

This project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement No 833955

Project No. 833955

Project acronym: SDN-microSENSE

Project title:

SDN - microgrid reSilient Electrical eNergy SystEm

Deliverable D5.1
XL-SIEM System

Programme: H2020-SU-DS-2018
Start date of project: 01.05.2019
Duration: 36 months

Editor: ATOS

Due date of deliverable: 30/09/2020 Actual submission date: 30/09/2020

Ref. Ares(2020)5157894 - 01/10/2020

 D5.1
Version 1.5

© SDN-microSENSE consortium Page | 2
Public document

Deliverable Description:
Deliverable Name XL-SIEM System
Deliverable Number D5.1

Work Package WP 5

Associated Task T5.1
Covered Period M5

Due Date M17

Completion Date M17

Submission Date 30/09/2020

Deliverable Lead Partner ATOS

Deliverable Author(s) ATOS, UOWM, CERTH, TECN, UBI, SID, 0INF, CLS, AYE

Version 1.5

CHANGE CONTROL

DOCUMENT HISTORY

Version Date Change History Author(s) Organisation

0.1 12/06/2020 ToC Ruben Trapero ATOS

0.1.1 23/6/2020 Changed ToC advised by QM Ruben Trapero ATOS

0.1.2 12/7/2020
Section 2, Section 3.1, Section
4.3

Ruben Trapero ATOS

0.1.3 12/7/2020 Section 4.2.2
Orestis
Mavropoulos

CLS

0.2

14/7/2020

Section 4.1.2

Panagiotis I.
Radoglou-
Grammatikis

UOWM

Elisavet Grigoriou SID

0.2.1 15/7/2020 Section 3.2
Angel Javier
Jimenez Perez

AYE

0.2.2

15/7/2020
15/7/2020

Section 4.1.3, Section 4.1.4,
Section 4.2.4, Section 4.2.5,
Section 4.2.6, Section 4.2.7

Ioannis Spyridis 0INF

Panagiotis I.
Radoglou-
Grammatikis,
Panagiotis
Sarigiannidis,
Thomas Lagkas,
Antonios
Protopsaltis,

UOWM

Dissemination Level

PU Public X

PP Restricted to other programme participants (including the Commission
Services)

RE Restricted to a group specified by the consortium (including the
Commission Services)

CO Confidential, only for members of the consortium (including the
Commission Services)

 D5.1
Version 1.5

© SDN-microSENSE consortium Page | 3
Public document

Stamatia Bibi,
Anna Triantafyllou,
Miltiadis
Parcharidis,
Giwrgos Kechaidis

Elisavet Grigoriou SID

0.2.4 16/7/2020 Section 4.1.4, Section 4.2.1 Marisa Escalante TECN

0.3 20/7/2020 Section 5, Section 6 Ruben Trapero ATOS

0.3.1 21/7/2020
Section 4.1.1, Section 4.1.6,
Section 4.2.9

Eleni Ketzaki CERTH

0.4 21/7/2020
First integrated version for
milestone 1

Ruben Trapero ATOS

0.5 23/7/2020
Section 1.3, Section 4.2.2,
Section 7

Ruben Trapero ATOS

0.6 30/7/2020
Section 1.1, Section 1.2,
Executive summary,
Conclusions

Ruben Trapero ATOS

0.7 3/8/2020 Section 3.2
Angel Javier
Jimenez Perez

AYE

1.0 24/8/2020 Ready to review Ruben Trapero ATOS

1.1 17/09/2020 Industrial revision addressed Ruben Trapero ATOS

1.2 18/09/2020 Section 4.1.5 added Ruben Trapero ATOS

1.3 22/09/2020 Academic revision addressed Ruben Trapero ATOS

1.4 24/09/2020 SAB revision addressed Ruben Trapero ATOS

1.5 28/09/2020 QM revision addressed Ruben Trapero ATOS

DISTRIBUTION LIST

Date Issue Group

21/09/2020 Revision UOWM, IEIT, VETS, SAB, QM, TM

29/09/2020 Acceptance UOWM, IEIT, VETS, SAB, QM, TM

30/09/2020 Submission ATOS

SAB APPROVAL

NAME INSTITUTION DATE

Mr. Benito Caracuel Sillero SCHN ES 21/09/2020

Academic and Industrial partner revision

NAME INSTITUTION DATE

Anna Triantafyllou
Panagiotis Radoglou-
Grammatikis

Academic partner: UOWM 21/09/2020

Maria Atanasova Industrial partner: IEIT 17/09/2020

 D5.1
Version 1.5

© SDN-microSENSE consortium Page | 4
Public document

Valentin Kolev Industrial Partner: VETS 18/09/2020

Quality and Technical manager revision

NAME INSTITUTION DATE

Dimosthenis Ioannidis CERTH 29/09/2020

Anastasios Drosou CERTH 29/09/2020

 D5.1
Version 1.5

© SDN-microSENSE consortium Page | 5
Public document

Table of contents

Table of contents ...5

Table of figures ..7

Table of tables ...7

Acronyms ...8

Executive Summary ..10

1 Introduction ..11
1.1 Relation to other Tasks and Deliverables ... 11

1.2 Requirements analysis ... 12

2 XL-EPDS overview ...13

3 Incident detection based on the XL-SIEM in SDN-microSENSE15
3.1 XL-SIEM Deployment Considerations ... 16

3.2 Deployment considerations in SDN-microSENSE .. 21

4 Monitoring and Incident Detection in SDN-microSENSE ...24
4.1 SDN-microSENSE protocols and threats ... 24

4.1.1 Modbus ... 24

4.1.2 DNP3 ... 28

4.1.3 IEC 60870-5-104 ... 29

4.1.4 IEC 61850 ... 31

4.1.5 IEEE C37.118-2 ... 33

4.1.6 Other relevant protocols within the EPES domain .. 35

4.1.6.1 MQTT protocol ... 35

4.1.6.2 NTP protocol .. 36

4.2 SDN microSENSE security sensors .. 37

4.2.1 EPES Honeypots ... 37

4.2.2 Network based incident detection: Enhanced Suricata.. 39

4.2.3 SDN based incident detection: Nightwatch ... 40

4.2.4 Modbus Intrusion Detection Sensor .. 41

4.2.5 DNP3 Intrusion Detection Sensor .. 41

4.2.6 IEC 60870-5-104 Intrusion Detection Sensor ... 42

4.2.7 IEC 61850 (GOOSE) Intrusion Detection Sensor ... 42

4.2.8 L-ADS ... 42

 D5.1
Version 1.5

© SDN-microSENSE consortium Page | 6
Public document

4.2.9 CERTH ML detector .. 43

4.3 Interfaces and data exchanged .. 45

4.3.1 XL-SIEM input mechanisms .. 45

4.3.2 XL-SIEM output mechanisms .. 47

5 Event connectors ...51

6 Security alerts ...53

7 Unit Testing ..59
7.1 Unit Testing Environment .. 59

7.2 Unit tests ... 60

8 Innovation Summary ..66

9 Conclusions ...67

10 References ...68

 D5.1
Version 1.5

© SDN-microSENSE consortium Page | 7
Public document

Table of figures

Figure 1. Links between D5.1 and the rest of deliverables and WPs ... 12

Figure 2. The XL-EPDS within the high level SDN-microSENSE architecture .. 13

Figure 3. XL-EPDS global architecture .. 13

Figure 4. T5.1 components within WP5 architecture ... 15

Figure 5. Gartner magic quadrant for SIEMS (taken [Gartner2020]) positioning the XL-SIEM (in orange)

 ... 16

Figure 6. XL-SIEM overview ... 17

Figure 7. Internals of the XL-SIEM engine .. 18

Figure 8. Docker containers deployed for an XL-SIEM installation .. 19

Figure 9. Comparison of requirements for deploying XL-SIEM containers .. 21

Figure 10. XL-SIEM infrastructure resources .. 21

Figure 11. ISA 95/98 standard - Industrial networks ... 23

Figure 12. SOAP/REST vs Streaming flow ... 24

Figure 13. Description of the Modbus protocol operation ... 25

Figure 14. IEC 60870-5-104 Protocol ... 29

Figure 15. Typical general view of a primary substation .. 31

Figure 16. IEC 61850 Data modelling. Source IEC/TR 61850 ... 32

Figure 17. Synchrophasor communication system overview (taken from [Khan+16]) 33

Figure 18. Message format of the IEEE C37.118-2 standard (taken from Khan+16]) 34

Figure 19. The architecture of the CERTH ML detector .. 44

Figure 20. Exchange of information from detectors to the XL-SIEM agent using rsyslog 45

Figure 21. Status of a correctly configured rsyslog client based on TLS .. 47

Figure 22. Proof that the message was received by the client ... 47

Figure 23. SDN-microSENSE components using the output of the XL-SIEM Agent and Engine through

RabbitMQ ... 48

Figure 24. Exchange queues at the RabbitMQ attached to the XL-SIEM ... 49

Figure 25. Consumer queues configured at the RabbitMQ server .. 50

Figure 26. Steps to create new correlation rules.. 53

Figure 27. Example of event definition for one of the honeypots .. 54

Figure 28. Example of an event classification for Modbus related events .. 54

Figure 29. Example of directive (correlation rule) for a Modbus related incident 55

Figure 30. Configuration panel where new directives are added to the correlation engine 56

Figure 31. XL-SIEM testbed in SDN-microSENSE .. 59

Figure 32. Evaluation strategy in SDN-microSENSE (extracted from T2.4) .. 60

Table of tables

Table 1. Connectivity dependencies between XL-SIEM containers ... 19

Table 2. Communication technologies comparison ... 23

Table 3. Description of the Function types, the Function names and the corresponding Function codes

for the Modbus protocol [Knapp+14] .. 25

Table 4. Description of the attack tools and their corresponding threats for the Modbus protocol. ... 27

https://atos365-my.sharepoint.com/personal/ruben_trapero_atos_net/Documents/Work/Projects/SDN-microSENSE/WP5/D5.1/SDNmicroSENSE_D5.1_XL-SIEMSystem_v1.4.docx#_Toc52177471

 D5.1
Version 1.5

© SDN-microSENSE consortium Page | 8
Public document

Table 5. Description of the attack tools and their corresponding threats for the DNP3 protocol. 29

Table 6. Description of the attack tools and their corresponding threats for the IEC-104 protocol. 30

Table 7. Description of the attack tools and their corresponding threats for the IEC 61850 protocol. 33

Table 8. Description of the attack tools and their corresponding threats for the IEEE C37.118-2 protocol

 ... 34

Table 9. Description of the attack tools and their corresponding threats for the MQTT protocol. 36

Table 10. Description of the attack tools and their corresponding threats for the NTP protocol. 37

Table 11. Log taxonomy for the IEC61850 honeypot ... 37

Table 12. Types of events for the IEC60870-5-104 honeypot ... 38

Table 13. Template to compile log taxonomies from detectors ... 52

Table 14. Fields of the security alert message exported by the XL-SIEM .. 57

Acronyms

Acronym Explanation

APCI Application Protocol Control Information

APDU Application Protocol Data Unit

ARIEC Cloud/based Anonymous Repository of Incidents

ASDU Application Service Data Unit

CAPEC Common Attack Pattern Enumeration and Classification

CF Control Fields

CoT Cause of Transmission

DA Delay Attack

DNP Distributed Network Protocol

DoS Denial of Service

DRPC Distributed Remote Procedure Call

ENISA European Union Agency for Cybersecurity

EPES Electrical Power and Energy System

FR Functional Requirement

GOOSE Generic Object-Oriented Substation Events

GR General Requirement

IDPS Intrusion Detection and Prevention Systems

IDS Intrusion Detection System

IED Intelligent Electronic Devices

IOA Information Object Address

IoT Internet of Things

IPS Intrusion Prevention System

JSON JavaScript Object Notation

KoD Kiss of Death

L-ADS Live Anomaly Detection Reasoner

M2M Machine-to-machine

 D5.1
Version 1.5

© SDN-microSENSE consortium Page | 9
Public document

MIA Message Integrity Attack

MISP Malware Information Sharing Platform

MiTM Man in the Middle

ML Machine Learning

MMS Manufacturing Messaging Specification

MQTT Message Queuing Telemetry Transport

NTP Network Time Protocol

OASIS Organization for the Advancement of Structured Information Standards

PDA Packet Drop Attack

PLC Programmable Logic Controllers

RAF Risk Assessment Framework

SCADA Supervisory Control and Data acquisition

SDN Software Defined Network

SMV Sampled Measured Values

TLS Transport Layer Security

UC User Case

UR User Requirement

VM Virtual Machine

XL-EPDS Cross-layer Energy Protection and Detection System

XL-SIEM Cross Layer Security Information and Event Manager

 D5.1
Version 1.5

© SDN-microSENSE consortium Page | 10
Public document

Executive Summary
This deliverable is the first document of Work Package 5 (WP5) of SDN-microSENSE. WP5 focuses on

cybersecurity protection in the EPES domain, including components for the monitoring of EPES

infrastructures, detection of cyber incidents associated to application protocols commonly used EPES

networks (T5.1), the development of components for detecting cyber incidents linked to these

protocols (T5.2, T5.3, T5.4), and threat intelligence sharing capabilities within EPES (T5.4).

The content of this deliverable is focused on the description of the incident detection component

included as part of the XL-EDPS module of the SDN-microSENSE architecture, which is based on the

ATOS XL-SIEM. Within the XL-EDPS module, the ATOS XL-SIEM acts as a broker that links detectors

deployed in the EPES infrastructure to monitor (IPS developed in T5.1, machine learning-based incident

detectors developed in T5.2, access control monitoring developed in T5.4 and honeypots used in WP3),

and the consumers of the XL-EDPS output, which is used by several components of the SDN-

microSENSE architecture, such as S-RAF (developed in WP2), Honeypot Manager (developed in WP3)

and threat intelligence sharing component like the ARIEC (developed in T5.4).

More specifically, the XL-SIEM has been enhanced to support the processing of events coming from

detectors developed in T5.2, T5.2 and T5.4, supporting events associated to protocols commonly used

by EPES, such as Modbus, DNP3, IEC 60870-5-104, IEC61850 and IEEE C37.118. These protocols and

the detectors capable of detecting incidents associated to these protocols, are introduced in this a

document, with the intention to provide with a complete overview of the new application context

introduced in the XL-SIEM. Those protocols and the corresponding details on detectors are thoroughly

described in T5.2 and T5.3. Introducing support for these protocols to the XL-SIEM entailed integration

efforts on the event processing side, which required the development of connectors capable of

interpreting the new set of logs received from the new set of detectors developed in SDN-microSENSE.

The correct interpretation of those logs and the information contained by them were key to add new

intelligence capabilities to the XL-SIEM by means of new correlation rules that correctly interpret

anomalous patterns associated to the logs received.

On the other side, attached to the XL-SIEM and as part of the XL-EPDS, a set of interfaces, based on

messages queues, has been integrated to export both events received by the XL-SIEM and the security

alerts produced by it. This information is consumed by several components of the SDN-microSENSE

architecture, which triggers additional activities such as the automatic deployment of honeypots when

zero day attacks are detected (WP3), the sharing of threat information through the ARIEC (T5.4) or the

risk evaluation of incidents carried out by the S-RAF component (WP4).

 D5.1
Version 1.5

© SDN-microSENSE consortium Page | 11
Public document

1 Introduction
This document details the technical details of the developments carried out in incident detection

component that is part of the XL-EPDS module in the SDN-microSENSE architecture. The main purpose

of this component, which is based on the ATOS XL-SIEM, is to act as broker between the security

detectors that are monitoring the EPES infrastructure and the components that consume information

about security alerts detected by the incident detector. To this end, the XL-SIEM has been adapted to

process events coming from detectors related to EPES specific protocols, including also the intelligence

to interpret such information, correlate those events to produce the corresponding security alerts. A

set of connectors have also been developed at the input side of the XL-SIEM, to interpret logs coming

from new detectors, and output connectors to push verdicts about incidents detected that are used

by several components of the SDN-microSENSE platform.

