
   
 

 
This project has received funding from the European Union’s Horizon 2020  

research and innovation programme under grant agreement No 833955   

 

 

 

 

Project No. 833955 

Project acronym: SDN-microSENSE  

Project title: 

SDN - microgrid reSilient Electrical eNergy SystEm 

 

Deliverable D4.5  
Blockchain-based Energy Trading Framework  

 
 
 
 
 
 

Programme: H2020-SU-DS-2018 
Start date of project: 01.05.2019 
Duration: 36 months  

 
 
 
 

Editor: CERTH 

Due date of deliverable: 31/12/2020 Actual submission date: 30/12/2020 

  

Ref. Ares(2020)8010737 - 31/12/2020



   D4.5 
Version 1.0 

 

 

© SDN microSENSE consortium   Page | 2 
Public document 

 

Deliverable Description: 
Deliverable Name Blockchain-based Energy Trading Framework 
Deliverable Number D4.5 

Work Package WP 4 

Associated Task T4-5 

Covered Period M05-M20 
Due Date M20 

Completion Date M20 

Submission Date 23/12/2020 

Deliverable Lead Partner CERTH 

Deliverable Author(s) CERTH, TECNALIA, IREC, IDENER, IPTO 

Version 1.0 

 

 

CHANGE CONTROL 

DOCUMENT HISTORY 

Version Date Change History Author(s) Organisation 

0.1 13/11/2020 Table of Contents 

Vakakis Nikolaos,  
Pasias Achilleas, 
Kotsiopoulos 
Athanasios 
(CERTH) 

CERTH 

0.2 20/11/2020 
State of the art in blockchain-
based energy trading systems 
completed 

Jose Antonio Perez 
Jimenez (IDENER), 
Panagiotis Famelis 
(IPTO) 

IDENER, IPTO 

0.3 30/11/2020 
Requirements analysis section 
completed 

Vakakis Nikolaos, 
Lazaridis Georgios 
(CERTH), 
Marisa Escalante 
Martinez, Inaki 
Seco Aguirre, 
Dediego Santiago 
(TECNALIA)   

CERTH, TECNALIA 

0.4 05/12/2020 

All sections related to 
Blockchain-based Intrusion 
and Anomaly Detection 
module completed 

Marisa Escalante 
Martinez, Inaki 
Seco Aguirre, 

TECNALIA 

Dissemination Level 
PU Public X 

PP Restricted to other programme participants (including the Commission 
Services) 

 

RE Restricted to a group specified by the consortium (including the 
Commission Services) 

 

CO Confidential, only for members of the consortium (including the 
Commission Services) 

 



   D4.5 
Version 1.0 

 

 

© SDN microSENSE consortium   Page | 3 
Public document 

 

Dediego Santiago 
(TECNALIA)   

0.5 09/12/2020 
Development section of e-
auction module completed  

Vakakis Nikolaos, 
Kotsiopoulos 
Athanasios 
(CERTH) 

CERTH 

0.6 14/12/2020 First draft for peer review 

Vakakis Nikolaos,  
Kotsiopoulos 
Athanasios, 
Lazaridis Georgios, 
Pasias Achilleas 
(CERTH), 
Marisa Escalante 
Martinez, Inaki 
Seco Aguirre, 
Dediego Santiago 
(TECNALIA), 
Jose Antonio Perez 
Jimenez (IDENER), 
Panagiotis Famelis 
(IPTO), Pol Paradel 
Sola (IREC) 

CERTH, TECNALIA, 
IPTO, IREC 

0.7 23/12/2020 
Second peer review version, 
addressing the comments 
from initial peer review 

Vakakis Nikolaos 
(CERTH), Marisa 
Escalante Martinez 
(TECNALIA), 
Panagiotis Famelis 
(IPTO), Pol Paradel 
Sola (IREC) 

CERTH, TECNALIA, 
IPTO, IREC 

1.0 29/12/2020 
Final version, after receiving 
and addressing the reviewer’s 
comments 

Vakakis Nikolaos 
(CERTH) 

CERTH 

DISTRIBUTION LIST 

Date Issue Group 

16/12/2020 1st Revision Energynautics, SINTEF, TM, QM, SAB 

23/12/2020 2nd Revision Energynautics, SINTEF, TM, QM, SAB 

24/12/2020 Acceptance Energynautics 

29/12/2020 Acceptance SINTEF, TM, QM 

30/12/2020 Acceptance SAB 

30/12/2020 Submission AYESA 

 

 

 

 



   D4.5 
Version 1.0 

 

 

© SDN microSENSE consortium   Page | 4 
Public document 

 

 

 

SAB APPROVAL  

NAME INSTITUTION DATE 

Prof. Sokratis Katsikas NTNU 30/12/2020 
Marc Stauch LUH 30/12/2020 

Dave Raggett ERCIM 30/12/2020 

  

Academic and Industrial partner revision 

NAME INSTITUTION DATE 

Ellen Krohn Aasgård Academic partner:  SINTEF 29/12/2020 

Nis Martensen  Industrial partner: 
Energynautics 

21/12/2020 
 

  

Quality and Technical manager revision 

NAME INSTITUTION DATE 

Dimosthenis Ioannidis CERTH 27/12/2020 

Drosou Anastasios CERTH 27/12/2020 

 

 

  



   D4.5 
Version 1.0 

 

 

© SDN microSENSE consortium   Page | 5 
Public document 

 

Table of contents 
 

Table of contents .............................................................................................................. 5 

Acronyms .......................................................................................................................... 7 

List of Figures .................................................................................................................... 8 

List of Tables ..................................................................................................................... 9 

Executive Summary ......................................................................................................... 11 

1. Introduction ............................................................................................................. 12 
1.1 Purpose of this document ...................................................................................................... 12 

1.2 Relation to other tasks and deliverables ............................................................................... 12 

1.3 Structure of this document .................................................................................................... 12 

2. State of the art in blockchain-based energy trading systems ..................................... 13 

3. Architecture and Requirements ................................................................................ 16 
3.1 Objective of the system and placement in SDN-microSENSE architecture ........................... 16 

3.2 Requirements analysis ........................................................................................................... 17 

3.2.1 Major inputs and outputs .............................................................................................. 17 

3.2.2 Functional requirements ................................................................................................ 18 

3.2.3 Non-functional requirements ........................................................................................ 20 

4. System analysis ........................................................................................................ 23 

4.1 Component model ................................................................................................................. 25 

4.1.1 E-auction module ........................................................................................................... 25 

4.1.1.1 E-auction mechanism ................................................................................................. 26 

4.1.1.2 Penalty mechanism .................................................................................................... 30 

4.1.1.3 Vickrey-Clarke-Groves chaincode .............................................................................. 33 

4.1.1.4 ERC20 token chaincode .............................................................................................. 38 

4.1.1.5 Priority table chaincode ............................................................................................. 40 

4.1.1.6 Market chaincode ...................................................................................................... 42 

4.1.1.7 E-auction module APIs ............................................................................................... 43 

4.1.2 Blockchain Based Intrusion and Anomaly Detection module ........................................ 57 

4.2 Interfaces model .................................................................................................................... 62 

4.2.1 External interfaces with other SDN-microSENSE application plane modules ............... 62 

4.2.1.1 Communication of e-auction module with EMO ....................................................... 62 

4.2.1.2 Communication of e-auction module with S-RAF ...................................................... 64 



   D4.5 
Version 1.0 

 

 

© SDN microSENSE consortium   Page | 6 
Public document 

 

4.2.1.3 Communication of Blockchain-based Intrusion and Anomaly Detection with XL-SIEM

 64 

4.2.2 External interfaces with SDN-microSENSE infrastructure plane modules..................... 65 

4.2.2.1 Connection of e-auction module with RPI of smart meter ........................................ 65 

4.2.2.2 Connection of Blockchain Based Intrusion and Anomaly Detection module with RPI 

of smart meter ........................................................................................................................... 67 

5. System verification ................................................................................................... 68 
5.1 Ε-auction module unit tests ................................................................................................... 69 

5.2 Blockchain Based Intrusion and Anomaly Detection module unit tests.............................. 116 

6. System Installation ................................................................................................. 131 
6.1 Ε-auction module ................................................................................................................. 131 

6.1.1 Ε-auction module installation ...................................................................................... 131 

6.2 Blockchain Based Intrusion and Anomaly Detection module .............................................. 132 

6.2.1 BIAD installation ........................................................................................................... 132 

6.2.2 Agent installation ......................................................................................................... 133 

7. Innovation Summary .............................................................................................. 133 

8. Conclusions ............................................................................................................ 135 

References .................................................................................................................... 137 
 

 

 

  



   D4.5 
Version 1.0 

 

 

© SDN microSENSE consortium   Page | 7 
Public document 

 

Acronyms 
Acronym Explanation 

AA Adaptive Aggressiveness  

API Application Programming Interface 

BIAD Blockchain-based Intrusion and Anomaly Detection 

CDA Continuous Double Auction 

DER Distributed Energy Resource 

DLT Distributed Ledger Technologies 

DSO Distribution System Operator 

DHT Distributed Hash Table 

EC Energy Contribution 

EPES Electrical Power Energy System 

ESCO Energy Service Company 

ESS Energy Storage System 

EV Electric Vehicle 

GUID Globally Unique Identifier 

ISO Independent System Operator 

IDPS Intrusion Detection and Prevention System 

LCOE Levelized Cost of Energy 

LV Low Voltage 

MSP Membership Service Provider 

P2P Peer to Peer 

PV Photovoltaic 

QoS Quality of Service 

SDK Software Development Kit 

SPoF Single Point of Failure 

TLS Transport Layer Security 

TRL Technology Readiness Level 

TSO Transmission System Operator 

UUID Universally Unique Identifier 

ZIP Zero Intelligence Plus 

 

 

 

 

 

 

 



   D4.5 
Version 1.0 

 

 

© SDN microSENSE consortium   Page | 8 
Public document 

 

List of Figures 
Figure 1: Placement of blockchain-based energy trading system within SDN-microSENSE architecture

 ................................................................................................................................................................ 17 

Figure 2: e-auction Fabric network architecture ................................................................................... 26 

Figure 3: VCG auction mechanism demonstration with 3 winners ....................................................... 27 

Figure 4: VCG auction mechanism demonstration with 1 winner ......................................................... 27 

Figure 5: VCG auction mechanism demonstration, winners defined by priority of bidding ................. 28 

Figure 6: Auctioneer-Bidder API endpoints ........................................................................................... 44 

Figure 7: /apply request parameters and responses ............................................................................. 45 

Figure 8: /getBalance request parameters and responses .................................................................... 46 

Figure 9: /transfer request parameters and responses ......................................................................... 47 

Figure 10: /initVickreyCGAuction request parameters and responses ................................................. 48 

Figure 11: /getVickreyCGAuction request parameters and responses ................................................. 48 

Figure 12: /VCGsubmitSealedBid request parameters and responses .................................................. 49 

Figure 13: /VCGreveal request parameters and responses ................................................................... 50 

Figure 14: /VCGaward parameters and responses ................................................................................ 50 

Figure 15: /VCGsettle request parameters and responses .................................................................... 51 

Figure 16: /getMarkets request responses ............................................................................................ 51 

Figure 17: /applyToMarket request parameters and responses ........................................................... 52 

Figure 18: /getPriorityTable request responses .................................................................................... 52 

Figure 19: ESCO API endpoints............................................................................................................... 53 

Figure 20: /initToken request parameters and responses .................................................................... 54 

Figure 21: /getApplicants request parameters and responses.............................................................. 55 

Figure 22: /updateBalance request parameters and responses............................................................ 56 

Figure 23: /initMarket request responses ............................................................................................. 57 

Figure 24: /initPriorityTable request responses .................................................................................... 57 

Figure 25. Blockchain Based Intrusion and Anomaly Detection system components .......................... 59 

Figure 26: BIAD behaviour model .......................................................................................................... 62 

Figure 27 Example request of Market Validator .................................................................................... 63 

Figure 24: Agent algorithm .................................................................................................................... 66 

Figure 25: Penalty paying algorithm ...................................................................................................... 67 

 

 

 

 

 

 

 

 

 



   D4.5 
Version 1.0 

 

 

© SDN microSENSE consortium   Page | 9 
Public document 

 

List of Tables 
Table 1: List of functional requirements covered by the Blockchain-based Energy Trading System .... 18 

Table 2: List of non-functional requirements covered by the Blockchain-based Energy Trading System

 ................................................................................................................................................................ 20 

Table 3: Permissioned vs permissionless blockchain networks............................................................. 23 

Table 4: Comparative analysis of different blockchain platforms ......................................................... 23 

Table 5: Sample priority table ................................................................................................................ 30 

Table 6: Sample priority table with prosumer 1 being imposed 50 tokens of penalty ......................... 31 

Table 7: Sample priority table with prosumer 1 being imposed 50 tokens of penalty and prosumer 4 

being imposed 100 tokens of penalty .................................................................................................... 31 

Table 8: Sample priority table with prosumer 1 having paid 50 tokens of penalty and prosumer 4 

being imposed 100 tokens of penalty .................................................................................................... 31 

Table 9: Vickrey-Clarke-Groves chaincode functions ............................................................................ 33 

