within:1;
distance:5; reference:url,blog.snort.org/2016/12/iec60870-5-104-protocol-
detection-rules.html; classtype:protocol-command-decode; sid:41059;
rev:4;)

 D5.2
 Version 0.9

© SDN microSENSE consortium Page | 88
Public document

22

alert tcp any [1024:] <> any 2404 (msg:"PROTOCOL-SCADA IEC 104
Interrogation command"; flow:established; content:"|68|"; content:"|64|";
within:1; distance:5; reference:url,blog.snort.org/2016/12/iec60870-5-104-
protocol-detection-rules.html; classtype:protocol-command-decode;
sid:41058; rev:4;)

23

alert tcp any [1024:] <> any 2404 (msg:"PROTOCOL-SCADA IEC 104 Integrated
totals"; flow:established; content:"|68|"; pcre:"/\x68.{5}[\x0f\x25]/";
reference:url,blog.snort.org/2016/12/iec60870-5-104-protocol-detection-
rules.html; classtype:protocol-command-decode; sid:41057; rev:4;)

24

alert tcp any [1024:] <> any 2404 (msg:"PROTOCOL-SCADA IEC 104 File
ready"; flow:established; content:"|68|"; content:"|78|"; within:1;
distance:5; reference:url,blog.snort.org/2016/12/iec60870-5-104-protocol-
detection-rules.html; classtype:protocol-command-decode; sid:41056;
rev:4;)

25

alert tcp any [1024:] <> any 2404 (msg:"PROTOCOL-SCADA IEC 104 End of
initialization"; flow:established; content:"|68|"; content:"|46|";
within:1; distance:5; reference:url,blog.snort.org/2016/12/iec60870-5-104-
protocol-detection-rules.html; classtype:protocol-command-decode;
sid:41055; rev:4;)

26

alert tcp any [1024:] <> any 2404 (msg:"PROTOCOL-SCADA IEC 104 Double
point information"; flow:established; content:"|68|";
pcre:"/\x68.{5}[\x03\x1f]/";
reference:url,blog.snort.org/2016/12/iec60870-5-104-protocol-detection-
rules.html; classtype:protocol-command-decode; sid:41054; rev:4;)

27

alert tcp any [1024:] <> any 2404 (msg:"PROTOCOL-SCADA IEC 104 Ack file";
flow:established; content:"|68|"; content:"|7C|"; within:1; distance:5;
reference:url,blog.snort.org/2016/12/iec60870-5-104-protocol-detection-
rules.html; classtype:protocol-command-decode; sid:41053; rev:4;)

28

alert tcp any [1024:] <> any 2404 (msg:"PROTOCOL-SCADA IEC 104 TESTFR
CON"; flow:established; content:"|68|"; depth:1; content:"|83|"; within:1;
distance:1; reference:url,blog.snort.org/2016/12/iec60870-5-104-protocol-
detection-rules.html; classtype:protocol-command-decode; sid:41052;
rev:4;)

29

alert tcp any [1024:] <> any 2404 (msg:"PROTOCOL-SCADA IEC 104 TESTFR
ACT"; flow:established; content:"|68|"; depth:1; content:"|43|"; within:1;
distance:1; reference:url,blog.snort.org/2016/12/iec60870-5-104-protocol-
detection-rules.html; classtype:protocol-command-decode; sid:41051;
rev:4;)

30

alert tcp any [1024:] <> any 2404 (msg:"PROTOCOL-SCADA IEC 104 STOPDT
CON"; flow:established; content:"|68|"; depth:1; content:"|23|"; within:1;
distance:1; reference:url,blog.snort.org/2016/12/iec60870-5-104-protocol-
detection-rules.html; classtype:protocol-command-decode; sid:41050;
rev:4;)

31

alert tcp any [1024:] <> any 2404 (msg:"PROTOCOL-SCADA IEC 104 STOPDT
ACT"; flow:established; content:"|68|"; depth:1; content:"|13|"; within:1;
distance:1; reference:url,blog.snort.org/2016/12/iec60870-5-104-protocol-
detection-rules.html; classtype:protocol-command-decode; sid:41049;
rev:4;)

32

alert tcp any [1024:] <> any 2404 (msg:"PROTOCOL-SCADA IEC 104 STARTDT
CON"; flow:established; content:"|68|"; depth:1; content:"|0B|"; within:1;
distance:1; reference:url,blog.snort.org/2016/12/iec60870-5-104-protocol-
detection-rules.html; classtype:protocol-command-decode; sid:41048;
rev:4;)

 D5.2
 Version 0.9

© SDN microSENSE consortium Page | 89
Public document

33

alert tcp any [1024:] <> any 2404 (msg:"PROTOCOL-SCADA IEC 104 STARTDT
ACT"; flow:established; content:"|68|"; depth:1; content:"|07|"; within:1;
distance:1; reference:url,blog.snort.org/2016/12/iec60870-5-104-protocol-
detection-rules.html; classtype:protocol-command-decode; sid:41047;
rev:4;)

34

alert tcp $EXTERNAL_NET 102 -> $HOME_NET any (msg:"PROTOCOL-SCADA IEC
61850 virtual manufacturing device domain variable enumeration attempt";
flow:to_client,established,no_stream; content:"|61|"; content:"|03|";
within:1; distance:5; content:"|A0 03 80 01 00 A1|"; distance:0;
content:"|81|"; within:1; distance:1; detection_filter:track by_src,count
10,seconds 15; metadata:policy max-detect-ips drop;
reference:url,dragos.com/blog/crashoverride/CrashOverride-01.pdf;
reference:url,us-cert.gov/ncas/alerts/TA17-163A;
reference:url,welivesecurity.com/wp-
content/uploads/2017/06/Win32_Industroyer.pdf; classtype:attempted-recon;
sid:43253; rev:3;)