This document is structured as follows:

• Section 2 provides an overview of the XL-EPDS module of the SDN-microSENSE architecture

and position it in the context of the rest of components of the platform.

• Section 3 provides with details related to the incident detection component used in the XL-

EPDS module, together with deployment considerations in the context of SDN-microSENSE.

• Section 4 introduces the monitoring and detectors used in the XL-EPDS, including a high-level

overview of the protocols and approaches to monitor them.

• Section 5 provides details about the inputs of the XL-EPDS component and the interfaces

deployed to retrieve logs from detectors.

• Section 6 provides details about the output of the XL-EPDS component and the interfaces

deployed to push security alerts to alerts consumers.

• Section 7 details the testbed deployed to check connectivity between XL-EPDS components

and summarizes the unit testing carried out.

• Section 8 concludes the document and summarises the main innovations carried out in this

task.

1.1 Relation to other Tasks and Deliverables
This document is related to the following deliverables (Figure 1):

• D2.2 [SDN22], where the requirements of the SDN-microSENSE platform are elicited

• D2.3 [SDN23], where the SDN-microSENSE architecture is described

• D2.4 [SDN24], from where it is taken the validation methodology

• D3.3 [SDN33], that describes the honeypots that will interact with the XL-EPDS

• D5.2 [SDN52], that describes the protocols, attacks and detectors and details the SDN based IDS

• D5.3 [SDN53], that describes the machine learning based detectors

• D5.4 [SDN54], that describes the privacy framework that interconnects to the XL-EPDS

• D5.5 [SDN55], that describes the ARIEC which uses the output of the XL-EPDS

 D5.1
Version 1.5

© SDN-microSENSE consortium Page | 12
Public document

Figure 1. Links between D5.1 and the rest of deliverables and WPs

1.2 Requirements analysis
The following requirements elicited from D2.2 [SDN22] are covered by the components described in

this document.

Functional Requirements General Requirements

FR-GR-03, related to the generation of alarms related to incidents.
FR-GR-05, related to the ability to provide network flow metrics from network data
FR-GR-09, related to the availability of interfaces for integrating external components such as
detectors.
FR-GR-10, related to the storage of events and incident information in a persistent database
FR-GR-11, related to the availability of GUIs to visualize incident information
FR-GR-12, related to the collection of security events

Functional Requirements User Requirements

FR-UR-03 to 14, which describe requirements related to the detection of different types of cyber
attacks
FR-UR-17, which describes que remote notification of incidents detected

Functional Requirements Use Case Requirements

FR-UC1-01 to 03, which cover cyber-attacks to SCADAs logical interface under the Use Case 1
FR-UC1-04 to 07, which cover cyber-attacks to the Station Bus network under the Use Case 1
FR-UC1-08 to 11, which cover cyber-attacks against the process control bus
FR-UC3-01, which cover the defence against coordinated attacks scenarios in the Islanding Use Case
3.

Non-Functional requirements

All non-functional requirements refined in Table 12 of D2.2 are covered by this deliverable

D5.1

D2.2

D2.3

D2.4

D3.3 D5.2

D5.3

D5.4

D5.5 WP2

WP3

WP5

 D5.1
Version 1.5

© SDN-microSENSE consortium Page | 13
Public document

2 XL-EPDS overview
The XL-EPDS subsystem of the SDN-microSENSE platform carries out the tasks related to infrastructure

monitoring, incident detection and incident reporting. As shown in Figure 2, the XL-EPDS is located at

the Application Plane. It directly interacts with the data and infrastructure plane, obtaining monitoring

data (logs, network traffic, etc) from the components and network of this plane. It also interacts with

the controller plane to obtain data from SDN controllers and infer incidents and anomalies based on

the data obtained from this plane. Other elements of the Application Plane (i.e., S-RAF), use

information from the XL-EPDS (such as security alerts). Further details of the XL-EPDS within the SDN-

microSENSE architecture can be checked in Deliverable D2.3.

Figure 2. The XL-EPDS within the high level SDN-microSENSE architecture

The internals of the XL-EPDS consists on several components that cover the full cycle of the security

management: monitoring, analysis, reporting, mitigating. The details of the XL-EPDS components, and

their interrelation, are depicted in Figure 3 in the context of WP5 components and WP5 tasks.

Figure 3. XL-EPDS global architecture

Four main parts can be identified in such figure:

APPLICATION PLANE

CONTROLLER PLANE

XL-EPDS S-RAF SDN-SELF

DATA/INFRASTRUCTURE PLANE

MANAGEMENT

PLANE

 D5.1
Version 1.5

© SDN-microSENSE consortium Page | 14
Public document

• EPES Infrastructure, which corresponds to the Data/Infrastructure plane and Controller plane

of the SDN-microSENSE architecture. Control centres, substations and SDN controllers are part

of this group.

• Detectors, which correspond to all those components that provide with logs, evidences, and

information relevant to be used to infer security alerts. We include here IDPS detectors and

SDN IDPS (part of T5.2), machine learning based detectors (part of T5.3), honeypots (part of

T3.3), and components for reporting about access control and data requests (part of T5.4).

• The reasoning engine of the XL-EPDS are the XL-SIEM components (part of T5.1) which are

composed of XL-SIEM agents and the XL-SIEM engine.

• Consumers of security alerts, including here:

o Risk assessment (by the OLISTIC component at the S-RAF), part of T3.1

o Intelligent sharing components, such as the ATOS CIS and the ARIEC, part of T5.5

o Visualization components, such as the Discovery tool developed in T5.3

o Honeypot manager for the dynamic deployment of honeypots based on incidents

detected and being developed in T3.3.

The following sections describes the details of the T5.1 components.

 D5.1
Version 1.5

© SDN-microSENSE consortium Page | 15
Public document

3 Incident detection based on the XL-SIEM in SDN-microSENSE
The core of the XL-EPDS subsystem is the ATOS XL-SIEM (highlighted in Figure 4), which interfaces with

detectors, which provide input data, and three main parts of the SDN-microSENSE as consumers of the

XL-SIEM output: OLISTIC component, ARIEC and the Discovery System.

Sample table

The XL-SIEM is an event-based incident detector that can be attached to a myriad of different sources

of information, basically, any component capable of providing logs, events or any type of data relevant

for detecting cyber incidents.

Compared with other SIEM solutions, the XL-SIEM is particularly strong in flexibility and performance

related aspects. In general, SIEM solutions are heavy platforms, with high computational

requirements, also requiring dedicating support for deployment and maintenance. On the contrary, as

it will be detailed in next subsections, the Atos XL-SIEM is built upon a fully modular approach, based

on an Apache Storm topology deployed on docker containers, which allows to tailor the capabilities of

the XL-SIEM to the specific needs of the infrastructure where it is operating.

For these reasons, the XL-SIEM is suitable for its usage in very specific domains (from SMEs to Critical

Infrastructures) allowing to be extended to new technologies or future threats. To this end, the Gartner

report publishes every year a market study comparing commercial SIEMs from different vendors

[Gartner2020]. Figure 5 represents the Magic Quadrant published in February 2020, which analyses

the market positioning of different SIEM solutions: from leaders to visionaries or SIEMs focused in

niches. Overlapped to the Gartner study it has been included the position of the XL-SIEM in orange,

halfway between niche focused (because, as said, the XL-SIEM was developed to be tailored to

different infrastructures, from difference sizes and criticality), and visionaries (because, it can is

constantly extended with new capabilities and new application domains, such as the EPES domain in

SDN-microSENSE).

Figure 4. T5.1 components within WP5 architecture

 D5.1
Version 1.5

© SDN-microSENSE consortium Page | 16
Public document

Figure 5. Gartner magic quadrant for SIEMS (taken [Gartner2020]) positioning the XL-SIEM (in orange)

To this end, for its adaptation to the SDN-microSENSE environment, it has been required an effort of

adaptation to new communication protocols, which are typically not considered in the current SIEM

solutions. The innovations carried out to be able to use the XL-SIEM within SDN-microSENSE are

detailed in Section 8. Atos is the developer and owner of the XL-SIEM which has been used in T5.1 and

is the umbrella that interconnects the rest of the components of WP5.

The following subsection details the internals of the XL-SIEM.

3.1 XL-SIEM Deployment Considerations
The XL-SIEM is composed of two main parts: one or more agents and one correlation engine.

XL-SIEM agents are light software components that are deployed in any part of the infrastructure.

These agents will receive, from other components (sensors, detectors, or any other component

deployed in any infrastructure) logs, events or any other information that can be used to infer an

anomaly or a security incident. XL-SIEM agents aggregate, filter and normalize the logs received Figure

6.

XL-SIEM

 D5.1
Version 1.5

© SDN-microSENSE consortium Page | 17
Public document

Figure 6. XL-SIEM overview

The mechanisms used to provide inputs to the XL-SIEM agents and to provide normalized events as

output will be described in Section 4.2.8.

The other part of the XL-SIEM is the engine, which can be considered the core of the XL-SIEM. The

internal representation of the XL-SIEM engine is represented in Figure 7. The XL-SIEM engine is based

on two main technologies: Apache zookeeper and Apache Storm. The former is used to coordinate and

control the execution of the rest of the components of the XL-SIEM engine. The latter is used to run

the Storm topology that supports all the activities carried out by the XL-SIEM. As part of the Apache

Storm used at the XL-SIEM engine there are three main subcomponents: workers are the actual

elements that perform specific tasks, such as interacting with databases or applying correlation rules.

Those workers are instantiated by supervisors, which can be deployed even at different machines and

thus enabling a distributed deployment. This is one of the main advantages of using Apache Storm,

because, depending on the requirements and resources available, it is possible to deploy supervisors

distributed in different machines, instantiated or withdrawing supervisors dynamically as long as they

are required. On top of these supervisors, there is an additional node, called Nimbus, which controls

the tasks assigned to supervisors, controlling the deployment of supervisor nodes and the correct

schedule and cooperation across them.

XL-SIEM

engine

XL-SIEM

agent

Detectors Honeypots

Assets
Network

analysers

XL-SIEM

agent

Detectors Honeypots

Assets
Network

analysers

LOGS

LOGS

Normalized events

Normalized events

Security alerts
Infrastructure subnet 1

Infrastructure subnet 2

 D5.1
Version 1.5

© SDN-microSENSE consortium Page | 18
Public document

Figure 7. Internals of the XL-SIEM engine

The XL-SIEM has evolved as part of the activities carried out in SDN-microSENSE. The main

improvement leverages the adaptability to the characteristics of the infrastructure where it is

deployed. While in the past the XL-SIEM was built on a monolithic distribution to be instantiated on

top of a Linux based operative system running on a dedicated machine, the latest improvements use

Docker based containers to separate the different subcomponents of the XL-SIEM. This provides

several advantages:

• Optimization of resources required to run the XL-SIEM Engine. The resources required to

execute the XL-SIEM Engine has dropped significantly (up to half in terms of CPU and RAM)

with the migration to Docker containers.

• Easy distributed deployment, with the possibility to deploy Docker containers for Nimbus,

Supervisor and Zookeeper in different machines.

• Scalability, being able to easily deploy additional supervisors or withdraw them when they are

not required.

• Easy adaptation to new requirements which allows to easily tailor the characteristics of the XL-

SIEM Engine to specific requirements of the infrastructure where it is deployed.

Figure 8 shows the containers deployed for the installation of an XL-SIEM agent, representing the

following containers:

• Storm container, which executes the Storm topology that supports the XL-SIEM engine. There

are four containers in this group:

o Supervisor_in, the container that executes the Storm supervisor, which manages the

workers that execute specific tasks. This container uses a de dedicated socket port,

which is used to receive events from the XL-SIEM agents.

Zookeeper

Supervisor

XL-SIEM

Database

XL-SIEM

Dashboard

Worker

Supervisor Supervisor n

Worker Worker Worker n

XL-SIEM

topology

XL-SIEM agent

Nimbus

XL-SIEM engine

Events

Events Events

Events, alerts,

management

Alerts, config

Tasks control Tasks control Tasks control

Coordination and execution control

 D5.1
Version 1.5

© SDN-microSENSE consortium Page | 19
Public document

o Storm_ui (optional), a supporting container used for manging the processes of the

topology, check performance, etc. A dedicated TCP port is used for this purpose.

o Nimbus is the node of the Apache Storm topology that control que activities carried

out by supervisors (in this case, just one supervisor). This is done through a dedicated

TCP port.

o Drpc, a container that manages the communication between the storm nodes, using

a dedicated TCP port.

• Zookeeper container, which controls the status of the nodes of the Storm topology, using

several ports for this purpose.

• A web container (xlsiem_web_SDN-microSENSE) which contains the XL-SIEM dashboard for

managing it and visualizing events and alerts, using the port 80 (8080 for HTTPS)

• A RabbitMQ container (optional) which can be used to support communications to and from

the XL-SIEM with other components (for example, to export alerts). Details about this

container will be given in Section 4.2.8

• A database container, used by the storm nodes to store events, alerts, configuration, etc,

based on MariaDB, typically using the mySQL TCP port.

Figure 8. Docker containers deployed for an XL-SIEM installation1

It is worth noticing that all ports aforementioned are just used internally between docker containers,

not being visible outside of the machine that hosts these containers. The exception is the HTTPS port,

which is visible for the access to the web dashboard.

Dockerizing the main components of the XL-SIEM provide with huge advantages in term of deployment

alternatives. The supervisor_in and the database containers are the ones that demand more resources,

the former in terms of computation and the latter in terms of storage and network connectivity (i.e.,

max number of concurrent connections to the database). Additionally, not all containers require

connectivity with all containers. These dependencies, shown in Table 1, allows several deployment

alternatives that can be adapted to the characteristics of the infrastructure to monitor.

Table 1. Connectivity dependencies between XL-SIEM containers

 Zookeeper Nimbus Supervisor Drpc Storm_ui Database Dashboard

Zookeeper YES YES NO NO NO NO

Nimbus YES YES YES YES NO NO

Supervisor YES YES YES YES YES NO

Drpc NO YES YES YES NO NO

Storm_ui NO YES YES YES NO NO

Database NO NO YES NO NO YES

1 Ports hidden for security reasons

 D5.1
Version 1.5

© SDN-microSENSE consortium Page | 20
Public document

Dashboard NO NO NO NO NO YES

For example, there can be four main areas of deployment:

Area 1: Dashboard. This is the less critical container in terms of connectivity with other containers. The

dashboard will interact just with the Database, which is used by the system administrator to visualize

events, alerts or to configure the XL-SIEM. This container needs to be accessible with a Web Browser,

which requires to have a TCP port open (which is mapped to the HTTPS port of the container). HTTPS

connections are used to interact with the dashboard.

Area 2: Database. This container needs to be visible both to the Dashboard and to the Supervisor (or

supervisors if there are more than one). The connection to the dashboard is required because it is its

source of information for events, alerts and configuration data. With the supervisor the connectivity is

required because it is used by its workers to store events and alerts, to read correlation rules and the

configurations to use at the Storm topology. As it contains critical data, it should be deployed in a

secure location, ensuring that just the Dashboard and Supervisor containers can access to it.

Area 3: Storm containers (Nimbus, Supervisor, Drpc, Storm_ui). These are the core of the topology,

especially the Nimbus, the Supervisor and the Drpc. They are basically considered as processing

containers. They don’t store persistence information nor need to be exposed to external consumers

like the Dashboard does (except when alerts are exported to RabbitMQ queues as will be described

later in this document). However, it has higher computational requirements, especially in terms of CPU

and RAM (depending on the deployment used it can require a minimum of 4 CPU cores and 6GB RAM).

The container Storm_ui is optional and not really required for the Storm topology to work correctly,

although it provides with important management information (for example, to check the number of

workers running at any moment or the amount of RAM memory used).

Area 4: Zookeeper. This component requires connectivity with the Storm containers basically to check

whether they are working properly. This node doesn’t store or use information from the database. It

also doesn’t have major computational resources.

Figure 9 summarizes the requirements required for the container included in each are in terms of

security, connectivity with external components, computational resources and network resources.