Table 10: Vickrey Clarke-Groves auction structure ............................................................................... 34 

Table 11: Participant structure .............................................................................................................. 36 

Table 12: Commodity structure ............................................................................................................. 36 

Table 13: Result structure ...................................................................................................................... 36 

Table 14: HiddenBid structure ............................................................................................................... 37 

Table 15: RevealedBid structure ............................................................................................................ 37 

Table 16: ERC20 token chaincode functions .......................................................................................... 38 

Table 17: Token structure ...................................................................................................................... 40 

Table 18: Priority table chaincode functions ......................................................................................... 40 

Table 19: Priority Table structure .......................................................................................................... 41 

Table 20: Market chaincode functions .................................................................................................. 42 

Table 21: Market structure .................................................................................................................... 43 

Table 22 Functions from the chaincode................................................................................................. 59 

Table 23 Device structure ...................................................................................................................... 60 

Table 24 Hash structure ......................................................................................................................... 60 

Table 25 Record structure ...................................................................................................................... 61 

Table 26 Alert structure ......................................................................................................................... 61 

Table 27: EMO – e-auction interface ..................................................................................................... 62 

Table 28: e-auction – SRAF interface ..................................................................................................... 64 

Table 29: BIAD - XL-SIEM interface ........................................................................................................ 65 

Table 30: E-AUCTION_01 unit test ......................................................................................................... 69 

Table 31: E-AUCTION_02 unit test ......................................................................................................... 82 

Table 32: E-AUCTION_04 unit test ......................................................................................................... 93 

Table 33: E-AUCTION_05 unit test ....................................................................................................... 111 

Table 34: BIAD_01 unit test ................................................................................................................. 116 

Table 35: BIAD_02 unit test ................................................................................................................. 118 

Table 36: BIAD_03 unit test ................................................................................................................. 122 

Table 37: BIAD_04 unit test ................................................................................................................. 125 

Table 38: Lib_mon_001 unit test ......................................................................................................... 129 

Table 39: Lib_hash_001 unit test ......................................................................................................... 129 

Table 40: Fabric_conn_001 unit test ................................................................................................... 130 



   D4.5 
Version 1.0 

 

 

© SDN microSENSE consortium   Page | 10 
Public document 

 

Table 41: agent_001 unit test .............................................................................................................. 131 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



   D4.5 
Version 1.0 

 

 

© SDN microSENSE consortium   Page | 11 
Public document 

 

Executive Summary 
 

This document is a deliverable of the SDN-microSENSE project, funded by the European Commission 

(EC) under its Horizon 2020 Research and Innovation Programme (H2020). 

It comprises deliverable D4.5, Energy Exchange using Blockchain Technologies of the SDN-microSENSE 

project. The developed Blockchain-based Energy Trading Framework is a module of the SDN-SELF 

component, that utilizes Fabric blockchain technology to achieve secure and sustainable energy 

transactions between the participants of a permissioned blockchain network. The two modules of the 

Energy Trading Framework are the e-auction and the blockchain-based Intrusion Detection System. 

The task receives as input the Functional Use Case Requirements, the Data Protection Requirements, 

the Data Security Requirements and the Reliability Requirements from task T2.2, as well as the SDN-

microSENSE platform specification and architecture from T2.3. The output it produces is the fourth 

layer of the SDN-SELF component. The document includes the identification of the aforementioned 

requirements and the analysis of how they are being addressed, as well as a State-of-the-Art Analysis 

of recent literature, related to the Blockchain technologies and the energy markets. Subsequently, 

based on these assessments, the Blockchain-based Energy Trading Framework is thoroughly described, 

including the functionalities, the inputs/outputs and the interconnections with other SDN-microSENSE 

components and modules. 

The framework is based on a permissioned blockchain network, which ensures that energy and 

financial transaction-related data are not exposed outside the consortium of organizations 

participating in the network, while it allows them to interact with smart contracts (chaincodes) to 

perform several actions within the network. The privacy of the participants is achieved by utilizing 

communication channels between organizations which ensure exposure of transactions and related 

data only to authorized members of those channels and not to any other network members. 

Furthermore, the nature of the blockchain technology ensures trusted transactions between the 

participants and non-repudiation of actions. Additionally, the Energy Trading Framework, receives and 

utilizes input from SDN-microSENSE security, risk assessment and decision support layers, thus 

ensuring safety of transactions against cyber-security threats and destabilization of the grid.  

The Technology Readiness Level (TRL) of the Energy Trading Framework by the end of the project is 

expected to be equal to 7, since it will be evaluated in real life operational environment, consisting of 

a group of prosumers belonging to same DSO, in Use Case 6. 

 

 

 

 

 

 

 



   D4.5 
Version 1.0 

 

 

© SDN microSENSE consortium   Page | 12 
Public document 

 

1. Introduction 
 

1.1 Purpose of this document 
The purpose of this document is to present the research conducted and the results achieved in Task 

4.5, Energy Exchange using Blockchain Technologies. The task is included in Work Package 4, Cyber-

secured & Resilient SDN-based Energy Ecosystem. The blockchain-based energy trading system is a 

module of the SDN-SELF component which utilizes blockchain technology to host an energy exchange 

framework, the operation of which takes into account the energy sustainability, the privacy of the 

participants sensitive data, and the security of their infrastructure. 

 

1.2 Relation to other tasks and deliverables 
Task 4.5 receives the security and privacy requirements from task 2.2 and the platform’s architecture 

from task 2.3 and produces the fourth layer of the SDN-SELF component. Deliverable 4.5 interacts with 

the following deliverables, references to which will be found in this document: 

• D2.2, User & Stakeholder, Security and Privacy Requirements: This deliverable is the output 

of Task 2.2 and defines the user (energy operators, prosumers, consumers etc.), the security 

and the privacy requirements of the SDN-microSENSE project. 

• D2.3, Platform Specification & Architecture: This deliverable is the output of Task 2.3, which 

defines the SDN-microSENSE architecture fed by the energy application requirements in 

security, privacy, and information protection. 

• D3.5, Implementation of SDN-microSENSE Risk Assessment Framework: This deliverable is 

the output of Task 3.5 and assesses the level of risk in all the involved EPES devices and 

systems and forwards the data to the Energy Trading Framework. 

• D4.4, Distribution Grid Restoration using Deterministic Optimisation and Machine Learning-

based Threat Handling: This deliverable is the output of Task 4.4 and deploys the appropriate 

management processes that will balance the energy supply and demand for each island. 

These processes will determine whether the transactions conducted in the Energy Trading 

Framework endanger the island’s stability or not. 

• D5.1, Large Scale SIEM & Ultrafast Logging: This deliverable performs effective and timely 

logging of cybersecurity events in the EPES and provides advanced protection for the 

involved stakeholders of the Energy Trading Framework. 

 

1.3 Structure of this document 
The document is structured in 8 sections as follows: 

1. Section 1 is the introduction of the document, and it presents the structure of the document, 

the purpose of the deliverable, and its relation to other tasks and deliverables. 

2. Section 2 includes the State-of-the-Art Analysis of recent literature, related to Blockchain-

based trading systems. 

3. Section 3 identifies the user, security and privacy requirements and describes how they are 

addressed by the Energy Trading Framework. Also, it describes the placement of the Energy 



   D4.5 
Version 1.0 

 

 

© SDN microSENSE consortium   Page | 13 
Public document 

 

Trading Framework within the SDN-microSENSE architecture and documents its major inputs 

and outputs. 

4. Section 4 analyses the functionalities and the interfaces of the two modules of the 

framework, namely the e-auction module and the Blockchain-based Intrusion and Anomaly 

Detection (BIAD) module. 

5. Section 5 demonstrates the unit tests that were conducted in order to ensure that the two 

modules’ operation is sustainable and efficient and presents their results. 

6. Section 6 describes the procedures and the specifications required for the installation of the 

e-auction module and the BIAD Module. 

7. Section 7 presents the innovation summary that this deliverable proposes. 

8. Section 8 concludes the document. 

 

2. State of the art in blockchain-based energy trading systems 
 

The latest technological developments are leading us to the transition to decentralised power systems. 

Microgrids, distributed energy resources (DERs) and micro-generation are transforming traditional 

consumers to what is called prosumers, i.e., consumers who also produce energy, thus enabling them 

to participate in the energy grid in new disruptive ways. This new approach introduces new challenges 

and opportunities in the energy markets. Until now, the energy market access was centralised, usually 

orchestrated by the System Operator (an ISO or a TSO) and concerned large generation units and 

clusters of units controlled by bigger parties and corporations making it difficult for small scale 

prosumers to actually participate in the energy market. By developing decentralized markets and 

enabling prosumers to trade among themselves and on the edge of the grid, a more robust and cleaner 

system can exist. In the technical and academic literature, new decentralised approaches have been 

developed to tackle this challenge. 

One of the most recurring technique is the use of blockchain-based energy trading systems. On this 

aspect, distributed ledger technologies (DLT) such as blockchain technologies enable the decentralised, 

trusted, and secure exchange of energy trading transactions between parties. The blockchain systems' 

decentralised nature enhances system resilience to outages and cyberattacks, avoiding the single point 

of failure design of many current centralised systems. Additionally, the data in blockchain systems is 

easily verifiable by interested parties and always available, enhancing data integrity and accounting. 

All of these features, along with the automation provided by the introduction of smart contracts in the 

blockchain machinery, establishes this technology as a basis for the future energy sector [1].  On the 

context of Task 4.5 of this project, several technical implementations have been carried on new 

blockchain-based energy trading technologies and tools. On this aspect, the current state of the art in 

this field is presented in the upcoming paragraphs.  

In 2017, Wang et al. [2] proposed a peer-to-peer decentralised electricity transaction mode for 

microgrids based on Bitcoin [3] as a blockchain and currency system and the use of the continuous 

double auction (CDA) mechanism. Additionally, this work applies an adaptative aggressiveness (AA) 

trading strategy for increasing profits to market participants. The CDA mechanism is a fixed-duration 

auction system in which several buyers and sellers bid on the market to buy and sell goods (in this case, 



   D4.5 
Version 1.0 

 

 

© SDN microSENSE consortium   Page | 14 
Public document 

 

energy), respectively, and where transactions will take place at any time if an offer to buy and an offer 

to sell match [4]. Based on this transaction pattern, prosumers will send quotes to the CDA market 

according to an AA strategy throughout this transaction pattern and adjust quotes continuously 

according to transaction results. Buyers and sellers achieve digital proof of energy transaction and 

settlement of contracts using blockchain once the market matches, thereby achieving direct microgrid 

electricity transactions. Bitcoin is used for currency exchange, and digital certificates are employed as 

contracts that indicate the right to use the corresponding electricity once the auction ends.  

Later, A. Hahn [5] et al. demonstrated the use of blockchain-based energy auctions through the 

Ethereum blockchain technology [6]. The auction mechanisms implemented through smart contract is 

the Vickrey second price auction [7] mechanism to encourage honest bids on auctions. This work had 

a real successful implementation on a testbed with a 72kW photovoltaic (PV) array. The architecture 

of this work is based on multiple agents in charge of selling and bidding operations, including smart 

meter agents and the respective agent for smart contract execution. 

In 2018, Guerrero et al. [8] introduced the first technique for ensuring network constraints in P2P 

blockchain-based trading schemes in low-voltage (LV) networks. This work is based on a CDA auction 

mechanism with a zero intelligence plus (ZIP) strategy implemented as agents. ZIP agents use an 

adaptive process that can offer output somewhat close to that of stock exchange traders. The last key 

aspect of this work is the Network Permission Structure. This mechanism validates the auctions' 

voltage variations and line congestions to prevent problems in the network while informing the market 

participants of potential issues. Moreover, the transaction system internalises the extra cost due to 

the technical constraints of the network. The benchmarks carried on this work indicate that this 

scheme does not suffer from scalability issues which is a recurring issue of blockchain-based 

environments.  

Furthermore, a new blockchain-based energy trading scheme is presented in [9]. In this work, Li et al. 

introduce a new variant with permissioned blockchain technologies to protect privacy and security. 

This way, having a more restricted blockchain instead of a public one, the attack surface is reduced 

while preserving privacy to specifically authorised participants in the market. Another interesting 

addition to preventing the delay in blockchain-based transactions is the introduction of a credit-based 

payment scheme to support faster and more frequent trading among peers. The removal of the use of 

cryptocurrency results into an enhancing of performance of the overall energy trading scheme. 

Privacy is also the subject of the work in [10]. As Gai et al. discuss one of the main disadvantages of a 

blockchain solution is its vulnerability in terms of linking attacks. As the transactions are traceable, an 

attacker that has access to other public data (from utility companies or from public records for 

example) could link transactions to users even if they are anonymised. They describe three types of 

attacks and present a way of defend against them. The basic idea revolves around the mapping of 

different accounts. Basically, every time transactions exceed a certain threshold, the payments are 

deposited to newly created accounts, which are mapped to the original, making it difficult for the 

attacker to discover the mappings. The proposal takes into account also the fact that some accounts 

may be inactive for some time; to preserve their privacy, the system creates new dummy accounts 

every time a new account is created, proportional to the inactive accounts, every time a transaction is 

made. 