35

alert tcp $EXTERNAL_NET 102 -> $HOME_NET any (msg:"PROTOCOL-SCADA IEC
61850 device connection enumeration attempt";
flow:to_client,established,no_stream; content:"|E0 00 00|"; depth:3;
offset:5; content:"|00|"; within:1; distance:2; content:"|C1|"; depth:9;
offset:11; content:"|C2|"; depth:9; offset:11; content:"|C0|"; depth:9;
offset:11; detection_filter:track by_src,count 10,seconds 15;
metadata:policy max-detect-ips drop;
reference:url,dragos.com/blog/crashoverride/CrashOverride-01.pdf;
reference:url,us-cert.gov/ncas/alerts/TA17-163A;
reference:url,welivesecurity.com/wp-
content/uploads/2017/06/Win32_Industroyer.pdf; classtype:attempted-recon;
sid:43252; rev:3;)

36

alert tcp $EXTERNAL_NET 2404 -> $HOME_NET any (msg:"PROTOCOL-SCADA IEC 104
force on denial of service attempt"; flow:to_client,established,no_stream;
content:"|68|"; depth:1; content:"|2D|"; within:1; distance:5;
content:"|01|"; within:1; distance:8; detection_filter:track by_src,count
50,seconds 5; reference:url,dragos.com/blog/crashoverride/CrashOverride-
01.pdf; reference:url,us-cert.gov/ncas/alerts/TA17-163A;
reference:url,welivesecurity.com/wp-
content/uploads/2017/06/Win32_Industroyer.pdf; classtype:attempted-dos;
sid:43228; rev:4;)

37

alert tcp $EXTERNAL_NET 2404 -> $HOME_NET any (msg:"PROTOCOL-SCADA IEC 104
force off denial of service attempt";
flow:to_client,established,no_stream; content:"|68|"; depth:1;
content:"|2D|"; within:1; distance:5; content:"|00|"; within:1;
distance:8; detection_filter:track by_src,count 50,seconds 5;
reference:url,dragos.com/blog/crashoverride/CrashOverride-01.pdf;
reference:url,us-cert.gov/ncas/alerts/TA17-163A;
reference:url,welivesecurity.com/wp-
content/uploads/2017/06/Win32_Industroyer.pdf; classtype:attempted-dos;
sid:43227; rev:4;)

38

alert udp $EXTERNAL_NET any -> $HOME_NET 50000 (msg:"PROTOCOL-SCADA
Siemens SIPROTEC V4.24 crafted packet denial of service attempt";
flow:to_server; content:"|11 49 00 00 00 00 00 00 00 00 00 00 00 00 00 00
28 9E|"; depth:18; metadata:policy max-detect-ips drop;
reference:cve,2015-5374;
reference:url,siemens.com/cert/pool/cert/siemens_security_advisory_ssa-
732541.pdf; classtype:attempted-dos; sid:43177; rev:2;)

 D5.2
 Version 0.9

© SDN microSENSE consortium Page | 90
Public document

39

alert tcp any [1024:] <> any 2404 (msg:"PROTOCOL-SCADA IEC 104 F_SC_NB_1";
flow:established; content:"|68|"; depth:1; content:"|7F|"; within:1;
distance:5; reference:url,blog.snort.org/2016/12/iec60870-5-104-protocol-
detection-rules.html; classtype:protocol-command-decode; sid:52203;
rev:1;)

40

alert tcp any [1024:] <> any 2404 (msg:"PROTOCOL-SCADA IEC 104 F_DR_TA_1";
flow:established; content:"|68|"; depth:1; content:"|7E|"; within:1;
distance:5; reference:url,blog.snort.org/2016/12/iec60870-5-104-protocol-
detection-rules.html; classtype:protocol-command-decode; sid:52202;
rev:1;)

41

alert tcp any [1024:] <> any 2404 (msg:"PROTOCOL-SCADA IEC 104 F_SG_NA_1";
flow:established; content:"|68|"; depth:1; content:"|7D|"; within:1;
distance:5; reference:url,blog.snort.org/2016/12/iec60870-5-104-protocol-
detection-rules.html; classtype:protocol-command-decode; sid:52201;
rev:1;)

42

alert tcp any [1024:] <> any 2404 (msg:"PROTOCOL-SCADA IEC 104 F_LS_NA_1";
flow:established; content:"|68|"; depth:1; content:"|7B|"; within:1;
distance:5; reference:url,blog.snort.org/2016/12/iec60870-5-104-protocol-
detection-rules.html; classtype:protocol-command-decode; sid:52200;
rev:1;)

43

alert tcp any [1024:] <> any 2404 (msg:"PROTOCOL-SCADA IEC 104 F_SC_NA_1";
flow:established; content:"|68|"; depth:1; content:"|7A|"; within:1;
distance:5; reference:url,blog.snort.org/2016/12/iec60870-5-104-protocol-
detection-rules.html; classtype:protocol-command-decode; sid:52199;
rev:1;)

44

alert tcp any [1024:] <> any 2404 (msg:"PROTOCOL-SCADA IEC 104 F_SR_NA_1";
flow:established; content:"|68|"; depth:1; content:"|79|"; within:1;
distance:5; reference:url,blog.snort.org/2016/12/iec60870-5-104-protocol-
detection-rules.html; classtype:protocol-command-decode; sid:52198;
rev:1;)

45

alert tcp any [1024:] <> any 2404 (msg:"PROTOCOL-SCADA IEC 104 P_AC_NA_1";
flow:established; content:"|68|"; depth:1; content:"|71|"; within:1;
distance:5; reference:url,blog.snort.org/2016/12/iec60870-5-104-protocol-
detection-rules.html; classtype:protocol-command-decode; sid:52197;
rev:1;)

46

alert tcp any [1024:] <> any 2404 (msg:"PROTOCOL-SCADA IEC 104 F_FR_NA_1";
flow:established; content:"|68|"; depth:1; content:"|78|"; within:1;
distance:5; reference:url,blog.snort.org/2016/12/iec60870-5-104-protocol-
detection-rules.html; classtype:protocol-command-decode; sid:52196;
rev:1;)