 D5.1
Version 1.5

© SDN-microSENSE consortium Page | 21
Public document

Figure 9. Comparison of requirements for deploying XL-SIEM containers

A different combination of the XL-SIEM containers can be set-up, which depends on the specific needs

of the infrastructure where it is to be deployed, such as in the EPES domain considered in SDN-

microSENSE.

3.2 Deployment considerations in SDN-microSENSE
The XL-SIEM solution is broken down in several components which are interconnected employing
different technologies (Figure 10). These technologies have been chosen having into account a
different aspect of the communication of information flows where asynchronous messages play a main
role. The following figure is a simplified diagram where only communication technologies involved by
the XL-SIEM are depicted.

Figure 10. XL-SIEM infrastructure resources

The XL-SIEM solution requires the deployment of XL-SIEM agents into the EPES infrastructure, as well
as log daemon. In this deployment, the following issues must be considered:

• Log daemon installation. To get remote logs is needed running a daemon in the EPES for IDPS
detectors, Honeypots, Access control and data request and Machine learning detector
components. This daemon acts like a file watcher which detects a log updates and sends it to
the Log master which gathers all of those updates in a master log. For each one of these

XL-SIEM agent XL-SIEM engine
TCP socket AMQP

XL-SIEM agentXL-SIEM agent
XL-SIEM agent

AMQP (RabbitMQ)

AMQP

CLS Nightwatch

TCP socket

Alarm

Normalized Event

Nightwatch Logs

Log master
(server)

rsyslog
(client)

rsyslog
(client)

Log daemon
Log daemon

(client)

Remote log

Master logTSL

Raw log

Area 1

Dashboard

Area 2
Database

Area 3
Storm

Area 4
Zookeeper

Security requirements

Connectivity to external components

Computational resources

Network resources

 D5.1
Version 1.5

© SDN-microSENSE consortium Page | 22
Public document

systems, a daemon has to be installed and configured indicating the log master server address
and the local folders to watch out.

• One XL-SIEM agent for each subnetwork. Every subnetwork has to contain an instance of the
XL-SIEM agent to be monitored. Depending on the type of communication a specific agent has
to be deployed and configured.

• XL-SIEM engine port access. Due to the communication between the XL-SIEM agent and the

XL-SIEM engine it is needed to establish communication connectivity between them.

To deal with a secure deployment environment, the XL-SIEM component must compel not only the
security of each component in an isolated way, but also how to achieve secure communications, giving
emphasis on the DMZ and not on DMZ environments. The communication security ranges from:

• Communication path constrains. The communication path should be constrained to
guarantee source and target match with suitable IP address and service port. This is a common
rule that could be easily configured of the mean of Firewalls and even the SDN switches
themselves. For this, it is recommended to establish the host’s IP where the XL-SIEM agents
will run. Although, a major control could be by the MAC usage rather than the IP address XL-
SIEM agent. For this, it is required to obtain the flows belonging to SDN switches and firewalls
allow the message bypass between IP/port sources and IP/port targets.

• SDN network reinforcement. The path from the information sources services up to each of
intermediate component, such as daemon logs, master log, XL-SIEM agent,
XL-SIEM engine, AMQP broker, has to count on at least two paths by the mean of increase the
number of SDN switches in order to the SDN self-healing algorithm is able to find out different
alternatives when needed.

• Warranty band width. The SDN network has to be configured to warranty a continuous

information flow of messages. Fortunately, this is straightforward by the mean of the own SDN
switches.

• Secure protocols. The communication of logs, events and alarms have to use secure protocols
and certifications.

• Operation network avoiding. Most security recommendations in the industrial network, very
similar to ICT networks in Electric grids, suggest minimizing the impact of any solution in the
operational network. Having this in mind, the log information should not go through the same
network where spring protocols travel, in favour of informational networks devoted to
production and business purposes.

 D5.1
Version 1.5

© SDN-microSENSE consortium Page | 23
Public document

Figure 11. ISA 95/98 standard - Industrial networks

Regarding the communication implementation, the technology employed for the event notification is
planned to be by sockets whereas the alarm communication will be by AMQP (RabbitMQ). A
technology comparison is given in Table 2. Both technologies are more suitable for the type of
communications present in XL-SIEM. In fact, these communications comply with the following
properties:

• Asynchronous paradigm. Both XL-SIEM agents and the XL-SIEM engine do not need any response
after an event or alert notifications have been sent.

• Streaming flow. An enormous amount of event and alerts are supposed to be continuously sent.
While the connection is alive, multiple messages can be sent.

• Simple message format. Notification messages are very simple.

Table 2. Communication technologies comparison

 SOAP REST AMQP TCP Socket
Reliable Yes No Yes Yes
Message format XML JSON, XML, … Free Free
Payload Based on WSDL schema Free Free Free
Connected mode Yes Yes No (*) Yes

Communication Synchronous /
Asynchronous

Synchronous Asynchronous Synchronous /
Asynchronous

Paradigms RPC / Asynchronous RPC Publish-subscribe
Queuing
RPC

Full duplex

Message Order No guaranteed No guaranteed Guaranteed Guaranteed
Streaming No No Yes Yes
Known Client / Server
address

Yes Yes No Yes

 (*) the publisher establishes a real point to point connection with the AMQP broker regardless the subscriber availability.

 D5.1
Version 1.5

© SDN-microSENSE consortium Page | 24
Public document

To understand the convenience of streaming flow it is relevant to describe its differences from

SOAP/REST services communications (Figure 12). The main difference is focussed on the connection

time spent by each message sending. In both SOAP and REST cases, it is needed to make a TCP

connection to send a single message. As it is known, the connection time is not that negligible. In

contrast, in a streaming communication the connection is established only at the beginning, after that

you can keep a continuous flow of messages, even in full-duplex way.

Figure 12. SOAP/REST vs Streaming flow

The AMQP and TCP Socket supply the most features needed for XL-SIEM communications. TCP Socket
is the alternative chosen for communication between XL-SIEM agents and the XL-SIEM Engine mainly
because the TCP Socket software library is simpler than the AMQP library, which is adequate when the
source and target work closely. However, the communication between CLS Nightwatch and the XL-
SIEM agent uses AMQP (RabbitMQ) because to the broker usage allows more flexibility of future
clients.

4 Monitoring and Incident Detection in SDN-microSENSE

4.1 SDN-microSENSE protocols and threats
The support of incidents associated to EPES specific protocols is one of the main innovations

incorporated in the XL-SIEM when integrated in the XL-EPDS component of the SDN-microSENSE

architecture. Supporting these protocols opens up the XL-SIEM to a myriad of new possibilities in terms

of incident detection, new domains of application and new business opportunities. The following

subsections give an initial overview of these protocols, which will be deeply detailed in the rest of WP5

tasks where attack detectors are developed (T5.2, T5.3 and T5.4).

4.1.1 Modbus
Modbus protocol was designed by Modicon in 1979 and since then constitutes the most widely

deployed industrial communication protocol. It operates at layer 7 of the Open Systems Interconnection

(OSI) model that means it is an application layer messaging protocol. The Modbus protocol is based on

the communication of client/server between devices connected on different types of networks. The

client sends request to the server and according to the request, the server perform an action and send

Multiple
messages per
session

SOAP, REST
service

Single
message per
session

TCP IP/Socket
Streaming
communication

 D5.1
Version 1.5

© SDN-microSENSE consortium Page | 25
Public document

a replay, 0. The reserved port of the Modbus protocol is 502. The operation of the Modbus protocol is

depicted in the Figure 13.

Figure 13. Description of the Modbus protocol operation

The Modbus slave provides to the Modbus master the following objects; the discrete input that

constitutes a type of read only Boolean variable, the coil that constitutes a type of read-write Boolean

variable, the input register that constitutes a type of read only integer and the holding register that

constitutes the type of read and write integer. Table 3 describes all the function types, the function

names and the function codes of the Modbus protocols. The most commonly used functions codes of

the Modbus protocol are the following. The function code 1 named read coil, the function code 2: read

discrete input, the function code 3: read holding registers, the function code 4: read input registers,

function code 5: write single coil, function code 6: write single holding register, function code 15: write

multiple coils and function code 16: write multiple holding registers. The Modbus protocol is suitable

to communicate Programmable Logic Controllers (PLCs) and the remote terminal unit RTUs with a

Supervisory Control and Data Acquisition (SCADA) system.

Table 3. Description of the Function types, the Function names and the corresponding Function codes for the Modbus protocol
[Knapp+14]

Function Type Function Name Function

code

Data

access

Bit access Physical Discrete inputs Read discrete inputs 2

Physical coils Read coils 1

Write single coil 5

Write multiple coils 15

16-Bit

access

Physical Input registers Read input register 4

Physical output

registers

Read multiple holding registers 3

Write single holding register 6

Write multiple holding registers 16

Read/write multiple registers 23

Mask write registers 22

Read FIFO Queue 24

File record access Read file record 20

Write file record 21

Diagnostics Read exception status 7

Diagnostic 8

Get com event counter 11

Get com event log 12

Report slave ID 17

 D5.1
Version 1.5

© SDN-microSENSE consortium Page | 26
Public document

Read device identification 43

Other Encapsulate interface transport 43

According to Drias et al. 0, the most cited attacks of the Modbus TCP protocols affect the mechanisms of

the protocol in terms of interception, modification and generation. They assume that the main attacks

associated with the Modbus protocol are the following; the Broadcast message spoofing, the Baseline

response replay, the Direct slave control, the Modbus network scanning, the Passive reconnaissance, the

Response delay and the Man in the Middle. More specifically, the Broadcast message spoofing is the

type of attack that sends faked broadcast messages to Modbus server in the device. The Baseline

response replay involves recording Modbus messages between a Modbus client and a Modbus server.

The Direct Slave Control attack aims to lock out a master (client) and controlling one or more field

devices. The Modbus Network Scanning is the type of attack that sends benign messages to all possible

addresses on a Modbus network to obtain information about field devices. The Passive Reconnaissance

involves passively reading Modbus messages or network traffic. This attack helps the attacks to profile

the process details by reconstructing the device application. The Response Delay attack involves delaying

response messages so that the master receives out-of-date information from slave devices. This attack

intends to sabotage the supervision in case that the command in the Modbus message is a diagnostic

message. The Man in the Middle attack (MITM) involves introducing a computer with the appropriate

(serial or Ethernet) adaptors to an unprotected communication link. The MITM device is embedding a

client and Modbus server; therefore, it can read, modify and fabricate Modbus messages to or from the

device. This attack is the most dangerous attack on Modbus protocols as it can take the full control of

both parties of protocol; the client and the server in the same time.

Based on the most commonly cited attacks for the Modbus protocol and assuming the threat

classification that is provided by ENISA 0 different attack scenarios will be considered to simulate the

abnormal traffic of the Modbus protocol and based on the Smod modular framework2. The attack

scenarios concern the following procedures: Unauthorized access, Failure of devices and systems,

Manipulation of information, Information leakage, Network Reconnaissance, Information Gathering and

DoS.

More specifically, the attack scenario WriteSingleCoils aims to change the value of a coil. The

WriteSingleRegister is the scenario that change the values of a single holding register and the UID brute

force attack describe the type of the Brute force attack against PV/Battery inverters. All of the scenarios

that have been described above belong to category that contains attacks related to the Unauthorized

Access, the Failure of devices and systems and the Manipulation of information.

Taking into consideration the categorization that related to the unauthorized access and information

leakage four attack scenarios are going to develop3. The first scenario named ReadCoils, constitutes the

attack scenario that reads the value of a specific coil. The ReadDiscreteInput is the scenario that extract

the values of the discrete inputs supported by the target. The ReadHoldingRegister is the type of attack

that returns the values of the holding registers supported by the target system and the fourth attack in

this category is the ReadInputRegister that reads the values of the input registers.

2 Smod modular framework homepage, https://github.com/Joshua1909/smod
3 https://github.com/CanadianInstituteForCybersecurity/CICFlowMeter

 D5.1
Version 1.5

© SDN-microSENSE consortium Page | 27
Public document

Four type of attack tools will be used for the Network Reconnaissance and Information Gathering is a

family of threats. More specific, the Getfunc is the attack scenario that discovers the functions codes

supported by the target system. The Uidc constitutes the attack scenario that enumerates the UIDs

supported by the target system. The Discover identifies whether the Modbus runs in the target system

and the Modbusclient describes the scenario that exploits a Modbus vulnerability that allows to an

unauthorized actor to read or write against the targeted Modbus slave.

Finally, two scenarios that associated with the DoS attacks will be developed. The WriteSingleCoils

constitutes the type of DoS attack scenario, which send continuously malicious Modbus packets

(function code 5) to the target system. In a similar way, the WriteSingleRegister constitute also a DoS

attack, which sends continuously malicious Modbus packets (function code 06) to the target system.

Table 4 summarizes the type of scenarios that will be developed and the corresponding classification

based on ENISA threat taxonomy and on the CAPEC classification.

Further details about this protocol, attacks and detectors are given in D5.2.

Table 4. Description of the attack tools and their corresponding threats for the Modbus protocol.

Threat Description of the Threat ENISA Threat

taxonomy

CAPEC

classification

Function/

writeSingleCoils

Aims to change the value of

a coil

Unauthorised Access,

Failure of devices and

systems, Manipulation

of information

180

Function/

writeSingleRegister

Changes the values of a

single holding register

Unauthorised Access,

Failure of devices and

systems, Manipulation

of information

180

UID brute force attack

against PV/Battery

inverters’ RPI

Unauthorised Access,

Failure of devices and

systems, Manipulation of

information

Unauthorised Access,

Failure of devices and

systems, Manipulation

of information

112

Function/ readCoils Reads the value of a

specific coil.

Unauthorised Access,

Information leakage

180

Function/

readDiscreteInput

Extracts the values of the

discrete inputs supported

by the target.

Unauthorised Access,

Information leakage

180

Function/

readHoldingRegister

Reads the values of the

input registers

Unauthorised Access,

Information leakage

180

 D5.1
Version 1.5

© SDN-microSENSE consortium Page | 28
Public document

Scanner /getfunc Discovers the functions

codes supported by the

target system

Network

Reconnaissance and

Information Gathering

309

Scanner /uidc Enumerates the UIDs

supported by the target

system

Network

Reconnaissance and

Information Gathering

309

Scanner /discover Identifies if Modbus runs in

the target system

Network

Reconnaissance and

Information Gathering

309

Scanner

/Modbusclient

Exploits a Modbus

vulnerability that allows to

an unauthorized actor to

read or write against the

Modbus slave targeted

Network

Reconnaissance and

Information Gathering

309

Modbus /dos

/writeSingleCoils:

Sends continuously

malicious Modbus packets

(function code 5) to the

target system

DoS 125

Modbus /dos

/writeSingleRegister:

Sends continuously

malicious Modbus packets

(function code 06) to the

target system

DoS 125

4.1.2 DNP3
DNP3 [UOWM1+20] is a reliable protocol applied largely in the Critical Infrastructures (CIs) in the US.

In the Electrical Power and Energy Systems (EPES), DNP3 is adopted to transfer messages between

master devices and outstations. It supports several topologies, including a) point-to-point, where an

outstation and one master communicate with each other, b) multiple-drop, where several masters and

outstations interact each other and c) hierarchical interface, where an entity can operate with both

roles. DNP3 includes three layers: a) link layer, b) transport layer and c) application layer. The link-layer

offers addressing services, multiplexing, data fragmentation, error checking and link control. On the

other side, the transport layer is used as in the case of the Open Systems Interconnection (OSI) model,

and it is represented with one byte utilised for fragmenting the DNP3 packets. Finally, the application

layer defines a set of functional commands used for managing and controlling the EPES entities, such

as Remote Terminal Units (RTUs), Programmable Logic Controllers (PLCs), Intelligent Electronic Devices

(IEDs) and smart meters. Apart from the DNP3 serial line communication, DNP3 can be used over

TCP/IP where in this case, the aforementioned DNP3 layers are incorporated into the application layer

of TCP/IP.

According to O. Igbe et al. [UOWM2+20], various cyberattacks target directly the DNP3 protocol with

significant consequences (Table 5).