   D4.5 
Version 1.0 

 

 

© SDN microSENSE consortium   Page | 15 
Public document 

 

An interesting combination of machine learning and blockchain can be found in [11]. Ferrag et al. 

propose the Deepcoin framework that uses a byzantine fault tolerance based blockchain together with 

a deep-learning IDS to detect network attacks and deceitful transactions. They describe a blockchain 

architecture encompassing home, building and neighborhood networks where prosumers can trade 

energy amongst themselves. On top of that, they develop a deep learning algorithm that checks if the 

offers, from sellers or buyers, are genuine, trusted and comply with the set of rules of the system. They 

also evaluate the Deepcoin framework with different sets, providing accuracy over 90% against most 

types of attacks. 

Wang et al. in [12], propose a trading system that is able to integrate with today’s operational models 

based on crowdsourcing. They categorize between two different classes of energy trading transaction, 

between prosumers or crowdsourcees and the utility, as they exist today and among crowdsourcees. 

The algorithm minimizes costs by rescheduling any shapeable loads and DERS. In the first phase it 

behaves akin to day-ahead scheduling, which is the form most markets work today. However, in the 

second phase any balances that need to be made are first discovered in the local trading market. They 

also propose different pricing schemes for each type of transactions, on the one hand providing 

incentives to prosumers to participate in the balancing market and allowing to negotiate prices among 

themselves. Their proposal in most cases require a central authority to manage the grid and clear the 

market, however island use cases are described where small-scale energy trading exists without any 

central authority. 

Of course, the blockchain P2P markets are not without problems. Hoarding of energy can be observed, 

with prosumers buying energy when it is cheaper and keeping it to influence the market prices. This is 

the problem [13] tries to tackle by providing a demurrage mechanism. Yashaya et al. describe a market 

model where they try to optimize consumption by shifting demand to off-peak hours and incentivize 

nearby prosumers to buy on DERs’ peak hours. This is done by changing the price of energy with time, 

so when a prosumers hoards energy or delays to buy time, the buying price will be higher and the 

selling price lower than the utility’s price. Therefore, for a prosumer to increase selling price, they 

should increase their consumption and to decrease the buying price, they should decrease their 

consumption.  To implement this they use smart contracts, not just as algorithm for the trading itself 

but trying to incorporate in them any contractual clauses, regulatory guidelines etc. According to their 

results the demurrage mechanism proves useful as the system produces better prices overall and 

optimizes consumption when prosumers are active in the local energy market. 

The use of smart contracts in blockchain energy trading frameworks is examined also in [14]. Han et 

al. propose a multidimensional blockchain framework, fully describing the whole process by presenting 

three layers (infrastructure, players, processes) and what each encompasses. The trading itself follows 

a double auction where the producers’ bids are sorted in increasing order and the consumers’ in 

decreasing order. After matching the bids, the price is beneficial for all and closer to what the 

participants would actually require. Any unmatched bids are sold or bought by the DSO, who is also 

responsible to balance and correct any imbalances. Their simulations have shown that over 80% of the 

energy is traded locally in prices that are satisfactory and that the imbalances concern only 2,91% of 

the total actual energy. 

Lastly, there have been some attempts to combine SDN technologies with blockchain markets as can 

be seen in [15]. Chaudhary et al. concern themselves with an EV (electric vehicles) energy trading and 

use SDN to improve QoS. Their approach touches the subject of edge networking, by describing a 



   D4.5 
Version 1.0 

 

 

© SDN microSENSE consortium   Page | 16 
Public document 

 

layered architecture that separates edge and core networks, using SDN to efficiently orchestrate the 

traffic. Each area, called cloud, comprises a local SDN controller, a transaction server that maintains 

the transaction records and meets the energy demands of the users, and local aggregators that behave 

like miner nodes. Additionally, there exists a global controller, which creates the replication 

mechanism, maintains the global consistency of the database and reduces communication overhead. 

Their performance analysis shows that the proposal is lightweight and any additional overhead from 

SDN and computations is kept to a minimum. 

Also in [16], an SDN-based energy internet is proposed with attention to privacy. Lu et al. propose an 

architecture that is based on DHT, to obfuscate the users’ privacy through hash indexing, utilizing a 

bloom filter to screen the electrical energy information. The sellers produce energy and store it in the 

main energy storage systems and buyers send requests for energy with specific constraints including 

benefit, cost etc. The system is responsible to match requests to sellers and inform buyers about their 

options. Because of the use of DHT, the system behaves essentially as a black box preserving the 

privacy throughout the transaction. SDN in this case, is used more as a design framework for 

structuring energy internet in a way that separates data/energy, and forward/transaction planes and 

less as a technology itself, as the proposal is on a prototype abstract level. 

 

3. Architecture and Requirements  
 

3.1 Objective of the system and placement in SDN-microSENSE architecture 
The Blockchain-based Energy Trading System is the last layer of SDN-SELF and aims to provide a safe 

and trustworthy environment for secure energy trading within islanded parts of the smart-grid. A 

permissioned blockchain network is established between smart-grid organizations of the island, where 

they are able to take part in e-auctions as buyers or sellers or, in case of energy service company 

organizations (ESCO), manage the financial transactions through network dedicated tokens. The 

tokens are based on ERC20 protocol, which defines a set of rules regarding the manner in which the 

tokens can be transferred, how transactions are approved and how users can access data about a 

token. The Blockchain-based Energy Trading System, not only offers important features such as 

verifiability and immutability of transactions, but also leverages important information provided by 

other SDN-microSENSE application layer components and modules. More specifically, e-auction results 

are evaluated by the OTSC tool of EMO module, in order to avoid grid destabilization problems that 

may occur as a result of energy exchange agreements. Furthermore, the Blockchain-based Intrusion 

and Anomaly Detection module monitors the smart metering equipment of the organizations and 

produces security-related alerts that are sent to XL-SIEM of XL-EPDS component and subsequently to 

S-RAF component.  The latter assesses the produced alerts and provides that information to the e-

auction module, in order to deny participation to the market to organizations that may operate 

compromised equipment. The placement of the Blockchain-based Energy Trading System within the 

SDN-microSENSE platform architecture can be observed in Figure 1. 



   D4.5 
Version 1.0 

 

 

© SDN microSENSE consortium   Page | 17 
Public document 

 

 

Figure 1: Placement of blockchain-based energy trading system within SDN-microSENSE architecture 

3.2 Requirements analysis  

3.2.1 Major inputs and outputs 
The Blockchain-based Energy Trading System receives input from the data/infrastructure plane and 

acts according to information collected from different sources of the SDN-microSENSE platform 

security and decision support layers. More specifically: 

• Receives data related to e-auction processes from sellers/buyers of energy that participate in 

the network. The e-auction module implements a specific e-auction protocol that will be 

discussed later in the deliverable. In order to initialize an e-auction or take part in an existing 

e-auction, participants have to use the API provided by the e-auction module of the 

Blockchain-based Energy Trading System.   

• Receives data related to token management from ESCO, such as token initialization and 

account initialization data.  

• Receives log, configuration and firmware files from RPIs connected to smart meters of the 

prosumers participating in the market, in order to detect possible alterations that could 

indicate compromise of the devices.   

• Sends smart meter security alerts that are detected from the Blockchain-based Intrusion and 

Anomaly Detection module to XL-SIEM module of XL-EPDS. 

• Receives risk assessment evaluation of the detected security alerts from the risk assessment 

module of S-RAF. 



   D4.5 
Version 1.0 

 

 

© SDN microSENSE consortium   Page | 18 
Public document 

 

• Sends the list of energy transactions that derive from the e-auction results to the OTSC tool 

of EMO module, which is also part of the SDN-SELF component and receives evaluation of 

energy trading transactions between prosumers. 

• Emits e-auction results to be accessible to all the market participants. 

3.2.2 Functional requirements 
In Table 1, there is a list with all the functional requirements that are covered by the Blockchain-based 

Energy Trading System. Those requirements are gathered from D2.2, User & Stakeholder, Security and 

Privacy Requirements. 

Table 1: List of functional requirements covered by the Blockchain-based Energy Trading System  

FR-UR-06 The system shall be able to detect and mitigate unauthorised access in near real time (in 
seconds) and with high accuracy. 

Involved modules: BIAD, XL-SIEM 

The intrusion detection module is able to detect any change to configuration or logs files related with the 
smart meters that are recorded in the blockchain agent. This system generates an alarm that should be 
analysed by the XL-SIEM. 

FR-UR-17 The system shall be able to inform in near real time (in seconds) via email and push 
notification the Security Administrator concerning possible security incidents.  

Involved modules: BIAD, XL-SIEM 

The intrusion detection model, as soon as an access to the configuration or logs files or a failure in the 
connectivity test is detected, generates an alarm that should be analysed by the XL-SIEM. 

FR-GR-06 The system shall be able to monitor in real time relevant physical parameters at all points of 
interest in the grid infrastructure. 

Involved modules: BIAD 

The intrusion detection component is available to detect information regarding the usage of RAM and send 
an alert if this usage is under the threshold established. Also, allows to detect if the smart meter is connected 
and in case  of detecting that it is not connected, generates an alert.   
FR-UC4-01 The system shall perform through encrypted contract (e.g. by using blockchain or similar 

technology) and protect the privacy of the energy trading parties 

Involved modules: e-auction  
The communication between the participants of the e-auction module is performed through a private Fabric 
blockchain network. Each participant in the network owns a digital certificate which identifies her/him as a 
member of the network. In the context of the market, participants are identified by the unique composition 
of two factors: the Membership Service Provider ID and the Certificate ID (public key) and no other 
information is exposed. Furthermore, the deployment of the sealed bid Vickrey-Clarke-Groves auction 
mechanism within the energy trading system, ensures that the bids are cryptographically protected and not 
revealed to other participants until the bidding deadline.  After revealing the bids and performing the 
Vickrey-Clarke-Groves auction algorithm to award the winners, the results are exposed only to the channel 
for which members the e-auction is conducted and not to any other network members. 

FR-UC4-02 • The system   shall   provide   a   specific   auctions-oriented protocol to allow an energy 
trading e-auction (an electronic auction for energy trading between EPES     
stakeholders) between EPES ecosystem’s stakeholders. 

• The system’s energy trading framework shall support cryptographic mechanisms to 
ensure non-repudiation of bids during an e-auction. 

Involved modules: e-auction 



   D4.5 
Version 1.0 

 

 

© SDN microSENSE consortium   Page | 19 
Public document 

 

• All the energy transactions conducted are determined by the outcome of the Vickrey-Clarke-Groves 
auction mechanism, which is a sealed bid type of auction. The auction’s algorithms are installed 
within the chaincode of the blockchain network and they are executed periodically, in determined 
time slots. 

• In a Fabric network the Public Key Infrastructure mechanism is utilized to verify signatures. Each 
participant signing a transaction cannot state that she/he has not signed the content of this 
transaction.  

 

FR-UC4-03 The system shall support appropriate APIs for the energy trading framework to receive the 
foreseen energy   equilibrium   of   the   islands   for   a   specific timeframe   in   order   to   
automatically   or   manually initiate an energy trading auction. 

Involved modules: e-auction 

Each prosumer runs a software agent that communicates with other software tools which provide 
information regarding the foreseen production and consumption of the building. Based on these 
information, the prosumers are always aware whether they will participate in an auction as bidders (if they 
have a deficit of energy), or they will conduct their own auction as auctioneers (if they have a surplus of 
energy). 
 

FR-UC4-04 The system shall ensure the payment of the EPES stakeholder who initiated an energy trading  
e-auction and the refund of the losing bidders. 

Involved modules: e-auction 

The processes of bid calculation, bid submission and payment of the corresponding stakeholder are 
performed automatically by the prosumers’ agents, therefore the consistency of the participating 
stakeholders is guaranteed. 
 

FR-UC4-05 • The system shall monitor the security status of the e-auction participants energy 
metering equipment.  

• The system shall deny initialization of an energy e-auction, in case of compromised 
smart meter of the auctioneer. 

Involved modules: BIAD, XL-SIEM, S-RAF, e-auction 

The Blockchain-based Intrusion and Anomaly Detection module is capable of detecting any intrusion by 
monitoring the configuration or log files of the gateways connected to smart meters and to check if the 
smart meters are connected. In case of any intrusion an alert is sent to the XL-SIEM that will provide this 
information to S-RAF to quantify the risk of the incident and make it accessible for the e-auction module.  

FR-UC4-06 The system shall adopt a penalty mechanism to confront participation of malicious 
auctioneers or bidders in the energy trading e-auction. 

Involved modules: e-auction 
 In the current version of the Energy Trading System, all the procedures related to the energy market are 
fully automated. Thus, the stakeholders are not capable to perform any malicious actions that will affect the 
Framework’s consistency or cause damage to other stakeholders. However, in a future extension of the 
Energy Trading System, users will be granted the capability to perform market-related actions and a penalty 
mechanism will be necessary. This mechanism is presented in this document. 