47

alert tcp any [1024:] <> any 2404 (msg:"PROTOCOL-SCADA IEC 104 F_AF_NA_1";
flow:established; content:"|68|"; depth:1; content:"|7C|"; within:1;
distance:5; reference:url,blog.snort.org/2016/12/iec60870-5-104-protocol-
detection-rules.html; classtype:protocol-command-decode; sid:52195;
rev:1;)

48

alert tcp any [1024:] <> any 2404 (msg:"PROTOCOL-SCADA IEC 104 P_ME_NC_1";
flow:established; content:"|68|"; depth:1; content:"|70|"; within:1;
distance:5; reference:url,blog.snort.org/2016/12/iec60870-5-104-protocol-
detection-rules.html; classtype:protocol-command-decode; sid:52194;
rev:1;)

49
alert tcp any [1024:] <> any 2404 (msg:"PROTOCOL-SCADA IEC 104 C_RP_NA_1";
flow:established; content:"|68|"; depth:1; content:"|69|"; within:1;
distance:5; reference:url,blog.snort.org/2016/12/iec60870-5-104-protocol-

 D5.2
 Version 0.9

© SDN microSENSE consortium Page | 91
Public document

detection-rules.html; classtype:protocol-command-decode; sid:52193;
rev:1;)

50

alert tcp any [1024:] <> any 2404 (msg:"PROTOCOL-SCADA IEC 104 C_CS_NA_1";
flow:established; content:"|68|"; depth:1; content:"|67|"; within:1;
distance:5; reference:url,blog.snort.org/2016/12/iec60870-5-104-protocol-
detection-rules.html; classtype:protocol-command-decode; sid:52192;
rev:1;)

51

alert tcp any [1024:] <> any 2404 (msg:"PROTOCOL-SCADA IEC 104 C_IC_NA_1";
flow:established; content:"|68|"; depth:1; content:"|64|"; within:1;
distance:5; reference:url,blog.snort.org/2016/12/iec60870-5-104-protocol-
detection-rules.html; classtype:protocol-command-decode; sid:52191;
rev:1;)

52

alert tcp any [1024:] <> any 2404 (msg:"PROTOCOL-SCADA IEC 104 C_RD_NA_1";
flow:established; content:"|68|"; depth:1; content:"|66|"; within:1;
distance:5; reference:url,blog.snort.org/2016/12/iec60870-5-104-protocol-
detection-rules.html; classtype:protocol-command-decode; sid:52190;
rev:1;)

53

alert tcp any [1024:] <> any 2404 (msg:"PROTOCOL-SCADA IEC 104 C_CI_NA_1";
flow:established; content:"|68|"; depth:1; content:"|65|"; within:1;
distance:5; reference:url,blog.snort.org/2016/12/iec60870-5-104-protocol-
detection-rules.html; classtype:protocol-command-decode; sid:52189;
rev:1;)

54

alert tcp any [1024:] <> any 2404 (msg:"PROTOCOL-SCADA IEC 104 P_ME_NB_1";
flow:established; content:"|68|"; depth:1; content:"|6F|"; within:1;
distance:5; reference:url,blog.snort.org/2016/12/iec60870-5-104-protocol-
detection-rules.html; classtype:protocol-command-decode; sid:52188;
rev:1;)

55

alert tcp any [1024:] <> any 2404 (msg:"PROTOCOL-SCADA IEC 104 P_ME_NA_1";
flow:established; content:"|68|"; depth:1; content:"|6E|"; within:1;
distance:5; reference:url,blog.snort.org/2016/12/iec60870-5-104-protocol-
detection-rules.html; classtype:protocol-command-decode; sid:52187;
rev:1;)

56

alert tcp any [1024:] <> any 2404 (msg:"PROTOCOL-SCADA IEC 104 C_TS_TA_1";
flow:established; content:"|68|"; depth:1; content:"|6B|"; within:1;
distance:5; reference:url,blog.snort.org/2016/12/iec60870-5-104-protocol-
detection-rules.html; classtype:protocol-command-decode; sid:52186;
rev:1;)

57

alert tcp any [1024:] <> any 2404 (msg:"PROTOCOL-SCADA IEC 104 M_EI_NA_1";
flow:established; content:"|68|"; depth:1; content:"|46|"; within:1;
distance:5; reference:url,blog.snort.org/2016/12/iec60870-5-104-protocol-
detection-rules.html; classtype:protocol-command-decode; sid:52185;
rev:1;)

58

alert tcp any [1024:] <> any 2404 (msg:"PROTOCOL-SCADA IEC 104 C_BO_TA_1";
flow:established; content:"|68|"; depth:1; content:"|40|"; within:1;
distance:5; reference:url,blog.snort.org/2016/12/iec60870-5-104-protocol-
detection-rules.html; classtype:protocol-command-decode; sid:52184;
rev:1;)

59

alert tcp any [1024:] <> any 2404 (msg:"PROTOCOL-SCADA IEC 104 C_SE_TC_1";
flow:established; content:"|68|"; depth:1; content:"|3F|"; within:1;
distance:5; reference:url,blog.snort.org/2016/12/iec60870-5-104-protocol-
detection-rules.html; classtype:protocol-command-decode; sid:52183;
rev:1;)

 D5.2
 Version 0.9

© SDN microSENSE consortium Page | 92
Public document

60

alert tcp any [1024:] <> any 2404 (msg:"PROTOCOL-SCADA IEC 104 C_SE_TB_1";
flow:established; content:"|68|"; depth:1; content:"|3E|"; within:1;
distance:5; reference:url,blog.snort.org/2016/12/iec60870-5-104-protocol-
detection-rules.html; classtype:protocol-command-decode; sid:52182;
rev:1;)