 D5.1
Version 1.5

© SDN-microSENSE consortium Page | 29
Public document

Table 5. Description of the attack tools and their corresponding threats for the DNP3 protocol.

Threat Description of the Threat

DNP3 Enumerate It is a reconnaissance attack aiming to identify whether the DNP3
service operates in the target systems.

DNP3 Info It is another reconnaissance attack which obtains useful diagnostic
information about the utilisation of DNP3.

DNP3 Disable Unsolicited
Messages Attack

It is unauthorised access attack, which transmits to an outstation a
DNP3 packet with the function code 21, thus disabling all unsolicited
messages. Therefore, the outstation will not be able to send any alarm
message to the master devices

DNP3 Cold Restart
Message Attack

It is another DNP3-related unauthorised access attack, which aims to
restart an outstation.

DNP3 Warm Restart
Message Attack

Similarly, to the previous case, it intends only to restart the DNP3
service in the target outstation

The aforementioned DNP3 cyberattacks are addressed efficiently by the XL-SIEM sensors. Further details

about this protocol, attacks and detectors are given in D5.2.

4.1.3 IEC 60870-5-104
IEC-104 [UOWM3] is a communication protocol provided by the IEC 60870-5 standard for monitoring

and controlling automated processes in EPES applications by utilizing the transport capabilities offered

by TCP/IP. In particular, it utilizes by default the TCP port 2404. Figure 14 illustrates the payload of this

protocol which is named Application Protocol Data Unit (APDU).

Figure 14. IEC 60870-5-104 Protocol

 D5.1
Version 1.5

© SDN-microSENSE consortium Page | 30
Public document

APDU consists of two parts, namely 1) Application Protocol Control Information (APCI) and 2) Ap-

plication Service Data Unit (ASDU). APCI includes the start character (68h), the length of APDU and

four Control Fields (CFs). On the other side, ASDU is an optional part which is determined by the format

of APDU. In particular, APDU can take three formats: 1) I-format, 2) S-format and 3) U- format. The I-

format is used to execute numbered information transfers and always includes ASDU. The S-format is

used to perform numbered supervisory functions and comprises only APCI. Finally, the U-format is

responsible for performing unnumbered control functions and it also includes only APCI. The format

of APDU is determined by CF1 and specifically by its two last bits. If the two last bits of CF1 are equal

to 00, then the I-format is used. Accordingly, if the last bits of CF1 are equal to 01, then the S-format

is applied. Finally, if the aforementioned bits are 11, the U-format is used. Concerning the ASDU, it

includes the following fields: 1) Type Identification, 2) Structure Qualifier (SQ), 3) Number of Objects

or Elements, 4) T, 5) P/N, 6) Cause of Transmission (CoT), 7) Originator Address (ORG), 8) ASDU

Address, or Common Address of ASDU (CoA), 9) Information Object Address (IOA), 10) Information

Elements, 11) Time Tag. The Type Identification determines the type of information objects. All

information objects of an ASDU must have the same type. SQ specifies how the information objects

and elements are structured. The Number of Objects or Elements field denotes the number of

information objects or elements depending on the value of SQ. Accordingly, T defines those ASDUs

which are dedicated for testing. P/N determines the positive or negative confirmation of an activation

command. CoT directs ASDU to specific tasks and simultaneously interprets the data received by the

destination side. ORG is an optional field and undertakes to explicitly define the identity of the

controlling station (i.e. MTU). CoA defines the address of MTU or RTUs at the application layer. IOA

determines the address of an information object. Information Elements provide and transmit specific

information and finally, Time Tag provides time information.

The functionality of the IEC-104 protocol relies on the TCP/IP, which itself includes multiple security

issues. Moreover, IEC-104 does not include any authentication and authorisation mechanism, thus

enabling potential Man-in-The-Middle (MiTM) and unauthorised attacks. In particular, Table 6

describes the attacks can be directly performed against IEC-104.

Table 6. Description of the attack tools and their corresponding threats for the IEC-104 protocol.

Threat Description of the Threat

M_SP_NA_1_DoS The specific cyberattack sends continually to the target system M_SP_NA_1
packets

C_SE_NA_1_DoS This cyberattack floods the target with C_SE_NA_1 packets

C_SC_NA_1_DoS Similarly, this attack sends continuously to the target system
C_SC_NA_1_packets

C_SE_NA_1 This cyberattack constitutes and unauthorised access, transmitting to the
target system C_SE_NA_1 packets

C_CI_NA_1 This cyberattack send unauthorised C_CI_NA_1 packets to the target system

C_SC_NA_1 This cyberattack is another unauthorised access attempt related to IEC-104,
transmitting C_SC_NA_1 packets to the target

C_CI_NA_1_DoS This cyberattacks constitutes a DoS related to IEC-104, transmitting
continuously C_CI_NA_1 packets to the target system

The aforementioned IEC-104 cyberattacks will be addressed efficiently by the XL-SIEM sensors. Further

details about this protocol, attacks and detectors are given in D5.2.

 D5.1
Version 1.5

© SDN-microSENSE consortium Page | 31
Public document

4.1.4 IEC 61850
International Electrotechnical Commission (IEC) 61850 [UOWM1+20] is an abstract international

communication standard for EPES systems and particularly for SCADA applications, defining a

hierarchical, object-oriented data representation model. In particular, each asset is characterised by a

data model composed of naming, diagnostic and configuration information. The purpose of this data

model is to facilitate the information exchange among the EPES assets, without referring to their

functional and technical details. The IEC 61850 stack consists of four types of messages: a)

Manufacturing Messaging Specification (MMS), b) Generic Substation State Events (GSSE), c) Generic

Object-Oriented Substation Events (GOOSE) and d) Sampled Measured Values (SMV). IEC 61850 is also

used for the control, protection and measurement functions of a substation. These functions are

implemented in Intelligent Electronic Devices (IEDs), which can house one or more of these functions.

In turn, each of these IEDs must interact with the functions of the IEDs in the rest of the system. Figure

15 shows a typical architecture of a substation where different types of IEDS (SCU4 and BCU5) interact

each other in a communication network.

Figure 15. Typical general view of a primary substation

The IEC 61850 standard allows that the control of the substations becomes independent of the

manufacturers, being able to interconnect and replace devices belonging to different manufacturers.

To achieve this objective, the standard is based on three key principles:

• It defines a unified information model with a hierarchy of names and specific data structures to be

used in the different devices.

• It defines a communication protocol and common functionality. This protocol is an agreed

language for all equipment in the system. The protocol is designed to be able to send the necessary

information to the automated system while maintaining time and availability requirements.

4 Substation Control Unit.
5 Bay Control Unit.

 D5.1
Version 1.5

© SDN-microSENSE consortium Page | 32
Public document

• It establishes an XML-based configuration file format and a set of formats and tools to facilitate

automation and configuration tasks within the engineering process.

Data Modelling

IEC 61850 information model is based on two main levels of modelling:

• The breakdown of a real device (physical device) into logical devices. A logical device represents a

group of typical automation, protection or other functions.

• The breakdown of a logical device into logical nodes, data objects and attributes.

The functions executed by the real devices are modelled by the logical nodes. The combination of

several of these logical nodes makes up a logical device, and depending on their functionality, logical

nodes contain a list of data objects with their corresponding data attributes. Figure 16 gives an example

of how each level is included into the upper level. Simple data types (integers, booleans, etc.) are

organized into composite data types (quality, scale), and these, in turn, are grouped to form the

supported data types CDCs (measurement, controllable data, status information, etc.).

Figure 16. IEC 61850 Data modelling. Source IEC/TR 61850

Communication Protocols

IEC 61850 offers three types of communication models:

• Client/server type communication service model. This model is used for the MMS that sends its

messages through TCP connections (Layer 4 OSI) It is used for the exchange of application data, as

well as device configuration parameters or monitoring data.

• Sample Values (SMV) model for multicast measurement values. This model is used to provide rapid

communication of measurement, protection and control values. It works through Ethernet (Layer

2 OSI) following a publisher-subscriber model.

 D5.1
Version 1.5

© SDN-microSENSE consortium Page | 33
Public document

• Fast and reliable system-wide distribution of data based on a publisher-subscriber model. This

model is used for real-time transmission of critical events (GOOSE messages) and like Sampled

Measured Values, through multicast Ethernet (Layer 2 OSI).

In the context of the SDN-microSENSE, XL-SIEM focuses on GOOSE and particularly on the attacks listed

in Table 7.

Table 7. Description of the attack tools and their corresponding threats for the IEC 61850 protocol.

Threat Description of the Threat

GOOSE DoS This refers to a GOOSE-related DoS attack, which floods the target system with
GOOSE messages, to block legitimate IEDs from accessing resources

Data
Manipulation

This is an unauthorised access attack, which injects malicious GOOSE packets,
aiming to impact the grid stability or to cover unauthorized changes

Message
Suppression

This attack refers to the hijacking of the GOOSE packets by modifying their
header, thus hindering the EPES assets to receive critical GOOSE messages

Disturbance It refers to electricity-related disturbances and faults that might occur

Further details about this protocol, attacks and detectors are given in D5.2.

4.1.5 IEEE C37.118-2
The IEEE C37.118-2 standard [IEEEC37+11] defines the communication framework for data transmitted

between Synchrophasors, which are used for measuring electrical quantities between different parts

of the power system. It combines other technologies such as the Global Positioning system (GPS). They

also combine PMUs (Phasor Measurement Unit) and PDCs (Phasor Data Concentrator) and additional

equipment for visualization and monitoring (Figure 17). At substations, PMUs takes measurements,

adding a precise timestamp using a GPS device. These PMUs send their measurements to a PDC

towards a control centre.

Figure 17. Synchrophasor communication system overview (taken from [Khan+16])

The format of the messages exchanged are specified in the standard, but it doesn’t specify the

transport protocol, thus missing any security feature that can be implemented at the transport level.

Figure 18 depicts the message format for the IEEE C37 protocol. It includes synchronization words,

framesize for the number of bytes in the message, the id of the Synchrophasor (ID), the timestamp in

the SOC and FRACSEC fields, the DATA fields for the measurement and a CRC in the CHK field.

 D5.1
Version 1.5

© SDN-microSENSE consortium Page | 34
Public document

Figure 18. Message format of the IEEE C37.118-2 standard (taken from Khan+16])

There are different types of messages that are specified in the IEEE C37 standard: (1) data messages,

for sending measurements, (2) configuration messages for sending information about how to process

information, (3) header messages, which include human readable information about different aspects

such as the source of the data, filtering, etc, and (4) command messages, that allows to trigger or stop

the transmission of information from Synchrophasors. The communication protocol to use is not

specified in the standard, although typically it relies on RS232 or IP, with the possibility of using both

TCP or UDP.

As it has been mentioned before, the IEEE C37 standard does not specify anything about security.

Therefore, it is exposed to several cyber-attacks, a described in Table 8:

Table 8. Description of the attack tools and their corresponding threats for the IEEE C37.118-2 protocol

Threat Description of the Threat

Reconnaissance
Attack

allows to discover vulnerabilities in the Synchrophasors components. These
attacks are typically targeting the communication network by exploiting
eavesdropping in the network traffic, which allows to capture information
such as locations, names of substations, etc

Authentication/Acc
ess Attack

allows to get control of devices and resources. In IEEE C37 this is critical
because no authentication mechanism is specified. The control of PMUs can
be taken just by intercepting packets, injecting malicious ones or replaying
them

Man In The Middle
Attack (MITM)

Derived from the Authentication/Access Attack is the Man in the Middle
Attacks, which allows an attacker to assume the role of one of the
communication devices impersonating one of the peers, intercepting
messages and altering them for its malicious purposes. In IEEE C37 messages,
intercepting and altering configuration messages are a serious threat that can
be easily carried out

Replay or
Reflection Attack

These attacks rely on MITM attacks to replay communications, altering the
content to lead to incorrect decisions

Denial of Service
Attack

This type of well-known attacks can be carried out in IEEE C37 by targeting
the communication channel between PMUs and PDCs or between substations
and control centres. This is done by exhausting any of these components with
messages generated by malicious attackers. As there is no security
mechanisms specified, there is no way to check if a message is legitimate or
not, thus being processed by the Synchrophasor, which becomes stalled due
to the need of processing an abnormal amount of messages

 D5.1
Version 1.5

© SDN-microSENSE consortium Page | 35
Public document

4.1.6 Other relevant protocols within the EPES domain
Apart from the domain specific protocols specified before, the XL-EPDS also considers additional

protocols that are of interest for the EPES domain. The following subsections details two of them.

These protocols are further detailed in D5.2

4.1.6.1 MQTT protocol

The Message Queuing Telemetry Transport (MQTT) protocol is a Client Server publish/subscribe

messaging transport protocol. Andy Stanford-Clark and Arlen Nipper originally designed the MQTT but

currently is in the OASIS (Organization for the Advancement of Structured Information Standards) and

has standard defined in ISO/IEC 20922: 2016 0, 0. It constitutes a standard protocol that has many

assets; it is open, simple to use and easy to implement. Moreover, it is used widely for communication

in Machine-to-Machine (M2M) and Internet of Things (IoT) system in case that required limited

resources because of its lightweight attribute and the small bandwidth requirements [Banks+14].

MQTT has great capabilities for the SCADA systems and in the smart grids, especially if the SCADA and

the IoT are required to interact. Since the IoT becomes essential for SCADA systems, the MQTT protocol

would be an interesting candidate to replace more common protocols that are not able to adapt to

the IoT. An important feature of the MQTT protocol is the Quality of Service (QoS) variable. The QoS

variable determines how a message is sent and how the receiver responds to the message. Three levels

of the variable can be set to examine the quality. The level 0 denotes that the message has been sent

once and no response will be sent. The level 1 guarantee that the message has been reached to the

receiver at least once. Moreover, Level 2 means that every message is guaranteed to be sent and

received precisely once.

Multiple attack scenarios have been assumed in the literature to examine the vulnerability of the

MQTT protocol. More specifically, Andy et al., 0 examined scenarios that associated with the

exploitation of data privacy, authentication, data integrity and the existence of Botnets over MQTT

protocols. Ozgur et al., 0 examined three different scenarios at the communication level; the Message

Integrity Attack (MIA) according to this scenario the bytes of data received by the subscriber of the

destination could be changed by a Man In The Middle attack (MITM). The Delay Attack (DA) that

describes the situation that data is delayed due to a denial of service (DoS) attack and obtain as a result

congestion problems. Finally, the Packet Drop Attack (PDA) that describes the situation that data is

entirely lost due to a DoS attack.

Taking into consideration the aforementioned main attacks, four different attack scenarios will be

developed to produce the abnormal traffic for the MQTT protocol6. The MITM attack scenario that

intercepts the communications, filters and dumpers the measurement that are send or received. The

second scenario is related to the Unauthorized Access, Failure of devices or systems and Manipulation

of information. The Unauthorised publishing to smart devices is the scenario that provides the ability

to the attacker to connect to the broker in order to subscribe in all the topics and to publish

unauthorized commands. Furthermore two DoS scenarios will be developed; the DoS attacks against

MQTT broker that associates with flood connection that sends multiple connection messages to

exhaust server resources and the DoS that associates with the large payload attack that publishes spam

messages repeatedly to a specific topic in comparison to the legitimate users that cannot publish this

6 https://github.com/CanadianInstituteForCybersecurity/CICFlowMeter

 D5.1
Version 1.5

© SDN-microSENSE consortium Page | 36
Public document

messages. Table 9summarizes the type of scenarios that will be developed, and the corresponding

classification based on ENISA threat taxonomy and on the CAPEC classification.

Table 9. Description of the attack tools and their corresponding threats for the MQTT protocol.