FR-UC4-07 • The   system shall impose a deadline for bid submission in the energy trading e-
auction, after which no more bids will be accepted 

• The   system   shall   record   the   energy   trading   e-auction results in an immutable 
manner 

Involved modules: e-auction 



   D4.5 
Version 1.0 

 

 

© SDN microSENSE consortium   Page | 20 
Public document 

 

The developed chaincode sets strict limitations regarding the permitted time in which the prosumers can 
submit their bids. No other submissions are accepted if the time limit passes. All the transactions conducted 
are recorded in the ledger of the blockchain network which provides immutability, due to the nature of 
blockchain technology. 
 

 

3.2.3 Non-functional requirements  
In Table 2, there is a list with all the non-functional requirements that are covered by the Blockchain-

based Energy Trading System. Those requirements are gathered from D2.2, User & Stakeholder, 

Security and Privacy Requirements. 

 

Table 2: List of non-functional requirements covered by the Blockchain-based Energy Trading System 

ID Description 

NFR-SEC-07 The system administrative interfaces shall be inaccessible to unauthorized users 
and untrusted parties. 

Involved modules: BIAD 

BIAD uses secured interfaces to communicate with the other tools 

NFR-SEC-11 The system shall be able to use tools to automate configuration and deployment in 
order to minimize human error. 

Involved modules: BIAD 

BIAD has implemented some mechanisms to minimise as much as possible the human 
involvement when installing it. But in any case, small involvements of humans are required to 
configure BIAD prior the installation (see section 6.2) 

NFR-SEC-12 The system shall be able to monitor network devices, operating system, database, 
firewalls as well as software configurations on a regular basis to ensure that their 
configuration is not changed by any unauthorized user.  

Involved modules: BIAD 

One of the objectives of BIAD is to detect any change done in the configuration files of any devices 
through the monitoring of the current state of each device in the blockchain system. 

NFR-TST-01 The system shall be enabled to be automatically testable by software systems 
(continuous testing).  

NFR-TST-02 The system shall be testable by using unit testing, integration testing, security 
testing, performance testing, system testing, and regression testing procedures. 

NFR-TST-05 The system shall be enabled for multi-stage testing, allowing for components to be 
tested both in isolation and collectively. 

Involved modules: BIAD, e-auction 

BIAD and e-auction once have been deployed are up and running so it is possible to test them, but 
there is not any test script, so manual testing procedures can be applied. Some of the components, 
like agent and the chaincode components of BIAD and e-auction, can be tested in an automatic way. 
The unit tests done are described in the section 5. The other tests (integration, system, etc) will be 
done in the context of WP7 and WP8. 



   D4.5 
Version 1.0 

 

 

© SDN microSENSE consortium   Page | 21 
Public document 

 

NFR-DPT-01 The system shall be designed to protect personal data by default and maintain this 
protection throughout the data lifecycle. 

NFR-DPT-02 Only the minimum amount of personal data necessary for fulfilling identified 
purposes shall be processed. 

NFR-DPT-11 The system shall be able to store only sensitive data needed and avoid storing 
unnecessary data. 

Involved modules: e-auction 

All the private data of the participating prosumers are strictly local, and no other prosumers have 
access to them. Participants are identified by pseudo-identities based on their public key and the 
Membership Service Provider (MSP) ID. Only the necessary data for the operation of the auction 
mechanism are being shared during the bidding process (energy request and bid) which are 
cryptographically protected with commitments before being stored to the e-auction’s state. After 
revealing the bids they are stored to the blockchain state because they are necessary for the 
calculation of the e-auction results, but the results including the revealed bids are only restrained 
within the channel for which organizations the market is conducted and not exposed to any other 
members of the blockchain network. 

 

NFR-DPT-07 
 

The system shall be inaccessible to unauthorized users so that they cannot access 
data either intentionally or accidentally. 

NFR-DPT-08 
 

The system shall be applying end-to-end encryption for data in transit. It must be 
ensured that personal data in transit is protected against active  (e.g.  replays,  traffic   
injection)  and   passive   attacks  (e.g. eavesdropping), thus ensuring data integrity. 

NFR-SEC-09 The system shall be able to secure the Application Programming Interfaces  (APIs).   
Anonymous   access   and/or   reusable   tokens   or passwords,  clear-text   
authentication   or   transmission   of   content, inflexible    access    controls    or    
improper authorizations, limited monitoring and logging capabilities must be 
avoided at all times. 

NFR-SEC-18 The system shall be able to use TLS protocol and certifications mechanisms   to   
improve   the   protection   in communication   and authentication processes 

Involved modules: e-auction 

The communication between the prosumers is performed within a permissioned Fabric blockchain 
network, meaning that all the participating prosumers are known and identified with X.509 digital 
certificates, rather than anonymous. MSPs are used to define the organizations that are trusted by 
the network members and are also the mechanism that provide members with a set of roles and 
permissions within the network. Also, the client applications offered by the e-auction module 
support https protocol for data in transit. 
NFR-DPT-09 
 

The system shall be able to encrypt data when stored, even when data is stored in 
distributed environments. 

NFR-DPT-10 
 

The system shall be able to keep data in unencrypted form only for the duration 
necessary for the data processing process at hand and no longer neither more 
extensively. 

NFR-DPT-22 The system shall be able to ensure that data are unintelligible except when an  
authorized individual performs authorized operations on that data. 

Involved modules: e-auction 



   D4.5 
Version 1.0 

 

 

© SDN microSENSE consortium   Page | 22 
Public document 

 

The submitted bids from the prosumers to the Vickrey-Clarke-Groves chaincode, are encrypted with 
commitments and only their hash value is stored to the list of submitted bids that is maintained in 
the e-auction state. Only after, the bidding deadline the bids are revealed and stored in the e-auction 
state, in order to be available for the Vickrey-Clarke-Groves algorithm, that receives the revealed 
bids and produces the e-auction results. 

NFR-DPT-12 
 

The system shall be able to ensure that all random numbers, random file names, 
random GUIDs and random strings are generated in a cryptographically   strong   
fashion.   Moreover, the   system   shall   be seeding the random algorithms with 
sufficient entropy. 

Involved modules: e-auction 

When a priority table, a new e-auction or a new market are initiated, a UUID is generated that 
uniquely identifies them. This UUID follows RFC-41221 standard. 

NFR-DPT-13 
 

The system shall be able to use only widely accepted cryptographic algorithms and 
implementations and shall be  unable  to  execute implementations that do not 
involve some cryptography experts in their creation. 

NFR-DPT-19 
 

The system shall be able to use tools that employ open-source or public-domain 
encryption methods. 

Involved modules: e-auction 
The identities of a Hyperledger Fabric blockchain network are based on X.5092 digital certificates. 
Furthermore, the commitments that hide real bids are generated based on HMAC3 commitment 
scheme, utilizing the pseudo-identity of the prosumer (MSP ID + public key).  

NFR-DPT-18 
 

The system shall be able to generate  encryption  keys  offline  and securely store 
private keys. 

Involved modules: e-auction 

The certificates of the participating to the energy trading network organizations are generated by 
certification authorities and private keys remain to the possession of the organization and are not 
stored in the system.  

NFR-RL-01 
 

The System shall be able to perform a required function under stated conditions for 
a specified time. The specified time should be defined for each action or operation 
of the system in order for the system to follow these time constraints of operation 

Involved modules: e-auction 

The bidding process of an auction is always conducted under strict time limitation, during which the 
prosumers can submit their bids to the auctioneer. No bids can be submitted once the time 
limitation has passed. The same applies also for the bid revealing, as well as for the energy 
transaction periods. 
 
NFR-RL-04 The system shall implement mechanisms to ensure resilience against human errors 

and interactions within the system 

Involved modules: e-auction 

The system offers different APIs for different roles of organizations in order to properly interact with 
the chaincodes. Also, there are several controls for different operations, that inform the user with 

 
1 https://tools.ietf.org/html/rfc4122 
2 https://en.wikipedia.org/wiki/X.509 
3 
https://en.wikipedia.org/wiki/HMAC#:~:text=In%20cryptography%2C%20an%20HMAC%20(sometimes,and%20
a%20secret%20cryptographic%20key. 



   D4.5 
Version 1.0 

 

 

© SDN microSENSE consortium   Page | 23 
Public document 

 

appropriate messages in case of inappropriate interactions (e.g. trying to bid after bidding deadline 
has passed).  

NFR-RL-05 The system shall be SPoF-safe (single point of failure). 

Involved modules: e-auction 

The distributed ledger, a copy of which is available for all the participating prosumers, minimizes the 
possibility of a single point of failure. 
 

 

4. System analysis 
 

The Blockchain-based Energy Trading System is composed of two modules, the e-auction module and 

the Blockchain-based Intrusion and Anomaly Detection module. Both are based on Hyperledger Fabric 

framework [1] which offers the ability to build enterprise blockchain solutions taking into account 

privacy of transactions and permissioned access based on roles that are agreed by the consortium of 

organizations that form the network.  In Table 3, the pros and cons of permissioned and permissionless 

blockchain networks are presented, while in Table 4 a comparative analysis of some of the most 

popular blockchain platforms that are used by companies for building blockchain applications is 

provided.  

Table 3: Permissioned vs permissionless blockchain networks 

Category  Permissioned Permissionless 
Speed High throughput and medium 

latency 
Low throughput and slow 
latency 

Privacy Reading/writing rights can be 
restricted.  
 

Can be achieved though 
cryptographic techniques 
with the cost of lower 
efficiency 

Ownership Managed by a pre-defined 
group of nodes 

Public ownership 

Decentralization Partially decentralized Fully decentralized 

Cost Cost-effective Not so cost-effective 
Consensus Practical Byzantine Fault 

Tolerance (PBFT) protocols, 
tolerating malicious peers and 
trusting the majority consensus 

Proof of Work or Proof of 
Stake by miners 

 

Table 4: Comparative analysis of different blockchain platforms 

 Industry focus Ledger Type Consensus 
algorithm 

Smart Contracts 

Ethereum Cross-Industry Permissionless Proof of Work Yes 

Fabric Cross-Industry Permissioned Pluggable Yes 

R3 Corda Financial Services Permissioned Pluggable Yes 



   D4.5 
Version 1.0 

 

 

© SDN microSENSE consortium   Page | 24 
Public document 

 

Ripple Financial Services Permissioned Probabilistic 
Voting 

No 

Quorum Cross-Industry Permissioned Majority Voting No 

Sawtooth Cross-Industry Permissioned Pluggable Yes 
Iroha Cross-Industry Permissioned Chain-based 

Byzantine Fault 
Tolerant 

Yes 

Openchain Digital Asset 
Management 

Permissioned Partitioned 
Consensus 

Yes 

Stellar Financial Services Both public & 
private 

Stellar Consensus 
Protocol 

Yes 

EOS Cross-Industry Permissioned Delegated Proof-
of-Stake 
 

Yes 

 

A permissioned blockchain is more suitable for the Blockchain-based Energy Trading System, because 

of the much higher throughput of transactions, which do not require computational heavy calculations 

that the algorithms of public networks such as Proof of Work usually require to establish trust between 

completely anonymous entities. Also, the permissioned membership, offers more trust among 

participants as they do not transact with unknown entities. Some of the outstanding features that 

differentiate Fabric framework from other distributed ledger technologies that led to its selection for 

the implementation of the blockchain-based energy trading system are the following: 

• Permissioned architecture 

• Modularity  

• Flexible approach to data privacy with data isolation utilizing “channels” or share private data 

using “data collections” 

• Multi-language smart contract support, Go, Java, Javascript 

• Flexible endorsement model for reaching consensus between required organizations 

• Pluggable consensus mechanism 

• Queryable data (key-based queries and JSON queries) 

• Open smart contract model  

• Low latency of finality/confirmation 

The basic entities of a Fabric blockchain network are the following: 

• Peers: The peers are the nodes of the blockchain network. In the Energy TradingcSystem’s 

architecture, each node of the network corresponds to a prosumer. Peers are a basic 

component of the network, because they host ledgers and smart contracts, which will be 

explained consequently. 

• Ordering service: Hyperledger Fabric features a node, called an “orderer” which performs the 

accepted transactions ordering, and, along with other orderer nodes, forms an ordering 

service. The ordering service creates blocks of transactions which are distributed to all peers 

for validation. The Fabric’s design is based on deterministic consensus algorithms, thus all the 

blocks validated by the peers are definitely final and correct. 



   D4.5 
Version 1.0 

 

 

© SDN microSENSE consortium   Page | 25 
Public document 

 

• Ledger: The ledger contains historic data regarding the results of all the e-auctions that have 

been conducted in the Energy Trading Framework.  

• Membership Service Provider (MSP): Each node is assigned with two keys, a public and a 

private. The pairing of these two keys is used to prove the peer’s identity. The private key is 

used to produce a digital signature on a transaction. The MSP contains the corresponding 

public key and it is used to verify that the signature attached to a transaction is valid. The MSP 

mechanism ensures that the identity of a peer is trusted and recognized by the rest of the 

network, without revealing the corresponding private key. 

• Chaincodes: Also referred as smart contracts. Chaincode defines all the rules under which all 

the transactions of the Energy Trading Framework must be conducted. For example, it 

contains algorithms that determine the outcome of the e-auctions and the incentives 

mechanism. 