61

alert tcp any [1024:] <> any 2404 (msg:"PROTOCOL-SCADA IEC 104 C_SE_TA_1";
flow:established; content:"|68|"; depth:1; content:"|3D|"; within:1;
distance:5; reference:url,blog.snort.org/2016/12/iec60870-5-104-protocol-
detection-rules.html; classtype:protocol-command-decode; sid:52181;
rev:1;)

62

alert tcp any [1024:] <> any 2404 (msg:"PROTOCOL-SCADA IEC 104 C_RC_TA_1";
flow:established; content:"|68|"; depth:1; content:"|3C|"; within:1;
distance:5; reference:url,blog.snort.org/2016/12/iec60870-5-104-protocol-
detection-rules.html; classtype:protocol-command-decode; sid:52180;
rev:1;)

63

alert tcp any [1024:] <> any 2404 (msg:"PROTOCOL-SCADA IEC 104 C_DC_TA_1";
flow:established; content:"|68|"; depth:1; content:"|3B|"; within:1;
distance:5; reference:url,blog.snort.org/2016/12/iec60870-5-104-protocol-
detection-rules.html; classtype:protocol-command-decode; sid:52179;
rev:1;)

64

alert tcp any [1024:] <> any 2404 (msg:"PROTOCOL-SCADA IEC 104 C_SC_TA_1";
flow:established; content:"|68|"; depth:1; content:"|3A|"; within:1;
distance:5; reference:url,blog.snort.org/2016/12/iec60870-5-104-protocol-
detection-rules.html; classtype:protocol-command-decode; sid:52178;
rev:1;)

65

alert tcp any [1024:] <> any 2404 (msg:"PROTOCOL-SCADA IEC 104 C_BO_NA_1";
flow:established; content:"|68|"; depth:1; content:"|33|"; within:1;
distance:5; reference:url,blog.snort.org/2016/12/iec60870-5-104-protocol-
detection-rules.html; classtype:protocol-command-decode; sid:52177;
rev:1;)

66

alert tcp any [1024:] <> any 2404 (msg:"PROTOCOL-SCADA IEC 104 C_SE_NC_1";
flow:established; content:"|68|"; depth:1; content:"|32|"; within:1;
distance:5; reference:url,blog.snort.org/2016/12/iec60870-5-104-protocol-
detection-rules.html; classtype:protocol-command-decode; sid:52176;
rev:1;)

67

alert tcp any [1024:] <> any 2404 (msg:"PROTOCOL-SCADA IEC 104 C_SE_NB_1";
flow:established; content:"|68|"; depth:1; content:"|31|"; within:1;
distance:5; reference:url,blog.snort.org/2016/12/iec60870-5-104-protocol-
detection-rules.html; classtype:protocol-command-decode; sid:52175;
rev:1;)

68

alert tcp any [1024:] <> any 2404 (msg:"PROTOCOL-SCADA IEC 104 C_SE_NA_1";
flow:established; content:"|68|"; depth:1; content:"|30|"; within:1;
distance:5; reference:url,blog.snort.org/2016/12/iec60870-5-104-protocol-
detection-rules.html; classtype:protocol-command-decode; sid:52174;
rev:1;)

69

alert tcp any [1024:] <> any 2404 (msg:"PROTOCOL-SCADA IEC 104 C_RC_NA_1";
flow:established; content:"|68|"; depth:1; content:"|2F|"; within:1;
distance:5; reference:url,blog.snort.org/2016/12/iec60870-5-104-protocol-
detection-rules.html; classtype:protocol-command-decode; sid:52173;
rev:1;)

70
alert tcp any [1024:] <> any 2404 (msg:"PROTOCOL-SCADA IEC 104 C_DC_NA_1";
flow:established; content:"|68|"; depth:1; content:"|2E|"; within:1;
distance:5; reference:url,blog.snort.org/2016/12/iec60870-5-104-protocol-

 D5.2
 Version 0.9

© SDN microSENSE consortium Page | 93
Public document

detection-rules.html; classtype:protocol-command-decode; sid:52172;
rev:1;)

71

alert tcp any [1024:] <> any 2404 (msg:"PROTOCOL-SCADA IEC 104 C_SC_NA_1";
flow:established; content:"|68|"; depth:1; content:"|2D|"; within:1;
distance:5; reference:url,blog.snort.org/2016/12/iec60870-5-104-protocol-
detection-rules.html; classtype:protocol-command-decode; sid:52171;
rev:1;)

72

alert tcp any [1024:] <> any 2404 (msg:"PROTOCOL-SCADA IEC 104 M_EP_TF_1";
flow:established; content:"|68|"; depth:1; content:"|28|"; within:1;
distance:5; reference:url,blog.snort.org/2016/12/iec60870-5-104-protocol-
detection-rules.html; classtype:protocol-command-decode; sid:52170;
rev:1;)

73

alert tcp any [1024:] <> any 2404 (msg:"PROTOCOL-SCADA IEC 104 M_EP_TE_1";
flow:established; content:"|68|"; depth:1; content:"|27|"; within:1;
distance:5; reference:url,blog.snort.org/2016/12/iec60870-5-104-protocol-
detection-rules.html; classtype:protocol-command-decode; sid:52169;
rev:1;)

74

alert tcp any [1024:] <> any 2404 (msg:"PROTOCOL-SCADA IEC 104 M_EP_TD_1";
flow:established; content:"|68|"; depth:1; content:"|26|"; within:1;
distance:5; reference:url,blog.snort.org/2016/12/iec60870-5-104-protocol-
detection-rules.html; classtype:protocol-command-decode; sid:52168;
rev:1;)

75

alert tcp any [1024:] <> any 2404 (msg:"PROTOCOL-SCADA IEC 104 M_IT_TB_1";
flow:established; content:"|68|"; depth:1; content:"|25|"; within:1;
distance:5; reference:url,blog.snort.org/2016/12/iec60870-5-104-protocol-
detection-rules.html; classtype:protocol-command-decode; sid:52167;
rev:1;)