Threat Description of the Threat ENISA Threat
taxonomy

CAPEC
classification

MITM attack Attacker intercepts the
communications, filters and
dumpers the measurements
send/received by gateway

Man in the middle 94

Unauthorized
publishing to
smart devices

Attacker connects to the broker,
subscribes to all topics and
publish unauthorized
commands

Unauthorized Access,
Failure of devices and
Systems, Manipulation
of information

180

DoS attacks
against MQTT
broker: Connect
flood

Attacker sends multiple
connection messages to exhaust
server resources

DoS 125

DoS attacks
against MQTT
broker: Large
payload attack

Attacker publishes spam
messages repeatedly to a
specific topic, legitimate users
cannot publish

DoS 594

4.1.6.2 NTP protocol

The Network Time Protocol (NTP) is one of the mostly used protocols for time synchronization. A client-

server model is the type of model that usually describes the NTP protocol. The NTP sends and receives

timestamps using the User Datagram Protocol (UDP) and reserves the port number 123. The

synchronization of time in smart grids plays a key role, since a common time reference is essential to

correlate power quality and to provide the coordination for any distributed actions 0. Since the smart

grids can have many medium and low voltage substations, the time synchronization should be

compatible among the devices. When an NTP attack begins, the offset gets significantly higher, it takes

a few exchanges before the victim adapts its system time. After the successful procedure of the attack,

the victim's system time jumps to the time proposed by the attacker and the offset returns to normal

values 0.

Malhotra et al., 0 discussed the main risks that network attackers can exploit to alter the time on client

systems that use NTP protocol and categorize the attacks into two categories. The first category is the

“on-path attacks” where the attacker occupies a privileged position between the server and the client

or hijacks the traffic. The second category of attacks is the “off-path attacks” where the attacker does

not observe the traffic between the client and the servers and can be anywhere in the network. The

“small-step-big-step attack” constitute an “on-path attacks” that shifts clocks when clients are unlikely

to notice. The Kiss o’ Death (KoD) packet attack is the type of the “off-path attack” that can disable

NTP at a victim client upon receipt of the spoofed KoD, the client stops querying its servers and stops

updating its clock.

Assuming the main attacks for the NTP protocol the main attack scenarios that will be developed in

terms of time manipulation process. More specific, will be developed the clock time skimming attack

and the KoD packet elimination attack. The Table 10 summarizes the attack scenarios that will produce

 D5.1
Version 1.5

© SDN-microSENSE consortium Page | 37
Public document

the abnormal traffic for the NTP protocol and corresponds them to ENISA threat taxonomy and to the

CAPEC classification7.

Table 10. Description of the attack tools and their corresponding threats for the NTP protocol.

Threat Description of the Threat ENISA Threat
taxonomy

CAPEC
classification

Time manipulation Clock time skimming attack Time manipulation 172

Time manipulation Kiss o’ death packet
elicitation attack

Time manipulation 172

4.2 SDN microSENSE security sensors
The protocols described in Section 4.1 are supported by the XL-SIEM thanks to the integration of logs

produced by security sensors capable of monitoring such protocols. Within SDN-microSENSE several

tools have been developed and integrated with the XL-SIEM as part of the XL-EPDS subsystem of the

SDN-microSENSE architecture. The following subsections introduce these security sensors which will

be deeply detailed in the tasks where they are developed.

4.2.1 EPES Honeypots
In the context of the SDN-microSENSE project, three honeypots of relevant industrial protocols: IEC

61850, IEC60870-5-104, Modbus have been developed. Each one of these three honeypots are

prepared to have a direct connection with XL-SIEM Agent component. The Rsyslog interface exposed

by XL-SIEM agent is the communication channel selected for event communication. Rsyslog is run into

honeypot machine to recollect inputs to event file /var/log/honeypot.log and output the results to

XL-SIEM by means of a secure connection.

Each developed honeypot has a different format for the events. Following a description of these format

for each honeypot is shown, more information of these can be found in D3.3 [SDN33]

• IEC61850 Honeypot:

The format of the log for this honeypot is (Table 11):

• eventId: Identifier of the event

• Name: Name of the event

• Timestamp: Timestamp with the exact time in which the event occurred. The format

of the timestamp is yyyy-MM-dd'T'HH:mm:ss*SSSZ

• Parameters: An array of parameter structures with additional information related to

the event. The table presents the list of the event registered and the parameters

associated

Table 11. Log taxonomy for the IEC61850 honeypot

name key value

New connection ip Ip of connected client-

Connection closed ip Ip of disconnected client

Control operation ip Ip of client sending control operation

7 Capec classification homepage, https://capec.mitre.org/

 D5.1
Version 1.5

© SDN-microSENSE consortium Page | 38
Public document

ctlNum ctlNum attribute send by the client

orCat Originator category provided by the client

ln Logical Node

dataObject Requested Control object

command SELECT|OPERATE

interlockCheck Interlock-check requested by client

Read Operation ip Ip of client sending control operation

Ln Logical node owning requested data object

dataObject Data object owning requested data attribute

dataAttribute Requested data attribute

Write Operation ip Ip of client sending control operation

Ln Logical node owning requested data object

dataObject Data object owning requested data attribute

dataAttribute Requested data attribute

Finally, an example of an event is presented:

{"eventId":"0001","name":"New connection","timestamp":"Tue Mar 19 22:04:00 4448757",

"parameters":{"ip":"XX.XX.XX.13","param2":"Another param"}}

• IEC60870-5-104

The format of the log for this honeypot is (Table 12):

• timestamp: Timestamp with the exact time in which the event occurred. The format

of the timestamp is yyyy-MM-dd'T'HH:mm:ss*SSSZ

• sensorid: Sensor identification

• id: Event identification

• src_ip: Source IP address

• src_port: Source TCP/UDP port

• dst_ip: Destination IP address

• dst_port: Destination TCP/UDP port

• data_type: Protocol

• request: The action sent to the honeypot

• response: The response to the request done by Honeypot

• event_type: This field is a code that corresponds to the specific event types cover by

this Honeypot. There is more event_types but they are associated with the Conpot

honeypot where this honeypot is based on

Table 12. Types of events for the IEC60870-5-104 honeypot

Event Event_type

Counter interrogation command C_CI_NA_1

Read command C_RD_NA_1

Clock synchronization command C_CS_NA_1

Test command C_TS_NB_1

 D5.1
Version 1.5

© SDN-microSENSE consortium Page | 39
Public document

Reset process command C_RP_NC_1

Delay acquisition command C_CD_NA_1

Finally, an example of an event is presented:

{"timestamp": "2020-06-22T16:44:34.656128", "sensorid": "default", "id": "245cc5ac-ba77-
4677-4276-876976583791", "src_ip": "XX.XX.XX.55", "src_port": 6XX39, "dst_ip":
"XX.XX.XX.135", "dst_port": 2XX4, "data_type": "iec104", "request": null, "response": null,
"event_type": "C_RD_NA_1"}

• Modbus

The structure of this Modbus honeypot is the same as the one described for the IEC60870-5-104, due

to the fact that both are based on the Conpot honeypot, and extended its functionalities. The extended

functionalities in this modbus honeypot are:

• Mask Write Register(FC22 (0x16)): It changes the content of a holding register based on the

use of AND and/or OR logical masks and the holding register’s current content.

• Read/Write Multiple registers 8FC23 (0x17)): It operates as both read and write operations in

a single Modbus command. The write process preceded the read process.

• Read FIFO Queue FC24 (0x18): It reads the content of a register’s First-In-First-Out (FIFO)

queue

An example of an event is presented:

{"timestamp": "2019-11-25T13:34:53.902098", "sensorid": "default", "id": "167b36dc-af68-
4935-8393-490972134866", "src_ip": "XX.XX.XX.80", "src_port": 6XXX4, "dst_ip":
"XX.XX.XX.106", "dst_port": 5XXX0, "public_ip": "XX.XX.XX.106", "data_type": "modbus",
"request": null, "response": null, "event_type": "NEW_CONNECTION"}

4.2.2 Network based incident detection: Enhanced Suricata
According to the Suricata documentation8:

“Suricata is a high performance Network IDS, IPS and Network Security Monitoring engine.”

Therefore, Suricata can work both as IDS and IPS. Both modes are based on rules that produces verdicts

related to alerts or logs when working as IDS, adding drop, sdrop and reject actions when working as

IPS. Suricata sniffs traffic directly from the network interface that is specified in the configuration,

allowing to filter traffic related to a specific IP domain. The process that Suricata follows to process

network traffic comprises three steps: (1) packet capture, which is the process that sniffs the network

traffic from the specified interface, (2) decodes the stream, which is the process that parse the traffic

and interpret its content, (3) detection, which, based on the information extracted from the traffic

captured, applies the predefined rules and generates logs for those alerts that are triggered, and (4)

8 https://suricata.readthedocs.io/en/suricata-5.0.3/what-is-suricata.html

https://suricata.readthedocs.io/en/suricata-5.0.3/what-is-suricata.html

 D5.1
Version 1.5

© SDN-microSENSE consortium Page | 40
Public document

output, which generates the corresponding log. The set of rules to use during an execution of Suricata

is also configurable.

Suricata already includes with a wide variety of rules capable of detecting a myriad of incidents, from

denial of service attacks, to port scanning, suspicious activities, etc. Within SDN-microSENSE additional

rules have been created, which allows to detect incidents associated to some of the EPES specific

protocols, such as DNP3, IEC 60870-5-104, IEC61850 and Modbus. The following rule is an example

that alerts about a potential denial of service over the IEC60870-5-104 protocol:

alert tcp $EXTERNAL_NET 2404 -> $HOME_NET any (msg:"PROTOCOL-SCADA IEC 104 force on
denial of service attempt"; flow:to_client,established,no_stream; content:"|68|";
depth:1; content:"|2D|"; within:1; distance:5; content:"|01|"; within:1; distance:8;
detection_filter:track by_src,count 50,seconds 5;
reference:url,dragos.com/blog/crashoverride/CrashOverride-01.pdf; reference:url,us-
cert.gov/ncas/alerts/TA17-163A; reference:url,welivesecurity.com/wp-
content/uploads/2017/06/Win32_Industroyer.pdf; classtype:attempted-dos; sid:43228;
rev:4;)

Suricata logs are integrated in the XL-SIEM natively, although new rules added requires to be

incorporated to the XL-SIEM data source catalogue. To this end, as it was described in Section 5, the

plugin_id that identifies Suricata sensors at the XL-SIEM is 1001, while the plugin_sid used to identify

the type of event received from Suricata sensors depends on the rule triggered. In this case, Suricata

already identifies rules with a unique numerical identifier, called sid, which is used by the XL-SIEM

Agent to map to the plugin_sid variable used to identify the event type at the XL-SIEM side.

Further details about the enhancement carried out in Suricata to incorporate detection capabilities

within EPES infrastructures are given in D5.2.

4.2.3 SDN based incident detection: Nightwatch
Nightwatch is an Intrusion Detection and Classification Module (IDCM) for advanced and novel threats
to Electrical Power Energy Systems (EPES). It leverages artificial intelligence technologies for accurately
and rapidly determining the likelihood that such a system has been
compromised. Nightwatch supports low-computational analysis and machine learning techniques
for resource constrained devices common in EPES environments. In the SDN-
microSENSE, Nightwatch is using information derived from the SDN-controller to determine whether
the SDN components are under cyber-attack. Additionally, Nightwatch can determine the type of the
attack and likelihood that an SDN component has been compromised.
The communication between Nightwatch and the SDN-controller is made through the SDN-
controller's Northbound interfaces. Nightwatch will gather network-related information using
Representational State Transfer (REST) based queries. The network information will include the
network topology of the SDN switches, available network ports, and statistical information related to
the available network ports. The network-based information will enable Nightwatch to elicit the
nature of threats targeting SDN components, such as malware, service, or resource disruption.
Nightwatch will be able to consume data from XL-SIEM using the XL-SIEM’s RabbitMQ message
broker. Nightwatch will use the RabbitMQ to read events from XL-SIEM agents as inputs for its
intrusion detection analysis. Security-related events from XL-SIEM will enable Nightwatch to augment
its intrusion detection process with additional information on the security posture of the system.

 D5.1
Version 1.5

© SDN-microSENSE consortium Page | 41
Public document

The resulting analysis of Nightwatch based on input from the SDN-controller and the XL-SIEM agents
will be made available to the XL-SIEM for a consolidated analysis of the security of the EPES system.
The technical specifications and use of Nightwatch with the SDN-controller and the XL-SIEM are further
described in D5.2, as part of the SS-IDPS System.

4.2.4 Modbus Intrusion Detection Sensor
The Modbus Intrusion Detection Sensor is an ML-based Network Intrusion Detection System (IDS),

which is capable of detecting 14 Modbus/TCP related cyberattack types. In particular, the sensor relies

on Transmission Control Protocol/Internet Protocol (TCP/IP) network flow statistics and consists of the

five following modules: a) Data Collection Module, b) Feature Selection and Pre-processing Module, c)

Training Module, d) Detection Module and e) Response Module. The Data Collection Module is

responsible for capturing the Modbus/TCP network traffic, using tcpdump. Following this, the Feature

Selection and Pre-processing Module undertakes to extract and pre-process the Modbus network

statistics that will be used for the detection process. The Training Module constitutes an offline

functional unit which is responsible for the training process of the ML models. Next, the Detection

Module loads the binary ML model and thus performs the classification process. Finally, based on the

outcome of the Detection Module, the Response Module stores the information of the corresponding

malicious Modbus/TCP network flow in a log file, with a specific label which indicates the Modbus/TCP

cyberattack. The Modbus Intrusion Detection Sensor can detect 14 Modbus/TCP related cyberattacks,

including:

1) modbus/function/readInputRegister (DoS),

2) modbus/function/writeSingleCoils,

3) modbus/scanner/getfunc,

4) modbus/dos/writeSingleRegister,

5) modbus/function/readDiscreteInputs (DoS),

6) modbus/function/readHoldingRegister (DoS),

7) modbus/function/readCoils (DoS),

8) modbus/function/readInputRegister,

9) modbus/function/writeSingleRegister,

10) modbus/dos/writeSingleCoils,

11) modbus/function/readDiscreteInput,

12) modbus/scanner/uid,

13) modbus/function/readCoils and

14) modbus/function/readHoldingRegister.

More details about the Modbus Intrusion Detection Sensor will be provided in D5.3.

4.2.5 DNP3 Intrusion Detection Sensor
The DNP3 Intrusion Detection Sensor is also an ML-based IDS which can recognise timely and with high

accuracy DNP3-related cyberattacks. The architecture of the DNP3 Intrusion Detection Sensor is

composed of six modules: a) DNP3 Traffic Sniffing Module, b) DNP3 Network Flow Statistics Extraction

Module, c) Pre-processing Module, d) Training Module, e) Detection Module and f) Notification

Module. The first module captures the DNP3 packets, storing them into pcap files. Next, the DNP3

Network Flow Statistics Extraction Module receives the pcap and exports DNP3 flow statistics related

explicitly to the DNP3 packets with including information from the previous communication layers (i.e.,

 D5.1
Version 1.5

© SDN-microSENSE consortium Page | 42
Public document

transport layer, network layer, link layer, etc.). Then, the Pre-processing Module undertakes to

normalise appropriately the DNP3 flow statistics. Thus, based on this information, the Training Module

trains the ML model of the Detection Module, which in turn detects the DNP3-related cyberattacks.

Finally, the Response Module stores in a log file the malicious DNP3 flows with a label which specifies

the DNP3 cyberattack type. The DNP3 Intrusion Detection Sensor can recognise the following DNP3

cyberattacks: a) DNP3 Disable Unsolicited Messages Attack, b) DNP3 Cold Restart Message Attack and

c) DNP3 Warm Restart Message Attack. More information about the DNP3 Intrusion Detection Sensor

will be provided in D5.3.