 

4.1 Component model 

4.1.1 E-auction module  
The participants of the developed energy trading platform are prosumers, meaning entities which both 

consume and produce energy, and ESCOs which act as token account administrators for the 

prosumers. Each prosumer can apply to the ESCO to obtain a certain amount of initial tokens, which 

will be the same for all the participants. These tokens will be used by the stakeholders in order to 

conduct the financial transactions in the context of the energy trading. The token accounts are handled 

by the corresponding chaincode, which will be further analyzed later in the document.  The prosumers 

are equipped with Photovoltaic panels (PV) and Energy Storage Systems (ESS). Software agents are 

assigned to each prosumer, receiving input from prosumer’s infrastructure tools, which perform 15-

minute PV generation and electric energy consumption forecast. Even though those tools are not 

considered part of the Energy Trading System, they are essential because they provide the input data 

for the determination of the role of the prosumer to the market and the corresponding participation 

parameters (auction parameters for the auctioneers and bid parameters for the bidders). Usually, 

those tools are based on machine learning forecasting algorithms which based on historic data 

timeseries and weather forecasting data, perform short-term production and consumption 

forecasting.  

The communication is performed through a channel of a private Fabric blockchain network. An 

example network with 2 prosumers is illustrated in Figure 2. 

 



   D4.5 
Version 1.0 

 

 

© SDN microSENSE consortium   Page | 26 
Public document 

 

 

Figure 2: e-auction Fabric network architecture 

4.1.1.1 E-auction mechanism 

The energy transactions are based on a sealed bid auction mechanism. The auctions take place 

periodically, in certain time slots. The prosumers are always aware whether they will have a surplus or 

a deficit of energy in the next time slot. If they will have a surplus, they will become the auctioneers, 

conducting their own auction, and selling their extra energy. If they will have a deficit of energy, then 

they will take part in the auctions, as bidders, trying to acquire the energy they will need. 

The auction mechanism used is the Vickrey-Clarke-Groves (VCG) auction [2], which is a slight 

differentiation of the traditional Vickrey Auction. The VCG mechanism is a type of sealed-bid auction 

of multiple items (in our case kilowatt hours) and leads to multiple winners. Each bidder submits a bid 

that represents his/her valuation of the items, without knowing the bids of the other bidders. So, the 

auction mechanism gives the bidders an incentive to bid their true valuations, since they are not aware 

of the bids submitted by the rest of the bidders. The VCG auction is suitable for our case, because the 

total energy the bidders request may not be equal to the energy that the auctioneer is selling. Each 

bidder needs a certain amount of energy to satisfy his/her needs, no more or no less than that. Thus, 

the energy that is available for sale needs to be split in the portions that the bidders request. 

At each auction, the auctioneer declares the amount of energy he/she is willing to sell, which is his/her 

surplus of energy. The bidders declare the amount of energy they are willing to buy and their bid in 

tokens. The determination of the winners is based on the following logic: The total energy sold to the 

bidders needs to be less or equal to the energy that the auctioneer sells, while the total value of the 

winning bids (which is the total value of the tokens the auctioneer eventually receives) is maximized. 

An example follows to demonstrate the function of the VCG auction mechanism: 



   D4.5 
Version 1.0 

 

 

© SDN microSENSE consortium   Page | 27 
Public document 

 

 

Figure 3: VCG auction mechanism demonstration with 3 winners 

Here, the winners are the bidders 1,2 and 3, since the total value of their bids is the maximum possible 

and the sum of the energy they requested is less than the 200 kWh that are available for sale. Bidder 

number 5 obviously cannot be the winner of the auction, since his request of 250 kWh exceeds the 

amount of energy which is available for sale. The energy that was eventually not sold, will be stored 

back to the auctioneer’s battery for future use. 

If, for example, bidder number 4 offered 170 tokens for the same energy request, he/she would be the 

winner, since the tokens the auctioneer will receive are maximized: 

 

Figure 4: VCG auction mechanism demonstration with 1 winner 

It must be noted that in the case that bidder 4 also offered 160 tokens, then the winners would still be 

the bidders 1,2 and 3 because the algorithm chooses the first bidders to maximize the value of the 

winning bids. This will be further explained later, with the demonstration of the incentive mechanism. 



   D4.5 
Version 1.0 

 

 

© SDN microSENSE consortium   Page | 28 
Public document 

 

 

Figure 5: VCG auction mechanism demonstration, winners defined by priority of bidding  

There are certain strategies which determine: 

1) In the case of an auctioneer, the accepted price per kWh. The steps are the following: 

• The auctioneer calculates his/her surplus of energy 

• Calculates how much it cost him/her to produce it using the Levelized Cost of Energy 

(LCOE) factor 

• There is a pre-determined percentage of profit he/she wants to make 

• Calculates the minimum price per kWh he/she would accept in order to make that 

profit 

This way, a prosumer who sells energy will either sell his/her stored energy at a profitable price or 

consume his/her own energy. 

2) In the case of a bidder, the bid he/she is going to submit for the energy needed. The steps are 

the following: 

• The bidder calculates his/her deficit of energy 

• Calculates how much it would cost to produce it using the LCOE 

• There is a pre-determined range of percentages he/she want to save by participating 

in the auction (0-15%) 

• Calculates the optimal price for him/her and submits it as a bid 

This way, a prosumer buys energy in a price which ensures that he/she will save coins from the 

transaction. 

These strategies are compatible with the nature of the VCG auction, since they ensure that each 

participant of the e-auction will submit a bid that reflects his/her true valuation of the energy. Before 

the e-auction is initialized, the auctioneer declares the minimum price/kWh which is accepted (as 

calculated according to his/her benefit). The bidders interested already know how much energy they 

need and the price they are willing to offer. If their price is within the restraints of the auctioneer, they 

participate to the auction. Otherwise they will participate in the next auction conducted at the current 

time slot. 



   D4.5 
Version 1.0 

 

 

© SDN microSENSE consortium   Page | 29 
Public document 

 

To summarize the operation of the auction mechanism: 

1. Prosumer’s security status is checked by the Intrusion Detection System. Prosumers with 

security issues are not allowed to participate in the market, until the issues are fixed and 

the severity level of the risk assessment regarding their devices is back to acceptable 

values. 

2. Prosumers are aware whether they have a surplus of energy or not (calculated based on 

input from consumption/production forecasting tools). 

3. Prosumers with surplus of energy declare that they will conduct e-auctions. The e-auctions 

are conducted based on the priority table. The prosumers with a deficit of energy declare 

that they will participate at the first e-auction. 

4. The auctioneer informs the potential participants of the e-auction about the minimum 

accepted price per kWh. 

5. The potential participants are aware of the energy they need and calculate the price per 

kWh they offer (calculated based on the LCOE factor). The bid they submit is also restricted 

by the total amount of tokens they own, meaning they won’t be allowed to submit a bid 

which leads them to bankruptcy (restriction calculated based on input from the bidder’s 

token account). 

6. The prosumers who don’t meet the auctioneer’s requirements do not participate in the e-

auction and wait until the next e-auction is initiated.  

7. The participants of the e-auction submit their sealed bids and the amount of energy they 

are willing to purchase, during a predefined time period. 

8. After the bidding deadline, the bidders reveal their bids, again during a predefined time 

period. 

9. When the revealing deadline has passed and all bids have been revealed, the auctioneer 

invokes the chaincode implementing the e-auction mechanism which runs the e-auction 

algorithm and the winners are decided and announced to OTSC tool. 

10. The OTSC tool of EMO module receives the transactions that derive from the e-auction 

results from the auctioneer and decides upon confirmation/rejection for each energy 

transaction. The energy involved with rejected transactions remains stored in the 

auctioneers Energy Storage System. 

11. The auctioneer updates the results and the chaincode announces the final results to the 

participants. 

12.  The transfer of energy from the auctioneer to the winners is checked through comparison 

of the measurements from the smart meters monitoring the operation of both the buying 

and the selling stakeholders.  

13. After the confirmation of energy transactions, the winners invoke the chaincode to 

transfer tokens to the winner’s account. 

Steps 3 through 8 are repeated for the next auctioneer in the priority order until all the auctioneers 

conduct their e-auctions. All prosumers with a surplus of energy will initiate their e-auctions, even if, 

eventually, there will be no prosumers participating. The energy transactions at each time slot refer to 

energy that will be traded in the next time slot. This is why the consumption/production forecasting 

functionality is necessary. At each time slot, there will be multiple e-auctions taking place, always one 

at a time. The e-auctions will be conducted based on the priority table. 



   D4.5 
Version 1.0 

 

 

© SDN microSENSE consortium   Page | 30 
Public document 

 

At the first e-auction of a time slot, the possible scenarios for each bidder who participates are three: 

1. He/she is among the winners, receives the agreed amount of energy at a predefined time 

during the next timeslot and pays the agreed price in tokens. 

2. He/she is not among the winners. 

3. He/she is among the winners, but the OTSC tool of EMO rejects the transaction due to 

microgrid stability issues.  

The bidders who experience scenarios 2 or 3, will participate in the e-auction by the prosumer who is 

next in the priority table. 

The priority order in which the prosumers conduct their e-auctions is a form of incentive, in the sense 

that someone is rewarded for participating in the energy trading process, either by selling or by buying. 

The reward is that, as auctioneers, they conduct their e-auctions earlier than the rest of the 

auctioneers, maximizing the possibilities to sell the energy they have available.   

As mentioned earlier, the e-auction’s algorithm always chooses the first bidders to maximize the value 

of the winning bids. Thus, the priority table is an incentive for the bidders too. The order in which they 

will participate in the e-auction will be determined by the priority table, this time excluding the 

auctioneers. The higher someone is at the priority table, the earlier he/she will participate in the e-

auction. At the above example, bidder number 4 was lower at the priority table than 1,2 and 3. 

4.1.1.2 Penalty mechanism 

All the actions performed by the prosumers, in the context of the energy market, are fully automated, 

as they are determined by the algorithms run by the corresponding agents and the chaincode. 

Therefore, at this point of the development, there is no need for a penalty mechanism, since the 

consistency of the prosumers is guaranteed. Although, in future extensions of the Energy Trading 

System, users will be granted the capability of handling the prosumer’s actions in the energy market, 

and the outcome of the algorithms run by the agents will be used as suggestions to the user. Thus, a 

penalty mechanism will be necessary because the consistency of the users cannot be guaranteed in 

this case. This subsection presents the penalty mechanism that will be implemented in the future 

extension of the Energy Trading System. 

As far as the priority table is concerned, the prosumers are sorted based on their energy contribution 

to the market (sum of the energy they have sold and bought throughout the whole operation of the 

developed market mechanism and until, but not including, the current timeslot). The first prosumer of 

the table is the first to conduct an e-auction at a specific time slot, the second conducts his/her e-

auction second and so on. The table contains all the prosumers, no matter if they are buyers or sellers, 

because these roles may and will change through the course of the time slots. 

Table 5: Sample priority table 

PROSUMERS ENERGY CONTRIBUTION(kWh) TEMP 

5 2000 0 

1 1800 0 
3 1200 0 

6 1000 0 

4 750 0 

2 230 0 



   D4.5 
Version 1.0 

 

 

© SDN microSENSE consortium   Page | 31 
Public document 

 

 

If a prosumer receives a penalty, then the amount of tokens he/she has to pay replaces his/her Energy 

Contribution (EC) at the table, in the form of a negative number, and his/her EC at that time slot is 

transferred to the Temp column. The cases in which a prosumer is imposed to a penalty will be 

analyzed later. 

For example, if prosumer number 1 has to pay 50 tokens as a penalty, then the table will look like this: 

Table 6: Sample priority table with prosumer 1 being imposed 50 tokens of penalty 

PROSUMERS ENERGY CONTRIBUTION (kWh) TEMP 

5 2000 0 

3 1200 0 

6 1000 0 
4 750 0 

2 230 0 

1 -50 1800 

 

The table is always sorted based on the EC column, so obviously, prosumer number 1 will end up at 

the last place. If, for example, prosumer number 4 has to pay 100 tokens as a penalty, then the table 

will look like this: 

Table 7: Sample priority table with prosumer 1 being imposed 50 tokens of penalty and prosumer 4 being imposed 100 
tokens of penalty 

PROSUMERS ENERGY CONTRIBUTION (kWh) TEMP 

5 2000 0 

3 1200 0 
6 1000 0 

2 230 0 

1 -50 1800 

4 -100 750 

 

This will result in prosumers number 1 and 4 being last at the order in which they conduct and 

participate in the e-auctions, as a form of punishment. The prosumers will pay their penalty at any 

time slot they can afford it, and once this is done, they will take their place back at the sorting, and 

their Temp column will be zero again. They are not obligated to pay the whole penalty. They can pay 

it in doses through the course of the time slots. In this case the table will be sorted accordingly. For 

example, prosumer number 1 pays the penalty of 50 coins: 

Table 8: Sample priority table with prosumer 1 having paid 50 tokens of penalty and prosumer 4 being imposed 100 tokens 
of penalty 

PROSUMERS ENERGY CONTRIBUTION (kWh) TEMP 
5 2000 0 

1 1800 0 

3 1200 0 

6 1000 0 



   D4.5 
Version 1.0 

 

 

© SDN microSENSE consortium   Page | 32 
Public document 

 

2 230 0 
4 -100 750 

 

For simplicity, we assume that the EC of the other prosumers does not change through the course of 

different time slots. 