76

alert tcp any [1024:] <> any 2404 (msg:"PROTOCOL-SCADA IEC 104 M_ME_TF_1";
flow:established; content:"|68|"; depth:1; content:"|24|"; within:1;
distance:5; reference:url,blog.snort.org/2016/12/iec60870-5-104-protocol-
detection-rules.html; classtype:protocol-command-decode; sid:52166;
rev:1;)

77

alert tcp any [1024:] <> any 2404 (msg:"PROTOCOL-SCADA IEC 104 M_ME_TE_1";
flow:established; content:"|68|"; depth:1; content:"|23|"; within:1;
distance:5; reference:url,blog.snort.org/2016/12/iec60870-5-104-protocol-
detection-rules.html; classtype:protocol-command-decode; sid:52165;
rev:1;)

78

alert tcp any [1024:] <> any 2404 (msg:"PROTOCOL-SCADA IEC 104 M_BO_TB_1";
flow:established; content:"|68|"; depth:1; content:"|21|"; within:1;
distance:5; reference:url,blog.snort.org/2016/12/iec60870-5-104-protocol-
detection-rules.html; classtype:protocol-command-decode; sid:52164;
rev:1;)

79

alert tcp any [1024:] <> any 2404 (msg:"PROTOCOL-SCADA IEC 104 M_ME_TD_1";
flow:established; content:"|68|"; depth:1; content:"|22|"; within:1;
distance:5; reference:url,blog.snort.org/2016/12/iec60870-5-104-protocol-
detection-rules.html; classtype:protocol-command-decode; sid:52163;
rev:1;)

80

alert tcp any [1024:] <> any 2404 (msg:"PROTOCOL-SCADA IEC 104 M_ST_TB_1";
flow:established; content:"|68|"; depth:1; content:"|20|"; within:1;
distance:5; reference:url,blog.snort.org/2016/12/iec60870-5-104-protocol-
detection-rules.html; classtype:protocol-command-decode; sid:52162;
rev:1;)

 D5.2
 Version 0.9

© SDN microSENSE consortium Page | 94
Public document

81

alert tcp any [1024:] <> any 2404 (msg:"PROTOCOL-SCADA IEC 104 M_IT_NA_1";
flow:established; content:"|68|"; depth:1; content:"|0F|"; within:1;
distance:5; reference:url,blog.snort.org/2016/12/iec60870-5-104-protocol-
detection-rules.html; classtype:protocol-command-decode; sid:52161;
rev:1;)

82

alert tcp any [1024:] <> any 2404 (msg:"PROTOCOL-SCADA IEC 104 M_SP_TB_1";
flow:established; content:"|68|"; depth:1; content:"|1E|"; within:1;
distance:5; reference:url,blog.snort.org/2016/12/iec60870-5-104-protocol-
detection-rules.html; classtype:protocol-command-decode; sid:52160;
rev:1;)

83

alert tcp any [1024:] <> any 2404 (msg:"PROTOCOL-SCADA IEC 104 M_PS_NA_1";
flow:established; content:"|68|"; depth:1; content:"|14|"; within:1;
distance:5; reference:url,blog.snort.org/2016/12/iec60870-5-104-protocol-
detection-rules.html; classtype:protocol-command-decode; sid:52159;
rev:1;)

84

alert tcp any [1024:] <> any 2404 (msg:"PROTOCOL-SCADA IEC 104 M_ME_NC_1";
flow:established; content:"|68|"; depth:1; content:"|0D|"; within:1;
distance:5; reference:url,blog.snort.org/2016/12/iec60870-5-104-protocol-
detection-rules.html; classtype:protocol-command-decode; sid:52158;
rev:1;)

85

alert tcp any [1024:] <> any 2404 (msg:"PROTOCOL-SCADA IEC 104 M_DP_TB_1";
flow:established; content:"|68|"; depth:1; content:"|1F|"; within:1;
distance:5; reference:url,blog.snort.org/2016/12/iec60870-5-104-protocol-
detection-rules.html; classtype:protocol-command-decode; sid:52157;
rev:1;)

86

alert tcp any [1024:] <> any 2404 (msg:"PROTOCOL-SCADA IEC 104 M_ME_ND_1";
flow:established; content:"|68|"; depth:1; content:"|15|"; within:1;
distance:5; reference:url,blog.snort.org/2016/12/iec60870-5-104-protocol-
detection-rules.html; classtype:protocol-command-decode; sid:52156;
rev:1;)

87

alert tcp any [1024:] <> any 2404 (msg:"PROTOCOL-SCADA IEC 104 M_ME_NB_1";
flow:established; content:"|68|"; depth:1; content:"|0B|"; within:1;
distance:5; reference:url,blog.snort.org/2016/12/iec60870-5-104-protocol-
detection-rules.html; classtype:protocol-command-decode; sid:52155;
rev:1;)

88

alert tcp any [1024:] <> any 2404 (msg:"PROTOCOL-SCADA IEC 104 M_ME_NA_1";
flow:established; content:"|68|"; depth:1; content:"|09|"; within:1;
distance:5; reference:url,blog.snort.org/2016/12/iec60870-5-104-protocol-
detection-rules.html; classtype:protocol-command-decode; sid:52154;
rev:1;)

89

alert tcp any [1024:] <> any 2404 (msg:"PROTOCOL-SCADA IEC 104 M_BO_NA_1";
flow:established; content:"|68|"; depth:1; content:"|07|"; within:1;
distance:5; reference:url,blog.snort.org/2016/12/iec60870-5-104-protocol-
detection-rules.html; classtype:protocol-command-decode; sid:52153;
rev:1;)

90

alert tcp any [1024:] <> any 2404 (msg:"PROTOCOL-SCADA IEC 104 M_ST_NA_1";
flow:established; content:"|68|"; depth:1; content:"|05|"; within:1;
distance:5; reference:url,blog.snort.org/2016/12/iec60870-5-104-protocol-
detection-rules.html; classtype:protocol-command-decode; sid:52152;
rev:1;)