4.2.6 IEC 60870-5-104 Intrusion Detection Sensor
The IEC 60870-5-104 Intrusion Detection Sensor focuses on cyberattacks against IEC-104. It uses an

appropriate trained an ML model, which receives as input IEC-104 flow statistics. In particular, IEC

60870-5-104 Intrusion Detection Sensor is composed of six modules: a) Data Capturing Module, b) IEC

60870-5-104 Flow Generator, c) Feature Selection and Pre-processing Module, d) Training Module, e)

Detection Module and f) Notification Module. The first module is responsible for monitoring

and capturing the IEC-104 network packets, using tcpdump. Next, IEC 60870-5-104 Flow Generator

receives the output, i.e., the pcap file of the previous module and generates IEC-104 flow statistics that

are related only to the header and the payload of the IEC-104 packets, without including information

from the previous TCP/IP layers. Next, the Feature Selection and Pre-processing Module isolates and

pre-processes appropriately only those elements that will be given to the ML model, which is trained

by the Training Module. The Detection Module incorporates the ML Model, thus recognising IEC-104

cyberattacks. Finally, the Notification Module updates a log file with the malicious IEC-104 flows,

comprising a label denoting the IEC-104 cyberattack. D5.3 will detail the IEC 60870-5-104 Intrusion

Detection Sensor.

4.2.7 IEC 61850 (GOOSE) Intrusion Detection Sensor
The IEC 61850 (GOOSE) Intrusion Detection Sensor is an ML-based IDS, discovering potential intrusions

related to the GOOSE communication model. As in the previous cases, it consists of six modules: a)

Data Collection Module, b) GOOSE Flow Generator, c) Feature Selection and Pre-processing Module,

d) Training Module, e) Detection Module and f) Response Module. The first module is responsible for

sniffing GOOSE packets and storing them into two files: a) pcap and b) JSON. Both files (i.e., pcap and

JSON) are processed by the GOOSE Flow Generator, which produces GOOSE flow statistics. The Feature

Selection and Pre-processing Module chooses and normalises the features that will be used for the

training of the ML model and the training procedure is implemented offline by the Training Module.

Following this, the trained ML model is integrated into the Detection Module, which composes the

core of the IEC 61850 (GOOSE) Intrusion Detection Sensor, responsible for recognising the various

GOOSE cyberattacks. As it was mentioned above, the Detection Module can discriminate four GOOSE-

related cyberattacks: a) Data Manipulation, b) DoS, c) Message Suppression and d) Disturbance. Finally,

the Response Module updates a log file with the abnormal GOOSE flows, including a label that signifies

the corresponding GOOSE cyberattack.

4.2.8 L-ADS
The L-ADS (Live Anomaly Detection System) is a tool developed by Atos which use machine learning

based models to detect anomalies in network flows. More specifically, the L-ADS can monitor traffic

network directly from the network or read traffic captures to analyse its content. The L-ADS infer

anomalous connections to and from devices connected to the infrastructure monitored. The captured

 D5.1
Version 1.5

© SDN-microSENSE consortium Page | 43
Public document

or read traffic is pre-processed and transformed into Netflow, which takes from the packets analysed

just relevant information such as source and destination IPs, duration of the flow analysed or the size

of the flow in bytes or packets, among others.

The L-ADS [Granadillo+19] works in two modes: supervised and unsupervised. The former can work

based on predefined rules that helps to identify anomalous connections, while the latter self-learn and

infer in an autonomous way the anomalous connections.

The L-ADS can detect anomalies associated to any protocol working on top of TCP or UDP. In SDN-

microSENSE, the L-ADS has been enhanced with support protocols often used in the EPES domain.

More details about the L-ADS in SDN-microSENSE are given in 5.3.

4.2.9 CERTH ML detector
The Machine Learning (ML) detector is the tool that identifies abnormal events in the network traffic

and provides the corresponding information to the XL-SIEM. The purpose of the ML detector is to

expand the capabilities of the L-ADS tool taking into consideration the Modbus, the MQTT and the NTP

protocols. The architecture of the ML detector is depicted in the Figure 19 and composed of three main

parts. In the first part the network traffic from the Modbus, the MQTT and the NTP protocol is being

capture for both normal and abnormal events. The T-shark network protocol analyser9 is used to

capture packet data from the network and to produce the corresponding pcap files. Then in the second

part for the data collection procedure, the CicFlowmeter10 is used to extract the features of the

bidirectional netflows from pcap files and produces the csv files with the records of the features. The

third part of the procedure concerns the development of the different ML models per protocol. Based

on the methodology that have been proposed for the detection of cyber-attacks 0, 0, 0 the ML detector

will be used for the detection of the attacks that associated with the Modbus, MQTT and NTP

protocols. The log files with the predictions of each model will be sent to the XL-SIEM. The

development of the different ML models focuses on the development of Artificial Neural Network

(ANN) models that take into consideration the advantages and the disadvantages of the comparison

from different machine learning techniques on SCADA systems. Yasakethu et. Al., 0 described the

comparison of different machine learning techniques for the protection of SCADA systems. The results

of the comparison in terms of the ANN prove that the usage of this classifier requires prior knowledge

of the anomaly type, needs adequate balanced training data and demands large number of attack

training data. There are two main advantages for the ANN models are: they constitute nonlinear data

analysis and demand low computational time. The usage of the ANN aims to improve the challenges

of big data that associated with difficulties to store, track, analyse, capture, and share the generated

data 0. Moreover, the extension of the ML detectors that have been developed for the multiclass

classification, 0, 0, 0 in terms of self-training procedure and using data from the corresponding Use

cases that will developed for the SDN-microSENSE project aims to expand the effectiveness of the ML

detector for the Smart Grids. The validation of the proposed models will be obtained from the

calculation of metrics such as the accuracy, the precision and the recall for each model. The detailed

information for the ML detector and its components will be provided in D5.3

9 https://www.wireshark.org/docs/man-pages/tshark.html
10 https://github.com/CanadianInstituteForCybersecurity/CICFlowMeter

 D5.1
Version 1.5

© SDN-microSENSE consortium Page | 44
Public document

Figure 19. The architecture of the CERTH ML detector

The ML detector will provide the logs to the XL –SIEM tool in Json files. The information that will be

provided is the following properties for each event: the Source IP, the Source Port, the Destination IP,

the Destination Port, the Timestamp, the protocol and the Label that describes the type of attack. The

Json schema that describes the information sent by the ML detector to the XL-SIEM is the following:

{
 "type": "array",
 "items": [
 { "type": "object",
 "properties": {
 "Flow ID": {
 "type": "string"},
 "Src IP": {
 "type": "string"},
 "Src Port": {
 "type": "integer"},
 "Dst IP": {
 "type": "string"},
 "Dst Port": {
 "type": "integer"},
 "Protocol": {
 "type": "integer"},
 "Timestamp": {
 "type": "string"},
 "Label": {
 "type": "string"}},
 "required": [
 "Flow ID",
 "Src IP",
 "Src Port",
 "Dst IP",

 D5.1
Version 1.5

© SDN-microSENSE consortium Page | 45
Public document

 "Dst Port",
 "Protocol",
 "Timestamp",
 "Label"
] }]

4.3 Interfaces and data exchanged
Several mechanisms have been implemented in SDN-microSENSE for the interaction of the XL-SIEM

with other components of the platform. The following subsections describe the mechanisms

configured in SDN-microSENSE.

4.3.1 XL-SIEM input mechanisms
As depicted in Figure 6, the XL-SIEM receives logs, events and other input data from components, such

as detectors or honeypots, through the XL-SIEM agent. The XL-SIEM agent receives raw logs, in

different format (i.e., json or plan text) containing different type of information, which are normalized

by the XL-SIEM Agent in a common, normalized format. Further details will be given in Section 0.

These logs are received by the XL-SIEM Agent using rsyslog. Rsyslog is an open source utility to send

registry messages using an IP network. It natively included in any Unix based distribution so no

additional software is required to use it. Although there are several alternatives to send information

using rsyslog, one of the most common is the one depicted in Figure 20. In this configuration detectors

(or any tool that will send logs to the XL-SIEM Agent), produces logs that are written in a log file. The

rsyslog process detect new input to the log file and automatically forward it to the rsyslog server

configured. This is a very flexible approach because minimum configuration is required at the detector

(assuming that most of them already write their output to a file) and the rsyslog guarantees a

transparent and efficient mechanisms to transfer information which can also be secured by using TLS

certificated to secure the communication channel.

Figure 20. Exchange of information from detectors to the XL-SIEM agent using rsyslog

The following steps were used to create a secure communication channel with the XL-SIEM agent using

rsyslog. The only requirement for a tool that wants to communicate to the XL-SIEM agent using rsyslog

as described in this document is that logs are written in a log file (i.e., mytool.log). Rsyslog will monitor

that file and will forward the new logs included in such file to the Atos XL-SIEM agent

Detector

tool

Rsyslog

client

Rsyslog

server

XL-SIEM

Agent

Log file Log file

TLS secured channel

 D5.1
Version 1.5

© SDN-microSENSE consortium Page | 46
Public document

Step 1: Install Rsyslog-gnutls

By default, Linux machines will have rsyslog available. To use it over a secure channel it is required to
install the TLS support. For Debian/Ubuntu this is:

[root@mymachine ~]# apt-get install rsyslog-gnutls

Step 2: Copy the Atos certificate to any folder of your machine

A certificate is required to use this secure channel. A new certificate (atos.cert.pem) was created for
this purpose:

[root@mymachine ~]# mkdir /etc/rsyslog-keys
[root@mymachine ~]# cp atos-cert.pem /etc/rsyslog-keys/

Step3: Create a configuration file for the secure channel in rsyslog.

At /etc/rsyslog.d create a new file (30-xlsiem.conf). It can be chosen any name as long as it
ends with .conf. This content has to be added such file:

$ModLoad imfile
$InputFileName /var/log/mytool.log <= file which content will be sent to the server
$InputFileTag mytool <= a tag that identifies the program that fills such file
$InputFileStateFile mytool.log <= name of the log file
$InputFileSeverity alert
$InputFileFacility local6
$InputRunFileMonitor
$InputFilePollInterval 1
certificate files
$DefaultNetStreamDriverCAFile /etc/rsyslog-keys/atos-cert.pem <= path where the Atos
 certificate is
make gtls driver the default
$DefaultNetStreamDriver gtls
$ActionSendStreamDriverMode 1 # run driver in TLS-only mode
$ActionSendStreamDriverAuthMode anon

forward just content of the file associated to such tag to the Atos rsyslog server
if $programname == 'mytool' then @@(o)XX.XX.XX.XX:AAAA
if $programname == 'mytool' then stop

Step 4: Restart rsyslog service
[root@mymachine ~]# service rsyslog restart

Or
[root@mymachine ~]# systemctl restart rsyslog

Step 5: Check status of the rsyslog service
[root@mymachine ~]# systemctl status rsyslog

An output without errors should be something like what shown in Figure 21.

 D5.1
Version 1.5

© SDN-microSENSE consortium Page | 47
Public document

Figure 21. Status of a correctly configured rsyslog client based on TLS

Any error will be prompted.

Step 6: Test

The setup can be tested just by adding manually new content to the log file:

[root@mymachine ~]# echo "This is a test from file" >> /var/log/mytool.log

If everything is correct the Atos agent must have received the message including “This is a test from
file” (Figure 22)

Figure 22. Proof that the message was received by the client

4.3.2 XL-SIEM output mechanisms

The main output of the XL-SIEM is basically alerts derived from the reasoning carried out by the XL-

SIEM engine based on the events received from XL-SIEM agents. To this end, several mechanisms are

included in the XL-SIEM engine to export these security alert: to a csv file, to a Kafka broker, etc. The

mechanism used in SDN-microSENSE to export security alerts is based on a RabbitMQ server.

On the other hand, XL-SIEM agents send normalized events to the XL-SIEM engine by using a secure

TCP socket connection. However, the XL-SIEM provides with an optional mechanism to export these

events to third parties through a RabbitMQ server. Using a RabbitMQ broker provides with advantages

when integrating other components of the SDN-microSENSE platform:

• Events and alerts are exported in real time.

• Security is guaranteed by using TLS secured channels to communicate with the RabbitMQ

server.

• Flexibility to attach any number of consumers just by attaching them to the corresponding

queue for events or alerts.

Within SDN-microSENSE, the capability to export events and alerts to a RabbitMQ is used by several

components, as depicted in Figure 23.

 D5.1
Version 1.5

© SDN-microSENSE consortium Page | 48
Public document

Figure 23. SDN-microSENSE components using the output of the XL-SIEM Agent and Engine through RabbitMQ

• Events exported from the XL-SIEM agent is used by the Nightwatch tool (further described in

D3.3 and D5.2). As part of T3.3, Nightwatch uses these events for detecting zero days attacks

based on the output from honeypots. Nightwatch also uses these events, along with SDN

controller logs, to detect incidents as part of the SDN-IDPS developed in T5.2.

• Events exported from the XL-SIEM agent to the Discøvery system, used to visualize

infrastructure topology based on the information retrieved from detectors (further described

in D5.3)

• Alerts exported from the XL-SIEM engine that is used by several components of the SDN-

microSENSE architecture:

o By the ATOS CIS, which is used to interface with the ARIEC component developed in

T5.5 (described in D5.5).

o By the Honeypot Manager, part of T3.3 and described in D3.3, which uses them to

identity zero days attacks and dynamically deploy additional honeypots in case it is

necessary and according to the type of zero-day vulnerability exploited.

The configuration used for setting-up the RabbitMQ queues is of type Fan-out, which leverages on

exchange queues where the XL-SIEM Agent and Engine push events and alerts while consumers will

create their own consumer queues, attach them to the corresponding exchange queue and read from

it. This is the best possible solution when more than one consumer is expected. Otherwise, if all

consumers read from the same consumer queue, some data will arrive to some consumers while other

consumers will miss some data such as messages pushed to consumer queues are removed when

consumed.

The make integration easier a python script has been created to read from the RabbitMQ server set

up for the XL-SIEM. The following is the configuration file used for the python connector created when

connected to the alarms exchange queues:

XL-SIEM Agent XL-SIEM Engine

CIS
Honeypot

Manager
Nightwatch

Discøvery

system

Exchange queues

Consumer queues

atos.exchange.events.sdnmsense atos.exchange.alarms.sdnmsense

atos.exchange.events.sdnmsense.discovery

atos.exchange.events.sdnmsense.nightwatch

atos.exchange.alarms.sdnmsense.cis

atos.exchange.alarms.sdnmsense.hm

 D5.1
Version 1.5

© SDN-microSENSE consortium Page | 49
Public document

[SERVER]
SERVER_IP = <IP of the RabbitMQ server>
SSL_PORT = <Port of the RabbitMQ server>

[CLIENT]
CONSUMER_NAME = <component_name>

[QUEUES]
EXCHANGE_QUEUE_NAME = atos.exchange.alarms.sdnmsense
CONSUMER_QUEUE_NAME = atos.queue.alarms.sdnmsense

[CERTIFICATES]
CA_CERT = ./cacert.pem
CLIENT_CERT = ./cert.pem
CLIENT_KEY = ./key.pem

The key parts of the configuration are the EXCHANGE_QUEUE_NAME, the CONSUMER_QUEUE_NAME

and the CONSUMER_NAME. The EXCHANGE_QUEUE_NAME must match the exchange queue

configured at the RabbitMQ server, while the CONSUMER_QUEUE_NAME is used to create the

consumer queue at the RabbitMQ server that is bound to the EXCHANGE_QUEUE_NAME. The

CONSUMER_NAME is also used to create the name of the consumer queue, added as suffix to the

CONSUMER_QUEUE_NAME, meaning that the consumer name will be configured as

“CONSUMER_QUEUE_NAME.CONSUMER_NAME”. This is done to better identify at the RabbitMQ

server the queues created by components.

Figure 24 shows the RabbitMQ control panel with the exchange queues created by the XL-SIEM Agent

and Engine.

Figure 24. Exchange queues at the RabbitMQ attached to the XL-SIEM

Figure 25 shows the RabbitMQ panel with the consumer queues attached to any of the exchange

queues available. It is worth noticing that the python script provided as generic consumer deletes the

consumer queue at exit. This is a normal behaviour and indeed desirable in order to save resources at

 D5.1
Version 1.5

© SDN-microSENSE consortium Page | 50
Public document

the RabbitMQ server. If the queue is created again later the exchange queue will push pending

messages to the consumer queue just created, therefore guaranteeing that no messages are lost.