A prosumer may be imposed to a penalty in two cases: 

• As an auctioneer, if the energy promised is not delivered to a winning bidder. This confirmation 

will  occur from the comparison of the measurements from the smart meters monitoring the 

operation of the  selling and the buying prosumer. 

• As a participant of the e-auction, if the agreed payment is not delivered to the auctioneer’s 

token account. 

In the first case, the auctioneer has to return the payment to the winner plus a percentage of it as a 

penalty. In the second case, the bidder has to return the agreed payment to the auctioneer plus a 

percentage as a penalty. 

If a prosumer has a penalty pending, then he/she will be able to participate in an e-auction as a bidder 

normally or conduct his/her own e-auction. He/she will be excluded only from the e-auctions 

conducted by the prosumer he/she owns to. If he/she wants to participate, he/she will have to pay 

his/her penalty to him/her. The energy he/she buys or sells during his “restriction” time, will be 

updated in the temp column.  

If a prosumer owns a penalty: 

• The prosumer is informed by the forecasting tool about the production/consumption balance 

in the next time slot. 

• If there will be a surplus of energy, meaning he/she will conduct an e-auction in the next time 

slot, he/she pays as much of the penalty as possible, with the restriction that he will still have 

a 20% of his initial coins after the payment. If the penalty is not entirely covered, this process 

will be repeated in the next time slots, until the whole penalty is paid. 

• If there is a deficit of energy, the prosumer calculates his/her optimal bid as explained before, 

and with the coins remaining, he/she pays as much of the penalty as possible, with the same 

restrictions as with the case of the prosumer with a surplus of energy. 

In the case that, after the course of several time slots the penalty is not yet paid to its entity, the 

bank takes over and pays the rest of the penalty to the prosumer who is owned to, and the rest of 

the debt is transferred to the bank. The prosumer who owns the penalty pays the rest of it to the 

bank in the same way in which he/she pays it to other prosumers, plus a percentage in order to 

ensure a profit for the bank. 

It must be noted that, in the current, fully automated version of the Energy Trading System, the 

prosumers will be sorted only according to their contribution to the market, without taking under 

consideration the Temp column, since the penalty mechanism is not included. 



   D4.5 
Version 1.0 

 

 

© SDN microSENSE consortium   Page | 33 
Public document 

 

4.1.1.3 Vickrey-Clarke-Groves chaincode 

Table 9 presents the Vickrey Clarke-Groves chaincode functions, along with their request type (query 

or invoke) the input parameters and their description. 

Table 9: Vickrey-Clarke-Groves chaincode functions 

Name 
Request 

type 

Input(JSON) 
Description 

Param Type 

initialize invoke 

Auctioneer struct 

The Auctioneer parameter is a 

struct representing the peer 

node that initializes the e-

auction. 

Product struct 

The Product parameter is a 

struct with the details of the 

product that is being sold. 

ReservePrice float 

A deposit of tokens is withheld 

from the bidders when the 

submit a bid. 

InitTimestamp timestamp 
The timestamp of the 

initialization of the e-auction. 

BiddingDeadline timestamp 
The timestamp indicating the 

bidding period deadline. 

RevealingDeadline timestamp 
The timestamp indicating the 

revealing bid phase deadline.  

TransactionTimestamp timestamp 

The timestamp indicating when 

the energy transaction is going 

to take place. 

AuctionDeadline timestamp 
The timestamp indicating the 

auction deadline 

AwardingDeadline timestamp 
The timestamp indicating the 

awarding phase deadline. 

MarketID string 

The unique identifier of the 

market to which the auction 

belongs. 

PriorityTableID string 

The unique identifier of the 

priority table that keeps the 

contributions to the market for 

each participant organization. 



   D4.5 
Version 1.0 

 

 

© SDN microSENSE consortium   Page | 34 
Public document 

 

get query AuctionNum string 

Every time an e-auction is 

initialized, a UUID is registered 

for that auction which is the 

auctionNum parameter.  

getAuctions query - - - 

submit invoke 

AuctionNum string Parameter already described 

Bid float 

The ‘Bid’ parameter represents 

the number of tokens that the 

bidder offers. 

Amount integer 

The ‘Amount’ parameter 

represents the amount of energy 

in kWh that the bidder bids for.  

reveal invoke 

AuctionNum string Parameter already described. 

Bid float Parameter already described. 

Amount integer Parameter already described. 

award invoke AuctionNum string Parameter already described. 

settle invoke AuctionNum string Parameter already described. 

 

Tables 10-15 describe the structures that the chaincode manages: 

Table 10: Vickrey Clarke-Groves auction structure 

Auction 

Name Type Description 

Auctioneer struct 

Auctioneer struct is composed of 

the MSP ID and the Cert ID of the 

blockchain node that uniquely 

identifies it within the network. 

Product struct 

Product is a struct composed of 

the name of the product (string), 

the units of the measurement 

(string) and the amount of 

product that is being sold (int). 

ReservePrice float 

The reserve price indicates the 

minimum amount of tokens/KWh 

that is accepted as a bid. 



   D4.5 
Version 1.0 

 

 

© SDN microSENSE consortium   Page | 35 
Public document 

 

HiddenBids slice of structs 

This is a slice including HiddenBid 

structs, equal to the number of 

submitted bids.  

RevealedBids slice of structs 

This is a slice including 

RevealedBid structs, equal to the 

number of revealed bids. 

InitTimestamp timestamp 
The timestamp of the initialization 

of the e-auction. 

BiddingDeadline timestamp 
The timestamp indicating the 

bidding period deadline. 

RevealingDeadline timestamp 
The timestamp indicating the 

revealing bid period deadline. 

TransactionTimestamp timestamp 

The timestamp indicating when 

the energy transaction is going to 

take place. 

AwardingDeadline timestamp 
The timestamp indicating the 

awarding phase deadline 

AuctionDeadline timestamp 
The timestamp indicating the 

auction deadline. 

Results struct 

‘Results’ parameter represents a 

struct that includes the results of 

the e-auction. 

AuctionNum string 

Every time an e-auction is 

initialized, a UUID is registered for 

that auction which is the 

auctionNum parameter. 

MarketID string 

The unique identifier of the 

market to which the auction 

belongs. 

PriorityTableID string 

The unique identifier of the 

priority table that keeps the 

contributions to the market for 

each participant organization. 

State string 

The ‘State’ parameter is a string 

indicating the step of an e-auction 

process and can take the following 

values: 



   D4.5 
Version 1.0 

 

 

© SDN microSENSE consortium   Page | 36 
Public document 

 

‘initialized’, ‘bidding’, ‘revealing’, 

‘refunding’, ‘settling’  

 

Table 11: Participant structure 

Participant 

Name Type Description 

MspID string 

MspID indicates the ID of the 

Membership Service Provider of 

the participant organization. 

CertID string 
CertID is the public key of the 

peer  

 

Table 12: Commodity structure 

Commodity 

Name Type Description 

Name string The name of the product for sale.  

Units string 
The units of measurement for the 

product for sale. 

Amount integer 

The amount of the product for 

sale specified in measurement 

units as indicated by ‘Units’ 

parameter. 

 

Table 13: Result structure 

Result 

Name Type Description 

Winners slice of structs 

The slice ‘Winners’ includes all the 

winning bidders that are 

represented with ‘Participant’ 

structs. 

RejectedWinners slice of structs 
The slice ‘RejectedWinners’ 

includes all the winning bidders 

whose energy transactions are 



   D4.5 
Version 1.0 

 

 

© SDN microSENSE consortium   Page | 37 
Public document 

 

rejected by the OTSC EMO tool., 

due to grid destabilization issues.  

ClearingPrice float 
The total amount of tokens from 

all the winning bids. 

EnergySold integer 
The amount of energy that was 

sold from all the winning bids. 

EnergyNotSold integer 

The difference between the 

amount of energy that was for 

sale and the amount of energy 

that was eventually sold. 

Payments slice of float 

The slice ‘Payments’ includes the 

payment amount in tokens for 

each winner.  

Shares Slice of int 

The slice ‘Shares’ includes the 

amount of energy that is assigned 

to each winner. 

 

Table 14: HiddenBid structure 

HiddenBid 

Name Type Description 

Bidder struct 
The bibber is represented by a 

struct of type ‘Participant’ 

HiddenBid slice of byte 

The ‘HiddenBid’ parameter is the 

encrypted representation of the 

actual bid (tokens+amount of 

energy) 

Nonce slice of byte 

The ‘Nonce’ parameter is a 

cryptographic key that is produces 

to encrypt the bid. 

 

Table 15: RevealedBid structure 

RevealedBid 

Name Type Description 



   D4.5 
Version 1.0 

 

 

© SDN microSENSE consortium   Page | 38 
Public document 

 

Bidder struct 
The bibber is represented by a 

struct of type ‘Participant’ 

Bid float32 

The ‘Bid’ parameter represents 

the revealed bid token amount 

that was included in the 

HiddenBid. 

Amount int 

The ‘Amount’ parameter 

represents the revealed amount 

of energy that was included in the 

HiddenBid. 

 

4.1.1.4 ERC20 token chaincode 

Table 16 presents the ERC20 chaincode functions, along with their request type (query or invoke) the 

input parameters and their description. 

Table 16: ERC20 token chaincode functions 

Name 
Request 

type 

Input 
Description 

Param Type 

initToken invoke 

Name string The name of the token that is initialized. 

Symbol string 
The string representation of the token  

that is initialized. 

TotalSupply float 
The total token units that are available 

for the token that is initialized. 

getOwnBalance query 

Name string Parameter already described. 

Symbol string Parameter already described. 

BalanceOwner struct 
The account balance of the peer node 

that is querying the blockchain.  

update invoke 

Name string Parameter already described. 

Symbol string Parameter already described. 

Amount int 
The updated account balance of a peer 

node’s account. 

Account struct 

The ‘Account’ parameter is a struct of 

type ‘Participant’ that indicates the peer 

node whose account should be updated.   

transfer invoke Name string Parameter already described. 



   D4.5 
Version 1.0 

 

 

© SDN microSENSE consortium   Page | 39 
Public document 

 

Symbol string Parameter already described. 

Amount int 
The number of tokens to be transferred 

from one account to another. 

From struct 

The ‘From’ parameter is a struct of type 

‘Participant’ that indicates the peer 

node’s account from which the tokens 

will be transferred.  

To struct 

The ‘To’ parameter is a struct of type 

‘Participant’ that indicates the peer 

node’s account to which the tokens will 

be transferred. 

withhold invoke Name string Parameter already described. 

  Symbol string Parameter already described. 

 
 Amount int 

The number of tokens to be withheld 

from the account. 

 

 From struct 

The ‘From’ parameter is a struct of type 

‘Participant’ that indicates the peer 

node’s account from which the tokens 

will be withheld.  

release invoke Name string Parameter already described. 

  Symbol string Parameter already described. 

 
 Amount int 

The number of tokens to be released to 

the accounts specified by ‘To’ parameter. 

 

 To 

Slice 

of 

struct 

The ‘To’ parameter is a slice including 

structs of type ‘Participant’ that indicate 

the peer nodes’ accounts to which the 

withheld number of tokens will be 

released. 

apply invoke Name string Parameter already described. 

  Symbol string Parameter already described. 

getApplicantsList query Name string Parameter already described. 

  Symbol string Parameter already described. 

 

Table 17 describes the structure that the chaincode manages: 



   D4.5 
Version 1.0 

 

 

© SDN microSENSE consortium   Page | 40 
Public document 

 

 

Table 17: Token structure 

Token 

Name Type Description 

Name string The name of the token. 

Symbol slice of byte 
The string representation of the 

token’s symbol. 

TotalSupply float 
The total token units that are 

available for the token. 

AccountBalances Map[string, float] 

A map with key the concatenation 

of MspID and CertID strings of a 

peer  node owning an account 

and value the account’s token 

balance.  

TokenApplicants slice of struct  

The token applicants slice 

includes a list with structs of type 

‘Participant’ that represent the 

peer nodes that have applied for 

an account. 

 

4.1.1.5 Priority table chaincode 

Table 18 presents the priority table chaincode functions, along with their request type (query or 

invoke) the input parameters and their description. 

Table 18: Priority table chaincode functions 

Name 
Request 

type 

Input 
Description 

Param Type 

initPriorityTable invoke - - - 

getPriorityTable query ID string 
The unique identifier of the 

priority table. 

getPriorityTables query - - - 

getMarketContribution query 

ID string Parameter already described. 

Participant struct 

The ‘Participant’ parameter is 

a struct of type Participant 

and represents the 

identification information of 



   D4.5 
Version 1.0 

 

 

© SDN microSENSE consortium   Page | 41 
Public document 

 

the Organization’s peer that 

queries the blockchain. 

addParticipantToPriorityTable invoke ID string Parameter already described. 

 

 Participant struct 

The ‘Participant’ parameter is 

a struct of type Participant 

and represents the 

identification information of 

the Organization’s peer that 

should be added to the 

priority table. 

updateMarketContribution invoke ID string Parameter already described. 

 

 Participant struct 

The ‘Participant’ parameter is 

a struct of type Participant 

and represents the 

identification information of 

the Organization’s peer 

whose contribution to the 

market should be updated. 