91
alert tcp any [1024:] <> any 2404 (msg:"PROTOCOL-SCADA IEC 104 M_DP_NA_1";
flow:established; content:"|68|"; depth:1; content:"|03|"; within:1;
distance:5; reference:url,blog.snort.org/2016/12/iec60870-5-104-protocol-

 D5.2
 Version 0.9

© SDN microSENSE consortium Page | 95
Public document

detection-rules.html; classtype:protocol-command-decode; sid:52151;
rev:1;)

92

alert tcp any [1024:] <> any 2404 (msg:"PROTOCOL-SCADA IEC 104 M_SP_NA_1";
flow:established; content:"|68|"; depth:1; content:"|01|"; within:1;
distance:5; reference:url,blog.snort.org/2016/12/iec60870-5-104-protocol-
detection-rules.html; classtype:protocol-command-decode; sid:52150;
rev:1;)

 D5.2
 Version 0.9

© SDN microSENSE consortium Page | 96
Public document

Annex II: Modbus/TCP Suricata Signature/Specification Rules

The following table lists the new rules created for Suricata to detect Modbus/TCP related attacks.

1

alert tcp $MODBUS_CLIENT any -> $MODBUS_SERVER 502
(flow:from_client,established; content:"|00 00|"; offset:2; depth:2;
content:"|08 00 04|"; offset:7; depth:3; msg:"SCADA_IDS: Modbus TCP - Force
Listen Only Mode"; reference:url,digitalbond.com/tools/quickdraw/modbus-tcp-
rules; classtype:attempted-dos; sid:1111001; rev:2; priority:1;)

2

alert tcp $MODBUS_CLIENT any -> $MODBUS_SERVER 502
(flow:from_client,established; content:"|00 00|"; offset:2; depth:2;
content:"|08 00 01|"; offset:7; depth:3; msg:"SCADA_IDS: Modbus TCP - Restart
Communications Option"; reference:url,digitalbond.com/tools/quickdraw/modbus-
tcp-rules; classtype:attempted-dos; sid:1111002; rev:2; priority:1;)

3

alert tcp $MODBUS_CLIENT any -> $MODBUS_SERVER 502
(flow:from_client,established; content:"|00 00|"; offset:2; depth:2;
content:"|08 00 0A|"; offset:7; depth:3; msg:"SCADA_IDS: Modbus TCP - Clear
Counters and Diagnostic Registers";
reference:url,digitalbond.com/tools/quickdraw/modbus-tcp-rules;
classtype:misc-attack; sid:1111003; rev:2; priority:3;

4

alert tcp $MODBUS_CLIENT any -> $MODBUS_SERVER 502
(flow:from_client,established; content:"|00 00|"; offset:2; depth:2;
content:"|2B|"; offset:7; depth:1; msg:"SCADA_IDS: Modbus TCP - Read Device
Identification"; reference:url,digitalbond.com/tools/quickdraw/modbus-tcp-
rules; classtype:attempted-recon; sid:1111004; rev:2; priority:3;)

5

alert tcp $MODBUS_CLIENT any <> $MODBUS_SERVER 502 (flow:established;
dsize:>300; msg:""SCADA_IDS: Modbus TCP - Illegal Packet Size, Possible DOS
Attack""; reference:url,digitalbond.com/tools/quickdraw/modbus-tcp-rules;
classtype:non-standard-protocol; sid:1111008; rev:1; priority:1;)

6

alert tcp $MODBUS_SERVER 502 <> $MODBUS_CLIENT any (flow:established;
byte_jump:2,4; isdataat:0,relative; msg:""SCADA_IDS: Modbus TCP - Incorrect
Packet Length, Possible DOS Attack"";
reference:url,digitalbond.com/tools/quickdraw/modbus-tcp-rules; classtype:non-
standard-protocol; sid:1111012; rev:1; priority:2;)

7

alert tcp $MODBUS_SERVER 502 -> $MODBUS_CLIENT any (flow:established;
content:"|00 00|"; offset:2; depth:2; byte_test: 1, >=, 0x80, 7; content:"|01|";
offset:8; depth:1; msg:"SCADA_IDS: Modbus TCP - Function Code Scan"; threshold:
type threshold, track by_src, count 3, seconds 60;
reference:url,digitalbond.com/tools/quickdraw/modbus-tcp-rules;
classtype:attempted-recon; sid:1111014; rev:2; priority:2;)

8

alert tcp any any -> $HOME_NET 27700 (msg:"ET SCADA SEIG Modbus 3.4 - Remote
Code Execution"; flow:established,to_server; content:"|42 42 ff ff 07 03 44 00
64|"; fast_pattern; content:"|90 90 90 90 90 90 90 90 90 90|"; distance:0;
metadata: former_category SCADA; reference:url,exploit-db.com/exploits/45220/;
reference:cve,2013-0662; classtype:attempted-user; sid:2026005; rev:1;
metadata:created_at 2018_08_21, updated_at 2018_08_21;)

9 alert tcp any any -> any 502 (msg:"ET SCAN Modbus Scanning detected";
content:"|00 00 00 00 00 02|"; flow:established,to_server; depth:6; threshold:

 D5.2
 Version 0.9

© SDN microSENSE consortium Page | 97
Public document

type both, track by_src, count 100, seconds 10;
reference:url,code.google.com/p/modscan/;
reference:url,www.rtaautomation.com/modbustcp/;
reference:url,doc.emergingthreats.net/2009286; classtype:bad-unknown;
sid:2009286; rev:5; metadata:created_at 2010_07_30, updated_at 2010_07_30;)

10

alert tcp $EXTERNAL_NET any -> $HOME_NET 502 (msg:"PROTOCOL-SCADA Modbus user-
defined function code - 65 to 72"; flow:to_server,established;
byte_test:1,>,64,7; byte_test:1,<,73,7;
reference:url,www.modbus.org/docs/Modbus_Application_Protocol_V1_1b.pdf;
classtype:protocol-command-decode; sid:15074; rev:5;)