Figure 25. Consumer queues configured at the RabbitMQ server

 D5.1
Version 1.5

© SDN-microSENSE consortium Page | 51
Public document

5 Event connectors
This section will describe the procedure used by the XL-SIEM agent to normalize events, the format of

the normalized event and the approach used in SDN-microSENSE to gather information from detectors

and honeypots.

The XL-SIEM agent receives logs through a rsyslog server. These logs, generated by detectors, can

contain any information and can be specified in any format, such as json or plain text. The XL-SIEM

agent receives those logs, filters them (for example, according to the type of log) and extracts the

relevant information from them in order to generate a normalized event in a common format.

The XL-SIEM agent is based on plugins which are created to process the logs received from the

detectors. In general, every detector has a dedicated plugin capable of processing all types of events

that such detector produces. These plugins process logs by using regular expressions, extracting

information from logs and matching them to a set of predefined fields included in the normalized event

exported to the XL-SIEM engine.

Plugins are composed of three important parts:

- ID definition. Every plugin has a numerical ID that clearly identifies it. It is normally used to

identify the detector that sent the logs processed by the plugin. This ID is also used by the XL-

SIEM Engine to know the detector associated to the event received and apply the

corresponding correlation rules to those events

- Source of logs. Plugins read logs received by the XL-SIEM agent through syslog. As specified in

Section 4.3.1, the rsyslog server at the XL-SIEM agent store logs received in a file. Rsyslog can

filter then and store these logs in different files depending on some field appearing in the log

(for example, the name of the sensor). Every plugin contains the route to the file that contains

the logs to process, reading and processing every new entry that is written in such file

- Parsing sections. A plugin section will be able to parse one type of logs. Every plugin will contain

one or more parsing section. This is useful to group logs in plugins, because detectors will be

able to send more than one type of log. Every section will contain two parts:

o Regular expressions. This is the regular expression that will parse the log process by

the plugin. A perfect matching is required to extract information from the logs. If there

is no match, the regular expression of the next section is evaluated. If there is no

matching expression in any section, the log is ignored.

o Normalized fields. This is the mapping between the fields extracted from the logs at

the regular expression and the normalized fields used by the XL-SIEM engine. The is a

limited set of fields that can be normalized. The data format used for normalized

events is based the OSSIM format11, but adding several changes to simplify its

processing. The most important ones are source and destination fields for IP, port and

MAC address. It is also included fields for usernames, filenames, and nine free fields

that can be mapped to any information extracted from logs. It is important to notice

that every plugin section will map a variable called plugin_sid, which is a numerical

value that identifies the type of event within a plugin. This is also used by the XL-SIEM

to identify the type of event and apply the appropriate correlation rules.

11 https://cybersecurity.att.com/documentation/usm-appliance/events/event-details-fields.htm

https://cybersecurity.att.com/documentation/usm-appliance/events/event-details-fields.htm

 D5.1
Version 1.5

© SDN-microSENSE consortium Page | 52
Public document

For every new plugin to be developed it is necessary to know exactly the type of events that will be

parsed and the exact format. Therefore, it is necessary to compile from detectors this information. In

SDN-microSENSE it has been created a template that makes the compilation of information from

detectors easier (Table 13).

Table 13. Template to compile log taxonomies from detectors

Log name A name that identifies the log

Log description The text describing the log

Important fields The fields from the log that might be important for the XL-SIEM engine
Field type The format of the field. This is, whether it is a string, a numerical value, etc

Possible values If possible, the possible values that every field has (i.e., 0 to 10 for a numeral value)

Field
description

A description of the meaning of such field. This is useful to create correlation rules at the XL-SIEM
engine

Example An example of the log that the XL-SIEM agent will receive from this detector

According to the WP5 architecture depicted in Figure 3, the following detectors will be integrated with

the XL-SIEM agent:

- IDPS detectors: Enhance Suricata and Data Injection detector. The details of this log taxonomy

are given in D5.2

- SDN IDPS: Nightwatch. The details of this log taxonomy are given in D5.2

- Machine Learning based detectors: UOWM, SID and 0INF Machine learning based detector,

ATOS L-ADS and CERTH machine learning models. The details of this log taxonomy are given in

D5.3

- Access control and data request detector. The details of this log taxonomy are given in D5.3

- Honeypots. This logs taxonomy is detailed in WP3.

 D5.1
Version 1.5

© SDN-microSENSE consortium Page | 53
Public document

6 Security alerts
Security alerts are created by the XL-SIEM engine by correlating events received from detectors

through the XL-SIEM agent. This correlation is done through a set of correlation rules that evaluate

several aspects of associated to the events received from the Xl-SIEM agent. This evaluation uses the

fields included in the event (for example, to compare source IPs) and include additional variables to

compare such as the number of occurrences of certain types of events, a time window where to receive

events, etc.

For every new event received from SDN-microSENSE detectors, it is required to evaluate its content,

and determine whether it can be inferred an incident, and therefore, to trigger the corresponding alert.

Therefore, new rules have been created to deal and evaluate the events received from SDN-

microSENSE detectors. The process to create additional rules comprises several steps, as depicted in

Figure 26.

Figure 26. Steps to create new correlation rules

Set up new event definitions

For the XL-SIEM to process new events received from SDN-microSENSE detectors it is required to let

the XL-SIEM engine know that new events are available. To do so, for every new detector (this is, for

every new plugin developed at the XL-SIEM agent) it is required to configure a new Event type at the

XL-SIEM. New event types are defined at the XL-SIEM by using the plugin_id defined at the plugin and

the plugin_sid defined for every event type that a detector is sending. Figure 27 represents the

configuration panel at the SDN-microSENSE XL-SIEM that shows two event types for the Dionaea plugin

(plugin_id=1669). The Data Source ID field corresponds to the plugin_id of the event while the Event

Type ID corresponds to the plugin_sid of the event. Additionally, the fields category, subcategory,

priority and reliability can be fixed. It is worth noticing that the values priority and reliability will be

used to determine the severity (shown as risk) of incidents associated to these events.

Set up new

event definitions

Classify

events

Create

directives
Add directives

to correlation

 D5.1
Version 1.5

© SDN-microSENSE consortium Page | 54
Public document

Figure 27. Example of event definition for one of the honeypots

Classify events

Once the XL-SIEM knows that new types of events will arrive it is required to classify the important

ones. For important ones it is understood those that are relevant for the detection of potential

incidents, which will be the ones to process when applying incident correlation rules. At the XL-SIEM

this classification is done through EPL statements, which basically filter events given by a specific

plugin_id and plugin_sid. Figure 28 shows the statement used to classify events with plugin_id=1001

and plugin_sid=2009286 as events related to the detection of scans using the Modbus protocol. Events

matching these two values are classified into Scada_Modbus_scanning_detected events.

Figure 28. Example of an event classification for Modbus related events

Create directives

Next step is the definition of the directive that represents the correlation rule to apply when events

classified in the previous step arrive. Here is where the logic used to trigger security alerts is applied.

The events classified in previous steps are used to apply rules that uses variables such as number of

occurrences, events appearing within a certain period of time, or values contained in such event. The

 D5.1
Version 1.5

© SDN-microSENSE consortium Page | 55
Public document

syntax used to define these rules is EPL12. Figure 29 represents an example of a correlation rule that

triggers a security alert about a scanning against an IP. This alert is triggered when three events

(classified as Scada_Modbus_Scanning_detected) occurs within 100 seconds and against the same IP

(a.dst_ip). In addition, and similar to the definition of events, categories, subcategories, reliability and

priority are defined for this alert.

Figure 29. Example of directive (correlation rule) for a Modbus related incident

Add directives to correlation

Finally, the new correlation rules are added to the correlation engine (called Correlation Bolt in Storm

terminology). Every correlation bolt contains the list of rules that are active, which depends on the

domain or other requirements where the XL-SIEM is used. Figure 30 represents the panel where the

new rule is added in the section “Directive”.

12 https://docs.oracle.com/cd/E13157_01/wlevs/docs30/epl_guide/overview.html

https://docs.oracle.com/cd/E13157_01/wlevs/docs30/epl_guide/overview.html

 D5.1
Version 1.5

© SDN-microSENSE consortium Page | 56
Public document

Figure 30. Configuration panel where new directives are added to the correlation engine

This process for generating new correlation rules has been followed for every new detector and every

new event received from SDN-microSENSE. The effort was required not just to create the new rules

but to apply specific threat intelligence to explicitly know how to build the appropriate correlation rule.

To this end it was required to understand the information contained in the events and the nature of

the attacks detected, identifying patterns that need to be translated to rules and clearly identify alerts

and avoid false positives.

Security alert format

The security alerts exported by the XL-SIEM uses a data format very similar to the format of the

normalized events, also based on OSSIM and using json, but with several differences.

Table 14 describes the list of fields included in a security alarm. Apart from the fields that are common

to events, it is worth noticing the following aspects:

- BACKLOG_ID: A unique ID used to identify the alert

- EVENT_ID : The XL-SIEM allows to use alerts as events and apply cross correlation rules using alerts as

events. This field represents the ID associated to the alert when it acts as an event.

 D5.1
Version 1.5

© SDN-microSENSE consortium Page | 57
Public document

- RELATED_EVENTS: As it was mentioned before, security alerts are triggered by correlating events (one

or more than one like in the example above). This field represents the IDs of the events that has been

used to generate the alert.

- RELATED_EVENTS_INFO: This field contains an json array, every element containing the complete

events used to correlate and generate the alert.

Table 14. Fields of the security alert message exported by the XL-SIEM

XL-SIEM Description

DATE Date and time of the alert.

SENSOR Agent that sent the events used to create the alert.

PLUGIN_SID ID assigned to identify the alert type.

EVENT_ID
Unique ID number assigned to the alert by the XL-SIEM. Used to use alerts as
events and perform cross correlation rules

PROTOCOL
Protocol used for the source/destination associated to the alert, for example,
TCP IP.

CATEGORY Event taxonomy for the alert, for example, Authentication or Exploit.

SUBCATEGORY
Subcategory of the alert taxonomy type listed under Category. For example, this
would be Denial of Service, if the category were Exploit.

SID_NAME Name of the external application or device that produced the alert.

PLUGIN_ID ID associated with the external application or device that produced the alert.

PRIORITY
Priority ranking, based on value of the alert. Each alert type has a priority value,
used in risk calculation.

RELIABILITY
Indicates the level of trust on the detector that has provided the events used to
generate the alert

RISK Risk level of the event, being 0 the minimum and 10 the maximum

SRC_IP IP address for the source of the events associated to the alert

DST_IP IP address for the destination of the event associated to the alert

SRC_IP_HOSTNAME Hostname of the event source.

DST_IP_HOSTNAME Hostname of the event destination.

SRC_PORT External or internal asset source port for the event associated to the alert

DST_PORT External or internal asset destination port for the event associated to the alert

FILENAME Only applicable to certain alerts.

BACKLOG_ID Internal ID used by the XL-SIEM to identify the alert

USERNAME Only applicable to certain alerts.

PASSWORD Only applicable to certain alerts

 D5.1
Version 1.5

© SDN-microSENSE consortium Page | 58
Public document

ORGANIZATION
The organization where the incident has been discovered. Useful with
multitenancy based deployments (one XL-SIEM instance, several organizations).

USERDATA1-9 Custom data variable depending on the alert and the sensor.

RELATED_EVENTS Event_id of the events that have triggered the alert.

PLUGIN_NAME The name of the agent sending the event associated to the alert

RELATED_EVENTS_INFO
json with the complete information about events that triggered the alarm (one
or more events)

These alerts are stored at the XL-SIEM database and exported to the RabbitMQ defined in Section

4.3.2, and consumed by several components of the SDN-microSENSE architecture as defined in Figure

23.

 D5.1
Version 1.5

© SDN-microSENSE consortium Page | 59
Public document

7 Unit Testing

7.1 Unit Testing Environment
A testbed has been created to verify and validate the interconnection of the different detectors used

in SDN-microSENSE with the XL-SIEM deployed at the XL-EPDS. This testbed has been deployed at ATOS

premises and is publicity available for partners to test interconnection with XL-SIEM inputs and

outputs.

The testbed architecture is shown in the following figure:

Figure 31. XL-SIEM testbed in SDN-microSENSE

The testbed has been deployed in a hosting server at Atos premises. It has been mounted by using

several virtual machines that corresponds to several components of the XL-SIEM interconnected

through a NAT network. The details of these virtual machines are the following:

• VM1: It contains a VPN server, that is used for the remote management of the complete

infrastructure. It also contains a testing client that allows to send test logs to the XL-SIEM

agent. The Port A of the VM1 is forwarded to the Port HA of the hosting server, which allows

to establish a VPN connection from the public internet using Port HA.

• VM2: It contains an instance of the XL-SIEM Agent. This agent contains the rsyslog server that

listens in Port B for logs coming from detectors. To do this, the Port B at the VM2 is forwarded

to the Port HB, which is publicly available for detectors to send logs.

• VM3: It contains an instance of the XL-SIEM Engine containers, which receives normalized

events from the XL-SIEM Agent directly through the NAT network by using a secure TCP

connection directly to the VM3. This VM3 also contains a dockerized instance of a RabbitMQ

server that receives events from the XL-SIEM at VM2 through the NAT network and security

alerts from the XL-SIEM Engine directly within the local loopback at VM3. Consumers of events

VPN Server XL-SIEM Agent XL-SIEM Engine

Internet

Test detector

Alarm

consumers
Event

consumers
Detectors

NAT network: XX.XX.XX.XX/24

VM2 VM1 VM3

Remote

management

Hosting server

Port A

Port HA Port HB

Port B

Port HC

Port C

 D5.1
Version 1.5

© SDN-microSENSE consortium Page | 60
Public document

and alerts can connect to the RabbitMQ server through the Port HC of the hosting server,

which is forwarding the Port C of the RabbitMQ server at VM3.

Therefore, just ports HA, HB and HC of the hosting server are exposed to the public internet. The

access to the rest of services available at the VMs of the testbed (such as SSH connections or access

to web servers to manage dashboards) is just possible through the VPN server.

It is worth noticing that these ports are just used at the testbed, not being used or exposed in any

deployment on the real pilots.

As shown in Figure 31, several detectors and consumers of events and alarms has been

interconnected to the testbed for checking connectivity. These tests are part of the Unit Testing

phase defined in T2.4 as part of the evaluation strategy depicted in Figure 32

Figure 32. Evaluation strategy in SDN-microSENSE (extracted from T2.4)

7.2 Unit tests
The following tests have been carried out. It is worth noticing that all IPs has been hidden. Ports

appearing in the tests are fictitious and does not correspond to any active or available service.