 

 Amount int 

The amount of energy that 

should be added to the 

Participant’s contribution to 

the market. 

 

Table 19 describes the structure that the chaincode manages: 

Table 19: Priority Table structure 

Priority Table 

Name Type Description 

ID string 
The unique identifier of the 

priority table. 

Participants slice of structs 

Includes the list of the 

Organizations’ peers that are 

registered to the priority table. 

MarketContribution Map[string, int] 

A map with key the concatenation 

of MspID and CertID strings of an 

organization’s peer  node and 

value the contribution of the 

organization to the market. 



   D4.5 
Version 1.0 

 

 

© SDN microSENSE consortium   Page | 42 
Public document 

 

 

4.1.1.6 Market chaincode 

Table 20 presents the priority table chaincode functions, along with their request type (query or 

invoke) the input parameters and their description. 

Table 20: Market chaincode functions 

Name 
Request 

type 

Input 
Description 

Param Type 

initMarket invoke ApplicationDeadline timestamp 

The timestamp 

representing the 

deadline of the applying 

phase for the market. 

getMarket query ID string 
The unique identifier of 

the market. 

getMarkets query - - - 

apply invoke 

ID string 
Parameter already 

described. 

PriorityTableID string 

The unique identifier of 

a priority table, that 

includes the energy 

contributions to the 

market. 

Role  string 

This parameter takes 2 

values, either ‘Bidder’ 

or ‘Auctioneer’ and 

represents the role of 

the applicant to the 

market. 

removeFromList 
invoke ID string 

Parameter already 

described. 

 
 Role string 

Parameter already 

described. 

 

 Participant struct 

The ‘Participant’ 

parameter is a struct of 

type Participant and 

represents the 

identification 

information of the 

Organization’s peer that 



   D4.5 
Version 1.0 

 

 

© SDN microSENSE consortium   Page | 43 
Public document 

 

will be removed from 

the list of Bidders or 

from the list of 

Auctioneers depending 

on the value of ‘Role’ 

parameter. 

 

Table 21 describes the structure that the chaincode manages: 

Table 21: Market structure 

Market 

Name Type Description 

ID string 
The unique identifier of the 

market. 

Participants slice of structs 

Includes the list of the 

Organizations’ peers that are 

registered to the market. 

Bidders slice of structs 

Includes the list of the 

Organizations’ peers that are 

registered to the market with 

Bidder role. 

Auctioneers slice of structs 

Includes the list of the 

Organizations’ peers that are 

registered to the market with 

Auctioneer role. 

Auctions Slice of strings 

Includes the list of the auction 

unique identifiers that are part of 

a market. 

ApplicationDeadline timestamp 

The timestamp indicating the 

deadline of the application phase 

for a market. After this deadline 

passes no more participants are 

able to register to the market. 

 

 

4.1.1.7 E-auction module APIs 

For the interaction with the blockchain, the e-auction module offers REST APIs for client applications. 

Depending on the role of the organization within the blockchain network, 2 different APIs provide 



   D4.5 
Version 1.0 

 

 

© SDN microSENSE consortium   Page | 44 
Public document 

 

access to the appropriate chaincode functions. The first one is for organizations that are auctioneers 

or bidders and the second one is for ESCO organizations that are administrators of the network’s token 

and are responsible for managing the account balances according to the e-auction financial 

transactions. The definition of the APIs is presented in sections 4.1.1.7.1 and  4.1.1.7.2, according to 

OpenAPI 3.0 specification format. 

 Auctioneer-Bidder API 

The auctioneer-bidder API enables the organizations to interact both with the ERC20 chaincode and 

the Vickrey-Clarke-Groves chaincode. Through the available endpoints, they are able to apply for  a 

token account if they do not already have one,  retrieve their own balance at any time and transfer 

tokens from their account to another, in order to complete the financial settlements that derive from 

e-auction results.  

 

Figure 6: Auctioneer-Bidder API endpoints 



   D4.5 
Version 1.0 

 

 

© SDN microSENSE consortium   Page | 45 
Public document 

 

 

Figure 7: /apply request parameters and responses 



   D4.5 
Version 1.0 

 

 

© SDN microSENSE consortium   Page | 46 
Public document 

 

 

Figure 8: /getBalance request parameters and responses 



   D4.5 
Version 1.0 

 

 

© SDN microSENSE consortium   Page | 47 
Public document 

 

 

Figure 9: /transfer request parameters and responses 



   D4.5 
Version 1.0 

 

 

© SDN microSENSE consortium   Page | 48 
Public document 

 

 

Figure 10: /initVickreyCGAuction request parameters and responses 

 

Figure 11: /getVickreyCGAuction request parameters and responses 



   D4.5 
Version 1.0 

 

 

© SDN microSENSE consortium   Page | 49 
Public document 

 

 

Figure 12: /VCGsubmitSealedBid request parameters and responses 



   D4.5 
Version 1.0 

 

 

© SDN microSENSE consortium   Page | 50 
Public document 

 

 

Figure 13: /VCGreveal request parameters and responses 

 

Figure 14: /VCGaward parameters and responses 



   D4.5 
Version 1.0 

 

 

© SDN microSENSE consortium   Page | 51 
Public document 

 

 

Figure 15: /VCGsettle request parameters and responses 

 

Figure 16: /getMarkets request responses 



   D4.5 
Version 1.0 

 

 

© SDN microSENSE consortium   Page | 52 
Public document 

 

 

Figure 17: /applyToMarket request parameters and responses 

 

Figure 18: /getPriorityTable request responses 

 ESCO API 

Τhe ESCO API provides interaction only with the ERC20 chaincode, as the ESCO acts as an administrator 

for the token accounts and does not take part in energy trading transactions. Through this API, the 

ESCO is able to initialize a new token, create accounts and initialize account balances, retrieve the list 

of organizations that apply for account creation, initialize a new market, initialize a priority table that 



   D4.5 
Version 1.0 

 

 

© SDN microSENSE consortium   Page | 53 
Public document 

 

keeps the energy contribution of each organization and retrieve the list of priority tables (should be 

only one per channel of organizations).  

 

Figure 19: ESCO API endpoints 



   D4.5 
Version 1.0 

 

 

© SDN microSENSE consortium   Page | 54 
Public document 

 

 

Figure 20: /initToken request parameters and responses 



   D4.5 
Version 1.0 

 

 

© SDN microSENSE consortium   Page | 55 
Public document 

 

 

Figure 21: /getApplicants request parameters and responses 



   D4.5 
Version 1.0 

 

 

© SDN microSENSE consortium   Page | 56 
Public document 

 

 

Figure 22: /updateBalance request parameters and responses 



   D4.5 
Version 1.0 

 

 

© SDN microSENSE consortium   Page | 57 
Public document 

 

 

Figure 23: /initMarket request responses 

 

Figure 24: /initPriorityTable request responses 

 

4.1.2 Blockchain Based Intrusion and Anomaly Detection module  
The Blockchain Based Intrusion and Anomaly Detection system (BIAD) is a peer-to-peer network used 

to monitor the activity and performance of a set of devices (i.e. smart meter, IEDs, RTUs…), maintaining 

their status and integrity, and alerting when unusual operation is detected. This is done by detecting 

changes in log files and in firmware and configuration files in different devices and monitoring the 

current state of each device in the blockchain system, compiling robust transaction records. Another 

functionality allows the system administrators to perform periodically on-chain availability-

connectivity tests. 



   D4.5 
Version 1.0 

 

 

© SDN microSENSE consortium   Page | 58 
Public document 

 

The blockchain network is developed using Hyperledger Fabric, an open source project from the Linux 

Foundation to easily set up a distributed ledger focused on traceability. The network has the following 

components (See Figure 25): 

• Peer Node 

For this project case it has been set up only a single peer for a single organization, responsible for 

all the monitoring interactions with tested devices.  

• Orderer Node 

It is the central communications node, responsible for maintaining state and consistency of the 

ledger and mining and distribution of the blocks. There is also a single orderer working for this 

proof of concept. 

• Certificate Authority Server 

Manages and provides the access control to the network functionalities through Enrolment 

Certificates.  

• Chaincode 

The chaincode is a program which provides logic to the peers, a smart contract, and is necessary 

to be able to read and update the ledger state and create transactions. In this case, the chaincode 

is developed in the Go programming language and it is installed on a channel of the blockchain. Its 

functionalities are ejected in the peers that belong to that channel. 

Furthermore, there some other components external to the blockchain network: 

• REST API Server 

It works as Hyperledger Fabric wallet, it is supported by Fabric SDK and it can be used to create, 

sign and send transactions to the ledger. In this case, it works as another service, but it can be 

integrated with the own agent. Provides authentication using token-based authentication. 

• Explorer Server 

This component is a daemon which sets up a web server to visualize the performance dashboard 

of the ledger. It is using Hyperledger Explorer, another project from the Linux Foundation. 



   D4.5 
Version 1.0 

 

 

© SDN microSENSE consortium   Page | 59 
Public document 

 

 

Figure 25. Blockchain Based Intrusion and Anomaly Detection system components 

There are two types of requests in Hyperledger Fabric, invoke and query, the first one needs to change 

the ledger’s state so it creates a new block, the second one is only reading function, so it does not mine 

a new block and it causes faster performance. Figure 22 shows the specification for each available 

function: 

Table 22 Functions from the chaincode 

Name 
Request 

type 

Input (JSON) 
Description 

Param Type 

registerDevice invoke dvcID string Registers a new device to be monitored 

getDeviceInfo query dvcID string 
Gets state from a previously registered 

device 

getDeviceHistory query dvcID string Gets history from a device asset 

connectivity invoke - - 
Checks last device update to be less than a 

period of time 

registerHash invoke 
dvcID 

path 

hash 

string 

string 

string 

Registers a new hash related to an existing 

device 

updateHash invoke 

hashID 

hash 

string 

string 
There are two input options 

Updates state of a previously registered 

hash 

dvcID 

path 

hash 

string 

string 

string 



   D4.5 
Version 1.0 

 

 

© SDN microSENSE consortium   Page | 60 
Public document 

 

getHashInfo query hashID string Gets state from a previously registered hash 

registerRecord invoke 

dvcID 

max (opt) 

min (opt) 

value (opt) 

string 

int 

int 

int 

Registers a new record related to an existing 

device 

updateRecord invoke 

recordID 

value 

string 

int Updates state of a previously registered 

record dvcID 

param 

value 

string 

string 

int 

getRecordInfo query recordID string 
Gets state from a previously registered 

record 

getAlertInfo query alertID string Gets state from an existing alert 

 

Tables 23-26 describe the structures that the chaincode manages: 

Table 23 Device structure 

Device 

Name Type Description 

DvcID string Device unique identifier  

Hashes [ ]*HashModel Array of associated hashes  

Records [ ]*RecordModel Array of associated records  

Alerts [ ]*AlertModel Array of associated alerts  

Status bool Indicates device availability 

 

Table 24 Hash structure 

Hash 

Name Type Description 

HashID string Hash unique identifier  

DvcID string Associated device identifier 

Path string Hashed file path in the device 

Value string Last hash value received 

 



   D4.5 
Version 1.0 

 

 

© SDN microSENSE consortium   Page | 61 
Public document 

 

Table 25 Record structure 

Record 

Name Type Description 

RecordID string Record unique identifier  

DvcID string Associated device identifier 

Param string Monitored record description 

Value float32 Last record value received 

Max float32 Record maximum limitation 

Min float32 Record minimum limitation 

 

Table 26 Alert structure 

Alert 

Name Type Description 

AlertID string Alert unique identifier  

DvcID string Associated device identifier 

HashID string Associated hash identifier  

RecordID string Associated record identifier  

Class string Message describing the alert 

PrevValue string Value read from ledger when anomaly was detected 

RcvValue string Value received from client when anomaly was detected 

Max float32 Reached maximum limitation when record anomaly was detected 

Min float32 Reached minimum limitation when record anomaly was detected 

 

In order to clarify the behavior of the BIAD, Figure 26 presents a sequence diagram with the flow that 

follows BIAD in an operation.  



   D4.5 
Version 1.0 

 

 

© SDN microSENSE consortium   Page | 62 
Public document 

 

 

Figure 26: BIAD behaviour model 

4.2 Interfaces model  

4.2.1 External interfaces with other SDN-microSENSE application plane modules 

4.2.1.1 Communication of e-auction module with EMO  

The OTSC EMO tool provides a Rest API to validate if changes proposed by the e-auction module of 

the Energy Trading System are feasible from an electrical point of view: 

 

Table 27: EMO – e-auction interface 

Interface name: OTSC EMO – e-auction  
Description  This interface lets us to evaluate the feasibility in electrical terms from a set of proposed 

changes for the grid model.  
Component 
providing the 
interface  

 OTSC EMO 

Consumer 
components  

e-auction  

Used Technology  REST API  
State  Developed 
Input data  List of energy trading actions to validate 

Example: 

 



   D4.5 
Version 1.0 

 

 

© SDN microSENSE consortium   Page | 63 
Public document 

 

 
Output data  Feasibility or not of the proposed changes regarding the electrical point of view.  

Example: 

 
API URL  http://172.21.0.22:8000/validate (internal URL).  