11

alert tcp $EXTERNAL_NET any -> $HOME_NET 502 (msg:"PROTOCOL-SCADA Modbus user-
defined function code - 100 to 110"; flow:to_server,established;
byte_test:1,>,99,7; byte_test:1,<,111,7;
reference:url,www.modbus.org/docs/Modbus_Application_Protocol_V1_1b.pdf;
classtype:protocol-command-decode; sid:15075; rev:5;)

12

alert tcp $EXTERNAL_NET 502 -> $HOME_NET any (msg:"PROTOCOL-SCADA Modbus
exception returned"; flow:established,to_client; byte_test:1,&,128,7;
reference:url,www.modbus.org/docs/Modbus_Application_Protocol_V1_1b.pdf;
classtype:protocol-command-decode; sid:15071; rev:4;)

13

alert tcp $EXTERNAL_NET any -> $HOME_NET $HTTP_PORTS (msg:"PROTOCOL-SCADA
Microsys Promotic directory traversal attempt"; flow:to_server,established;
content:"/webdir/../../../../../"; metadata:service http;
reference:bugtraq,50133; reference:cve,2011-4518; reference:url,ics-cert.us-
cert.gov/alerts/ICS-ALERT-11-286-01; classtype:attempted-user; sid:28917;
rev:3;)

14

alert tcp $EXTERNAL_NET any -> $HOME_NET 502 (msg:"PROTOCOL-SCADA Modbus invalid
encapsulated interface request"; flow:established,to_server; content:"|00 00|";
depth:2; offset:2; content:"|2B|"; depth:1; offset:7; content:!"|0D|";
within:1; content:!"|0E|"; within:1;
reference:url,www.modbus.org/docs/Modbus_Application_Protocol_V1_1b.pdf;
classtype:protocol-command-decode; sid:29319; rev:1;)

15

alert tcp $EXTERNAL_NET 502 -> $HOME_NET any (msg:"PROTOCOL-SCADA Modbus invalid
encapsulated interface response"; flow:established,to_client; content:"|00
00|"; depth:2; offset:2; content:"|2B|"; depth:1; offset:7; content:!"|0D|";
within:1; content:!"|0E|"; within:1;
reference:url,www.modbus.org/docs/Modbus_Application_Protocol_V1_1b.pdf;
classtype:protocol-command-decode; sid:29318; rev:1;)

alert tcp $EXTERNAL_NET 502 -> $HOME_NET any (msg:"PROTOCOL-SCADA Modbus invalid
exception message"; flow:established,to_client; content:"|00 00|"; depth:2;
offset:2; byte_test:1,&,128,7; isdataat:9;
reference:url,www.modbus.org/docs/Modbus_Application_Protocol_V1_1b.pdf;
classtype:protocol-command-decode; sid:29317; rev:1;)

16

alert tcp $HOME_NET 502 -> $EXTERNAL_NET any (msg:"PROTOCOL-SCADA Modbus value
scan"; flow:established,to_client,no_stream; content:"|00 00|"; depth:2;
offset:2; byte_test:1,&,128,7; content:"|03|"; depth:1; offset:8;
detection_filter:track by_dst, count 3, seconds 10;
reference:url,www.modbus.org/docs/Modbus_Application_Protocol_V1_1b.pdf;
classtype:protocol-command-decode; sid:29316; rev:2;)

 D5.2
 Version 0.9

© SDN microSENSE consortium Page | 98
Public document

17

alert tcp $HOME_NET 502 -> $EXTERNAL_NET any (msg:"PROTOCOL-SCADA Modbus list
scan"; flow:established,to_client,no_stream; content:"|00 00|"; depth:2;
offset:2; byte_test:1,&,128,7; content:"|02|"; depth:1; offset:8;
detection_filter:track by_dst, count 3, seconds 10;
reference:url,www.modbus.org/docs/Modbus_Application_Protocol_V1_1b.pdf;
classtype:protocol-command-decode; sid:29315; rev:2;)

18

alert tcp $HOME_NET 502 -> $EXTERNAL_NET any (msg:"PROTOCOL-SCADA Modbus
function scan"; flow:established,to_client,no_stream; content:"|00 00|";
depth:2; offset:2; byte_test:1,&,128,7; content:"|01|"; depth:1; offset:8;
detection_filter:track by_dst, count 3, seconds 10;
reference:url,www.modbus.org/docs/Modbus_Application_Protocol_V1_1b.pdf;
classtype:protocol-command-decode; sid:29314; rev:2;)

19

alert tcp $EXTERNAL_NET any -> $HOME_NET 502 (msg:"PROTOCOL-SCADA invalid modbus
protocol identifier"; flow:to_server, established; content:"|00 00|"; depth:2;
content:!"|00 00|"; within:2;
reference:url,modbus.org/docs/Modbus_Application_Protocol_V1_1b.pdf;
reference:url,modbus.org/docs/Modbus_Messaging_Implementation_Guide_V1_0b.pdf;
classtype:misc-activity; sid:42109; rev:1;)

20

alert tcp $EXTERNAL_NET any -> $HOME_NET 502 (msg:"PROTOCOL-SCADA Schneider
Modicon Quantum modbus start command attempt"; flow:to_server,established;
content:"|5A|"; depth:1; offset:7; content:"|40 FF 00|"; distance:0;
reference:url,schneider-electric.com; classtype:misc-activity; sid:45234;
rev:1;)

21

alert tcp $EXTERNAL_NET any -> $HOME_NET 502 (msg:"PROTOCOL-SCADA Schneider
Modicon Quantum modbus stop command attempt"; flow:to_server,established;
content:"|5A|"; depth:1; offset:7; content:"|41 FF 00|"; distance:0;
reference:url,schneider-electric.com; classtype:misc-activity; sid:45233;
rev:1;)