Test Case ID XL-EPDS-01 Component XL-SIEM Agent

Description Basic connectivity between a test detector and the XL-SIEM Agent and

normalization of the event

SPEC ID SPEC-F1, SPEC-F2 Priority High

 D5.1
Version 1.5

© SDN-microSENSE consortium Page | 61
Public document

Prepared by ATOS Tested by ATOS

Pre-condition(s) A test detector and an XL-SIEM Agent needs to be deployed

Test steps

1 At the test detector a log is simulated by adding a new testing log in the file monitored by the

rsyslog client:

echo '[testSensor] TEST_EVENT: {src_ip=XX.XX.XX.11, port=111, dst_ip=XX.XX.XX.99, dst_port=397,

desc="This is an event"}' >> /var/log/test.log

2 The rsyslog client automatically dispatch the log to the XL-SIEM agent, which is received and

stored in /var/log/test_logEvent.log

root@ec0438170ba7:/var/log# tail -n 1 test_logEvent.log

Jul 22 14:27:50 sdnclient testlog [testSensor] TEST_EVENT: {src_ip=XX.XX.XX.11, port=CC,

dst_ip=XX.XX.XX.99, dst_port=BB, desc=" This is an event "}

3 The log is normalized by the XL-SIEM agent:

2020-07-22 14:27:50,733 Output [INFO]:

{"event":{"type":"detector","date":"1595428070","device":"XX.XX.XX.9","interface":"eth0","plugin_

id":"30000","plugin_sid":"1","src_ip":"XX.XX.XX.11","src_port":"BB","dst_ip":"XX.XX.XX.99","dst_p

ort":"CC","userdata1":"VEVTVF9FVkVOVA==","userdata2":"VGhpcyBpcyBhIGFzZHMgZWF2ZW50","log":"SnVsID

IyIDE0OjI3OjUwIHNkbmNsaWVudCB0ZXN0bG9nIFt0ZXN0U2Vuc29yXSBURVNUX0VWRU5UOiB7c3JjX2lwPTExLjExLjExLjE

xLCBwb3J0PTExMSwgZHN0X2lwPTk5Ljk5Ljk5Ljk5LCBkc3RfcG9ydD0zOTcsIGRlc2M9IlRoaXMgaXMgYSBhc2RzIGVhdmVu

dCJ9IA==","fdate":"2020-07-22 14:27:50","event_id":"cc2711ea-936b-0242-ac11-000285b6525a"}}

Input data Test log:

[testSensor] TEST_EVENT: {src_ip=XX.XX.XX.11, port=BB, dst_ip=XX.XX.XX.99,

dst_port=CC, desc="This is an event"}

Result Log correctly normalized by the XL-SIEM Agent:

2020-07-22 14:27:50,733 Output [INFO]:

{"event":{"type":"detector","date":"1595428070","device":"XX.XX.XX.9","interface

":"eth0","plugin_id":"30000","plugin_sid":"1","src_ip":"XX.XX.XX.11","src_port":

"BB","dst_ip":"XX.XX.XX.99","dst_port":"CC","userdata1":"VEVTVF9FVkVOVA==","user

data2":"VGhpcyBpcyBhIGFzZHMgZWF2ZW50","log":"SnVsIDIyIDE0OjI3OjUwIHNkbmNsaWVudCB

0ZXN0bG9nIFt0ZXN0U2Vuc29yXSBURVNUX0VWRU5UOiB7c3JjX2lwPTExLjExLjExLjExLCBwb3J0PTE

xMSwgZHN0X2lwPTk5Ljk5Ljk5Ljk5LCBkc3RfcG9ydD0zOTcsIGRlc2M9IlRoaXMgaXMgYSBhc2RzIGV

hdmVudCJ9IA==","fdate":"2020-07-22 14:27:50","event_id":"cc2711ea-936b-0242-

ac11-000285b6525a"}}

Test Case Result Achieved

Test Case ID XL-EPDS-02 Component Honeypots

Description Communication between honeypots logs and XL-SIEM

SPEC ID SPEC-F1, SPEC-F2 Priority High

Prepared by ATOS Tested by TECN

Pre-condition(s) Honeypot and XL-SIEM Agent needs to be deployed

 D5.1
Version 1.5

© SDN-microSENSE consortium Page | 62
Public document

Test steps

1 A testing honeypot sends an example log to the XL-SIEM Agent using rsyslog at port 5200

2 The log is transmitted through the rsyslog secured channel

3 The logs is received by the XL-SIEM Agent

Input data Log from the testing honeypot

honeypot {"eventID":"0004","name":"Read operation","timestamp": "Tue Jul

21 09:38:22

2020","parameters":{"{"key":"ip","value":"XX.XX.XX.19:55157"},{"key":"ln",

"value":"LPHD1"},{"key":"dataObject","value":"PhyHealth"},{"key":"fc","val

ue":"ST"}"}}

Result Data received by the XL-SIEM agent at /var/log/syslog

Jul 21 09:38:30 digitalenergypi honeypot

{"eventID":"0001","name":"Connection closed","timestamp": "Tue Jul 21

09:38:30 2020","parameters":{"{"key":"ip","value":"XX.XX.XX.19:CC"}"}}

Test Case Result Achieved

Test Case ID XL-EPDS-03 Component Nightwatch

Description Communication between Nightwatch logs and XL-SIEM

SPEC ID SPEC-F1, SPEC-F2 Priority High

Prepared by ATOS Tested by CLS

Pre-condition(s) Testbed deployed

Test steps

1 Nightwatch sends an example log to the XL-SIEM Agent using rsyslog at port 5200

2 The log is transmitted through the rsyslog secured channel

3 The logs is received by the XL-SIEM Agent

Input data Message sent by CLS with a simple plain text message

Result Log received at the XL-SIEM Agent:

Jun 26 12:17:46 preetika-VirtualBox mytool This is a test file from CLS.

Test Case Result Achieved

Test Case ID XL-EPDS-04 Component UOWM detectors

 D5.1
Version 1.5

© SDN-microSENSE consortium Page | 63
Public document

Description Communication between Modbus Intrusion Detection Sensor logs and XL-

SIEM

SPEC ID SPEC-F1, SPEC-F2 Priority High

Prepared by ATOS Tested by UOWM

Pre-condition(s) Testbed deployed

Test steps

1 Modbus Intrusion Detection Sensor sends an example log to the XL-SIEM Agent using rsyslog

at port 5200

2 The log is transmitted through the rsyslog secured channel

3 The logs is received by the XL-SIEM Agent

Input data Message sent by UOWM with a simple plain text message

Result Log received at the XL-SIEM Agent:

Jun 30 16:34:06 snf-7871 uowm_test This is a test from file

Test Case Result Achieved

Test Case ID XL-EPDS-04 Component XL-SIEM Engine

Description Simple generation of test alert

SPEC ID SPEC-F3, SPEC-F4, SPEC-F5 Priority High

Prepared

by

ATOS Tested by ATOS

Pre-

condition(s

)

Log sent to the XL-SIEM agent.

Correlation rules prepared at the XL-SIEM Engine

Test steps

1 Test XL-EPDS-01 is carried out to send an event to the XL-SIEM agent

2 Normalized event is sent to the XL-SIEM engine from the XL-SIEM Agent

3 Correlation rules are applied, and a security alert is triggered

Input data Test logs, as defined in XL-EPDS-01

Result Security alert issued by the XL-SIEM agent.

 D5.1
Version 1.5

© SDN-microSENSE consortium Page | 64
Public document

Test Case

Result

Achieved

Test Case ID XL-EPDS-05 Component XL-SIEM engine (RabbitMQ)

Description Test to check that consumers can read alerts properly from the RabbitMQ where the

XL-SIEM exports alerts

SPEC ID SPEC-F3 Priority High

Prepared by ATOS Tested by ATOS

Pre-

condition(s)

Test XL-EPDS-04

RabbitMQ deployed and configured

Test steps

1 Test XL-EPDS-04 is carried out to generate a simple alert

2 Check the RabbitMQ panel that the alert is correctly pushed into the alerts queue

Input data Test log

Result Alert available at the RabbitMQ queue

 D5.1
Version 1.5

© SDN-microSENSE consortium Page | 65
Public document

Test Case

Result

Achieved

Evidences of alert received by the RabbitMQ server from the XL-SIEM

 D5.1
Version 1.5

© SDN-microSENSE consortium Page | 66
Public document

8 Innovation Summary
The main innovations derived from the work carried out in T5.1 are related to the support of protocols

commonly used by EPES, such as Modbus, DNP3, IEC 60870-5-104, IEC61850 and IEEE C37.118. With

the support of these protocols the XL-SIEM spans its usage to additional domains not possible before

SDN-microSENSE, such as EPES and also other domains where those protocols are commonly used (i.e.,

Modbus, largely used in the industry domain). More specifically, adding support of these protocols has

entailed several activities such as understanding the logs generated as a result of the activities carried

out using them, processing them, parsing them and interpreting the information contained.

Additionally, an effort of security intelligence has been required to

1) identify patterns associated to the type of logs received, evaluating different criteria such as their

occurrence,

2) identify anomalies associated to those patterns,

3) create correlation rules to automate the generation of security alerts upon the reception of logs

matching those patterns identified as incidents

4) export those alerts for their usage by other components of the SDN-microSENSE platform, namely

to

a. export anonymous threat intelligence by the ARIEC,

b. evaluate impact and design self-healing actions through the S-RAF, and

c. automatically deploy honeypots by the Honeypot Manager upon reception of zero-day

attack alerts.

As it has been highlighted before, this deliverable is the first document that reports outcomes of WP5

tasks and many of the aspects described here will be extended in more detail in the following

deliverables of WP5:

• Detection of attacks associated to EPES protocols is described in D5.2

• Machine learning based tools to detect attacks associated to EPES protocols are described

in D5.3.

• Detection and reporting of access control activities and privacy aspects are described in

D5.4.

Threat information sharing capabilities and anonymization are described in D5.5 as part of the

development of the ARIEC component.

 D5.1
Version 1.5

© SDN-microSENSE consortium Page | 67
Public document

9 Conclusions
This deliverable has presented the details of the XL-EPDS module, in charge of managing the detection

of cyber incidents within EPES infrastructure. Within the XL-EPDS module, this deliverable describes

the core of this module, represented by the XL-SIEM which bridges the detectors deployed in the EPES

infrastructure monitoring different protocols commonly used by the EPES domain.

This deliverable has also described the mechanisms developed to exporting security alerts and

normalized events, which interface with several components of the SDN-microSENSE infrastructure.

These mechanisms are based on messaging queues using RabbitMQ.

This is the first document reporting activities carried out in WP5, including details of the protocols

being monitored by the XL-EPDS and initial highlights of the detectors developed to monitor those

protocols, which are connected to the XL-SIEM to send logs for its correlation, applying new correlation

rules created specifically for the detection of incidents within EPES infrastructures.

Finally, this document has also detailed the testbed deployed to test the initial connections of external

components, not just WP5 components but also from other WPs, with the XL-SIEM. A set of unit tests

has also been carried out and described in this deliverable.

 D5.1
Version 1.5

© SDN-microSENSE consortium Page | 68
Public document

10 References

[Andy+17] Andy, S., Rahardjo, B., & Hanindhito, B. (2017, September). Attack scenarios and security
analysis of MQTT communication protocol in IoT system. In 2017 4th International Conference on
Electrical Engineering, Computer Science and Informatics (EECSI) (pp. 1-6). IEEE.

[Banks+14] Banks, A. and Gupta, R, ”MQTT version 3.1.1,” OASIS Standard, 2014

[Bedi+18] Bedi, G., Venayagamoorthy, G. K., Singh, R., Brooks, R. R., & Wang, K. C. (2018). Review of
Internet of Things (IoT) in electric power and energy systems. IEEE Internet of Things Journal, 5(2), 847-
870.

[Cejka+16] Cejka, T., & Robledo, A. (2016). Detecting Spoofed Time in NTP Traffic. In The 4th Prague
Embedded Systems Workshop (PESW2016).

[Chamou+19] Chamou, D., Toupas, P., Ketzaki, E., Papadopoulos, S., Giannoutakis, K. M., [, A., &
Tzovaras, D. (2019, September). Intrusion Detection System Based on Network Traffic Using Deep
Neural Networks. In 2019 IEEE 24th International Workshop on Computer Aided Modelling and Design
of Communication Links and Networks (CAMAD) (pp. 1-6). IEEE.

[Drias+2015] Drias, Z., Serhrouchni, A., & Vogel, O. (2015, July). Taxonomy of attacks on industrial
control protocols. In 2015 International Conference on Protocol Engineering (ICPE) and International
Conference on New Technologies of Distributed Systems (NTDS) (pp. 1-6). IEEE

[Errata+15] Errata, O. S. I. A. (2015). MQTT Version 3.1. 1 Plus Errata 01

[Gartner2020] Kelly Kavanagh, Toby Bussa, Gorka Sadowski.Magic Quadrant for Security Information
and Event Management. Published 18 February 2020. Available online at
https://www.gartner.com/en/documents/3981040

[Granadillo+19] Granadillo, Gustavo & Diaz, Rodrigo & Medeiros, Ibéria & Gonzalez-Zarzosa, Susana &

Machnicki, Dawid. (2019). LADS: A Live Anomaly Detection System based on Machine Learning

Methods. 10.5220/0007948904640469.

[IEEEC37+11] IEEE Standard for Synchrophasor Data Transfer for Power Systems," in IEEE Std

C37.118.2-2011 (Revision of IEEE Std C37.118-2005), vol., no., pp.1-53, 28 Dec. 2011, doi:

10.1109/IEEESTD.2011.6111222.

[Ketzaki+19] Ketzaki, E., Drosou, A., Papadopoulos, S., & Tzovaras, D. (2019, October). A light-weighted
ANN architecture for the classification of cyber-threats in modern communication networks. In 2019
10th International Conference on Networks of the Future (NoF) (pp. 17-24). IEEE.

[Khan+16] Khan, Rafiullah, et al. "IEEE C37. 118-2 Synchrophasor Communication Framework-
Overview, Cyber Vulnerabilities Analysis and Performance Evaluation." ICISSP. 2016.

[Knapp+14] Knapp, E. D., & Langill, J. T. (2014). Industrial Network Security: Securing critical
infrastructure networks for smart grid, SCADA, and other Industrial Control Systems. Syngress.

[Malhotra+16] Malhotra, A., Cohen, I. E., Brakke, E., & Goldberg, S. (2016, February). Attacking the
Network Time Protocol. In NDSS.

[Marinos+13] Marinos, L. (2013). Smart Grid threat landscape and good practice guide. White Paper,
European Network and Information Security Agency (ENISA).

https://www.gartner.com/en/documents/3981040

 D5.1
Version 1.5

© SDN-microSENSE consortium Page | 69
Public document

[Ozgur+17] Ozgur, U., Nair, H. T., Sundararajan, A., Akkaya, K., & Sarwat, A. I. (2017, October). An
efficient MQTT framework for control and protection of networked cyber-physical systems. In 2017
IEEE Conference on Communications and Network Security (CNS) (pp. 421-426). IEEE.

[Rinaldi+16] Rinaldi, S., Della Giustina, D., Ferrari, P., Flammini, A., & Sisinni, E. (2016). Time
synchronization over heterogeneous network for smart grid application: Design and characterization
of a real case. Ad Hoc Networks, 50, 41-57.

[SDN22] SDNmicroSENSE Deliverable D2.2. User & Stakeholder, Security and Privacy Requirements

2020

[SDN23] SDNmicroSENSE Deliverable D2.3 Platform Specifications and Architecture. 2020

[SDN24] SDNmicroSENSE Deliverable D2.4 Pilot, Demonstration & Evaluation Strategy. 2020

[SDN33] SDNmicroSENSE Deliverable D3.3 EPES Honeypots. 2020

[SDN51] SDNmicroSENSE Deliverable D5.1 XL-SIEM System. 2020

[SDN53] SDNmicroSENSE Deliverable D5.3 ADS and CLS Discøvery Systems. 2020

[SDN54] SDNmicroSENSE Deliverable D5.4. Overlay Privacy Framework. 2020

[SDN55] SDNmicroSENSE Deliverable D5.4. Cloud-based Anonymous Repository of Incidents. 2020

 [Toupas+19] Toupas, P., Chamou, D., Giannoutakis, K. M., Drosou, A., & Tzovaras, D. (2019,
December). An Intrusion Detection System for Multi-class Classification Based on Deep Neural
Networks. In 2019 18th IEEE International Conference On Machine Learning And Applications (ICMLA)
(pp. 1253-1258). IEEE.

[UOWM1+20] D. Pliatsios, P. Sarigiannidis, T. Lagkas, and A. G. Sarigiannidis,“A survey on scada
systems: Secure protocols, incidents, threats and tactics,”IEEE Communications Surveys & Tutorials,
2020.

[UOWM2+20] O. Igbe, I. Darwish and T. Saadawi, "Deterministic Dendritic Cell Algorithm Application
to Smart Grid Cyber-Attack Detection", 2017 IEEE 4th International Conference on Cyber Security and
Cloud Computing (CSCloud), 2017. Available: 10.1109/cscloud.2017.12 [Accessed 15 July 2020].

[Yasakethu +13] Yasakethu, S. L. P., & Jiang, J. (2013, September). Intrusion detection via machine
learning for SCADA system protection. In 1st International Symposium for ICS & SCADA Cyber Security
Research 2013 (ICS-CSR 2013) 1 (pp. 101-105).