22

alert tcp $EXTERNAL_NET any -> $HOME_NET 27700 (msg:"PROTOCOL-SCADA Schneider
Electroc ModbusDrv.exe buffer overflow attempt"; flow:to_server,established;
content:"|FF FF 00 00|"; depth:4; byte_test:2,>,1048,4; metadata:policy max-
detect-ips drop, policy security-ips drop; reference:cve,2013-0662;
classtype:attempted-admin; sid:43986; rev:2;)

23

alert tcp $EXTERNAL_NET any -> $HOME_NET 502 (msg:"PROTOCOL-SCADA Modbus user-
defined function code - 100 to 110"; flow:to_server,established;
byte_test:1,>,99,7; byte_test:1,<,111,7; metadata:policy max-detect-ips drop;
reference:url,www.modbus.org/docs/Modbus_Application_Protocol_V1_1b.pdf;
classtype:protocol-command-decode; sid:15075; rev:6;)

24

alert tcp $EXTERNAL_NET any -> $HOME_NET 502 (msg:"PROTOCOL-SCADA Modbus user-
defined function code - 65 to 72"; flow:to_server,established;
byte_test:1,>,64,7; byte_test:1,<,73,7; metadata:policy max-detect-ips drop;
reference:url,www.modbus.org/docs/Modbus_Application_Protocol_V1_1b.pdf;
classtype:protocol-command-decode; sid:15074; rev:6;)

25

alert tcp any any -> any 502 (msg:"ET SCAN Modbus Scanning detected";
content:"|00 00 00 00 00 02|"; flow:established,to_server; depth:6; threshold:
type both, track by_src, count 100, seconds 10;
reference:url,code.google.com/p/modscan/;
reference:url,www.rtaautomation.com/modbustcp/;

 D5.2
 Version 0.9

© SDN microSENSE consortium Page | 99
Public document

reference:url,doc.emergingthreats.net/2009286; classtype:bad-unknown;
sid:2009286; rev:3; metadata:created_at 2010_07_30, updated_at 2010_07_30;)

26
alert modbus any any -> any 502 (modbus: function !3; msg:"Modbus/TCP Alert -
Not Allowed Moudbus/TCP Function Code"; sid: 2;)

 D5.2
 Version 0.9

© SDN microSENSE consortium Page | 100
Public document

Annex III: DNP3 Suricata Signature/Specification Rules

The following table lists the new rules created for Suricata to detect DNP3 related attacks.

1
alert tcp any any -> $DNP3_SERVER 20000 (msg:"TCP SYN flood attack detected"; flags:S;
threshold: type threshold, track by_dst, count 20 , seconds 10; sid: 5000001; rev:1;)

2
alert tcp any any -> $DNP3_SERVER 20000 (msg:"SCADA_IDS: DNP3 - Disable Unsolicited
Responses"; dnp3_func:21; reference:url,digitalbond.com/tools/quickdraw/dnp3-rules;
classtype:attempted-dos; sid:11112011; rev:1; priority:2;)

3

alert tcp $DNP3_SERVER 20000 -> $DNP3_CLIENT any (flow:established; content:"|82|";
offset:12; depth:1; msg:"SCADA_IDS: DNP3 - Unsolicited Response Storm"; threshold: type
threshold, track by_src, count 5, seconds 10;
reference:url,digitalbond.com/tools/quickdraw/dnp3-rules; classtype:attempted-dos;
sid:1111203; rev:1; priority:2;)

4

alert tcp $DNP3_CLIENT any -> $DNP3_SERVER 20000 (msg:"SCADA_IDS: DNP3 - Cold Restart
From Authorized Client"; dnp3_func:13;
reference:url,digitalbond.com/tools/quickdraw/dnp3-rules; classtype:attempted-dos;
sid:11112041; rev:1; priority:2;)

5

alert tcp !$DNP3_CLIENT any -> $DNP3_SERVER 20000 (msg:"SCADA_IDS: DNP3 - Cold Restart
From Unauthorized Client"; dnp3_func:13;
reference:url,digitalbond.com/tools/quickdraw/dnp3-rules; classtype:denial-of-service;
sid:11112051; rev:1; priority:1;)

6

alert tcp !$DNP3_CLIENT any -> $DNP3_SERVER 20000 (msg:"SCADA_IDS: DNP3 -
Unauthorized Read Request to a PLC"; dnp3_func:1;
reference:url,digitalbond.com/tools/quickdraw/dnp3-rules; classtype:bad-unknown;
sid:11112061; rev:1; priority:2;)

7

alert tcp !$DNP3_CLIENT any -> $DNP3_SERVER 20000 (flow:from_client,established;
content:"|05 64|"; depth:2;
pcre:"/[\S\s]{10}(\x02|\x04|\x05|\x06|\x09|\x0A|\x0F|\x12)/iAR"; msg:"SCADA_IDS: DNP3 -
Unauthorized Write Request to a PLC"; reference:url,digitalbond.com/tools/quickdraw/dnp3-
rules; classtype:bad-unknown; sid:1111207; rev:1; priority:1;)

9

alert tcp any any -> $DNP3_SERVER 20000 (msg:"SCADA_IDS: DNP3 - Stop Application";
dnp3_func:18; reference:url,digitalbond.com/tools/quickdraw/dnp3-rules; classtype:denial-
of-service; sid:11112091; rev:1; priority:2;)

10

alert tcp any any -> $DNP3_SERVER 20000 (msg:"SCADA_IDS: DNP3 - Warm Restart";
dnp3_func:14; reference:url,digitalbond.com/tools/quickdraw/dnp3-rules;
classtype:attempted-dos; sid:11112101; rev:1; priority:2;)

11

alert tcp $DNP3_CLIENT any -> $DNP3_SERVER 20000 (flow:from_client,established;
content:"|FF FF|"; offset:4; depth:2; msg:"SCADA_IDS: DNP3 - Broadcast Request from
Authorized Client"; reference:url,digitalbond.com/tools/quickdraw/dnp3-rules;
classtype:misc-attack; sid:1111211; rev:1; priority:2;)