As it is going to be accessed from out of the OTSC EMO virtual machine (VM15), the 
important thing here is the URL for external access: 
http://IP_virtual_machine_for_OTSC_EMO:8888/validate  

Constraints  None  
Responsibilities  IREC  
Documentation link
  

To Be Determined  

 

In Figure 27, there is an example about how to do a call to this Rest API: 

 
Figure 27 Example request of Market Validator 

 
 

http://172.21.0.22:8000/validate
http://ip_virtual_machine_for_edae:8888/validate


   D4.5 
Version 1.0 

 

 

© SDN microSENSE consortium   Page | 64 
Public document 

 

  

4.2.1.2 Communication of e-auction module with S-RAF  

 

The e-auction module interacts with S-RAF for acquiring the latest risk assessment results, as those 

have been generated considering the vulnerabilities of the infrastructure and the threats detected by 

the XL-EPDS infrastructure. As presented in Figure 1 for the  blockchain-based energy trading system 

within the SDN-microSENSE architecture, the e-auction module considers the information of the risk 

levels, which is generated on asset-basis, in order to decide whether to deny participation to the 

market to organizations that face cyber risks.  

To do so, the e-auction module subscribes to the KAFKA component of S-RAF for consuming the risk 

assessment information.  Table 28 summarizes the necessary interface details for materializing this 

interaction. 

 

Table 28: e-auction – SRAF interface 

Interface name:  e-auction module – S-RAF 

Description The objective of this interface is to make available the risk assessment 
result to the e-auction module. 

Component providing 
the interface 

S-RAF 

Consumer 
components 

e-auction module 

Used Technology KAFKA 

State Developed 

Input data Events from XL-EPDS infrastructure (via CIS). 

Output data Risk assessment results generated on asset-basis containing information 
about the risk level of assets.  

API URL N/A 

Constraints None 

Responsibilities UBITECH to provide more information to the developing team of e-

auction module to ease integration.  

Documentation link More details can be found in D3.5. 

 

4.2.1.3 Communication of Blockchain-based Intrusion and Anomaly Detection with XL-SIEM  

XL-SIEM uses syslog as a mechanism for receiving information. The provided script rsyslog.sh prepares 

the rsyslog to send information to the XL-SIEM. Once the rsyslog has been properly installed and 

configured, it is necessary to install the module which listens for alerts from the BIAD and converts 

them to a readable format for the XL-SIEM. To run this module, it is required to have NodeJS installed 

in the SO as well as some libraries with npm install.  

This component listens for the alerts generated in the Blockchain based Intrusion and Anomaly 

Detection module,  that have a predetermined format and converts them into a format, which is 

understood by the XL-SIEM. The format of the alert is not specified in this deliverable, in order to 

ensure the protection of the sensitive information. 



   D4.5 
Version 1.0 

 

 

© SDN microSENSE consortium   Page | 65 
Public document 

 

The word “BIAD”  in the alert will be automatically included by rsyslog to inform XL-SIEM the detector 

of the alert. 

Focusing on the technology, the connection with the XL-SIEM is made using NodeJS as programming 

language as it has been introduced before. The script listens for events from the Hyperledger Fabric 

Network and writes a new line in /var/log/biad.log file. Then, the rsyslog daemon detects the changes 

in this file and sends the new line to the XL-SIEM. This software can be easily adapted to send 

information to any endpoint, not necessarily the XL-SIEM. 

Table 29: BIAD - XL-SIEM interface 

Interface name: Blockchain based Intrusion detection - XL-SIEM 

Description The objective of this interface is to send the alerts generated by the 
Blockchain based Intrusion detection module to XL-SIEM. 

Component providing 
the interface 

XL-SIEM 

Consumer 
components 

Blockchain Based Intrusion and Anomaly Detection (BIAD) 

Used Technology Rsyslog 

State Developed 

Input data Events from the Hyperledger Fabric Network  

Output data Alert in the format that expected by the XL-SIEM 

API URL NA 

Constraints None 

Responsibilities TECNALIA to develop the module to communicate to the XL-SIEM 

Documentation link NA 

 

4.2.2 External interfaces with SDN-microSENSE infrastructure plane modules 

4.2.2.1 Connection of e-auction module with RPI of smart meter  

Each prosumer participating in the network is represented in the e-auction processes by an agent, that 

utilizes information such as the security status of the prosumer’s  smart meter and the energy balance 

forecasting provided by external tools, in order to take decisions regarding the role in the market 

(auctioneer/bidder), as well as the price of selling/buying. The flow chart in Figure 28, summarizes the 

algorithms executed by the agents in each time slot: 



   D4.5 
Version 1.0 

 

 

© SDN microSENSE consortium   Page | 66 
Public document 

 

 

Figure 28: Agent algorithm 

It must be noted that in Figure 24 the penalty mechanism functionality is included, which is not part 

of the current version of the Energy Trading Framework. Apart from the penalty mechanism, all the 

procedures demonstrated in the flow chart are implemented in the current version. The flow chart 

was designed with the aim to provide the reader with the general overview of the algorithms run by 

the agents. 

The flow chart in Figure 29, demonstrates the algorithm followed by the agents in order to determine 

the way in which they will pay the penalties imposed to them, and refers only to the extension of the 

Energy Trading Framework, in which the penalty mechanism will be included. 



   D4.5 
Version 1.0 

 

 

© SDN microSENSE consortium   Page | 67 
Public document 

 

 

Figure 29: Penalty paying algorithm 

 

4.2.2.2 Connection of Blockchain Based Intrusion and Anomaly Detection module with RPI of smart 

meter  

The Blockchain-Based Intrusion and Anomaly Detection (BIAD) module requires an agent to send 

information to the Blockchain part (See Section 4.1.2). This agent can be installed in any device (in the 

context of the SDN-microSENSE project Raspberry PI based smart meter is going to be used in order to 

be able to do the proof of concept) that is about to be monitored and it must be configured to connect 

with the BIAD. Further information about the installation process is provided in section 6.2. 

The BIAD agent has been developed using C programming language, so it can be compiled in any device 

having a C compiler. Furthermore, C is one of the fastest languages, which is a crucial aspect, 

considering that the target devices are usually constraint in terms of processor power, RAM memory, 

or even battery. Consequently, developing a lightweight agent is a fundamental requirement within 

the BIAD component.  



   D4.5 
Version 1.0 

 

 

© SDN microSENSE consortium   Page | 68 
Public document 

 

As part of the configuration, some file paths must be given to the agent. The BIAD agent then 

systematically looks for these files in the filesystem and hashes them. Once this hash has been 

calculated, the next step is to submit it to the Blockchain and perform the comparison as it has been 

previously discussed. The BIAD agent can bind as many files as required and with any format, so 

different files can be monitored, such as: configuration files, log files or even the whole firmware. 

Furthermore, the agent checks useful kernel information, such as: number of processes, RAM usage, 

and uptime. This information is also sent to the BIAD – peer node to be analyzed. It is important to 

notice that the BIAD is agnostic when it comes to this information, because is the BIAD who adds the 

intelligence to this information. The agent works only as a lightweight daemon who passes information 

to the BIAD. 

As it will be explained in the section 6.2, all the configuration process is made directly over the code 

before compilation, so no information is retrieved from other sources. By doing it this way, we can 

later remove every evidence of the agent installation, except the executable, so it can be more easily 

hidden in the system. A process-hiding mechanism has also been included in the agent, to hide the 

subsequent process from being shown with the rest of system processes and this system has been 

tested in Debian systems. This strategy is considered security-by-obscurity, but we have considered 

that any extra occultation layer is welcomed. At the end, time is crucial in the solution, and the most 

time an attacker spends in detecting the agent, the better. 

 

5. System verification 
To  verify that the Blockchain-based Energy Trading System meets its requirements, several unit tests 

have been defined and executed. Unit testing is an integral part of TDD (test-driven development) 

procedures, as it facilitates designing robust software components by finding and fixing defects in the 

early stages of software development lifecycle. The flow-chart of Figure 26, presents the procedure of 

TDD. 



   D4.5 
Version 1.0 

 

 

© SDN microSENSE consortium   Page | 69 
Public document 

 

 

Figure 26: TDD procedure 

In sections 5.1 and 5.2, the unit tests for both e-auction module and Blockchain Based Intrusion and 

Anomaly Detection module are presented, using test case tables that include description of the unit 

test, the related requirements for which the unit test was written, the priority of the test for the 

development of the software, the pre-conditions that should be fulfilled to run the test, the test steps 

that compose the unit test, the input data for each step, the results after executing each step and the 

result of the whole unit test. 

5.1 Ε-auction module unit tests 
Table 30: E-AUCTION_01 unit test 

Test Case 

ID 

E-AUCTION_01 Component E-auction module of 

energy trading 

framework 

Descriptio

n 

ESCO company is responsible for managing ERC20 token accounts. This test showcases 

the ability of ESCO organization to initialize a token, create and update user accounts.  



   D4.5 
Version 1.0 

 

 

© SDN microSENSE consortium   Page | 70 
Public document 

 

Req ID FR-UC4-04 Priority High 

Prepared 

by 

CERTH Tested by CERTH 

Pre-

condition(

s) 

• Each component of the e-auction has to be up and listening on their respective 

port, which includes at least an orderer, a peer for the ESCO organization, one 

or more peers for prosumers and a couchdb for each peer. 

• The ERC20 chaincode must be installed and instantiated on the e-auction 

channel of the blockchain network. 

• The application of each organization is running  

Test steps 

1 The peer of ESCO organization sends a POST HTTP request to initialize a new token, with 

the name of the token, the symbol of the token and the amount of token units that 

correspond to the total supply. 

2 The peers of each prosumer organization (Org1, Org2 and Org3), apply for token account 

with an HTTP POST request, including the name and the symbol of the token in the 

request body. 

3 After applying each prosumer should be able to retrieve the balance of its own with an 

HTTP GET request with the name and the symbol of the token as URL parameters. The 

initial balance should equal to 0.  

4 The ESCO retrieves the list of applicant organizations, through an HTTP GET request with 

the name and symbol of the token as URL parameters 

5 The ESCO organization’s peer updates the balances of the applicants with 500 tokens for 

each account as an initial amount. This action is performed with an HTTP POST request 

with the name and symbol of the token, the amount of the tokens and the prosumer’s 

identification information (MSP ID and CertID). 

5 At this stage, each prosumer retrieves its balance, that should be equal to 500 tokens.  

Input 

data 

• Step1  

  { 

    "Name": "tok", 

    "Symbol": "BT", 

    "TotalSupply": 1000000 

   } 

• Step2 

  { 



   D4.5 
Version 1.0 

 

 

© SDN microSENSE consortium   Page | 71 
Public document 

 

    "Name": "tok", 

    "Symbol": "BT" 

  } 

• Step3 

  name=tok 
  symbol=BT 
  mspID=Org1MSP 
  certID=eDU...VVT 
 

• Step4 

  name=tok 

  symbol=BT 

• Step5 
 { 
    "Name": "tok", 
    "Symbol": "BT", 
    "Amount": 500, 
    "From": { 
     "MspId":"Org1MSP", 
     "CertId":"eDU…VVT" 
    } 

 } 

• Step6 

  name=tok 

  symbol=BT 



   D4.5 
Version 1.0 

 

 

© SDN microSENSE consortium   Page | 72 
Public document 

 

Result • Step1 

 

• Step2 

 



   D4.5 
Version 1.0 

 

 

© SDN microSENSE consortium   Page | 73 
Public document 

 

 

 

• Step3 

 

 

• Step4 



   D4.5 
Version 1.0 

 

 

© SDN microSENSE consortium   Page | 74 
Public document 

 

 

 

• Step5 

 

 

• Step6  



   D4.5 
Version 1.0 

 

 

© SDN microSENSE consortium   Page | 75 
Public document 

 

 



   D4.5 
Version 1.0 

 

 

© SDN microSENSE consortium   Page | 76 
Public document 

 

Test Case 

Result 

Achieved 

 

 

Test Case 

ID 

E-AUCTION_01 Component E-auction module of 

energy trading 

framework 

Descriptio

n 

ESCO company is responsible for managing ERC20 token accounts. This test showcases 

the ability of ESCO organization to initialize a token, create and update user accounts.  

Req ID FR-UC4-04 Priority High 

Prepared 

by 

CERTH Tested by CERTH 

Pre-

condition(

s) 

• Each component of the e-auction has to be up and listening on their respective 

port, which includes at least an orderer, a peer for the ESCO organization, one 

or more peers for prosumers and a couchdb for each peer. 

• The ERC20 chaincode must be installed and instantiated on the e-auction 

channel of the blockchain network. 

• The application of each organization is running  

Test steps 

1 The peer of ESCO organization sends a POST HTTP request to initialize a new token, with 

the name of the token, the symbol of the token and the amount of token units that 

correspond to the total supply. 

2 The peers of each prosumer organization (Org1, Org2 and Org3), apply for token account 

with an HTTP POST request, including the name and the symbol of the token in the 

request body. 

3 After applying each prosumer should be able to retrieve the balance of its own with an 

HTTP GET request with the name and the symbol of the token as URL parameters. The 

initial balance should equal to 0.  

4 The ESCO retrieves the list of applicant organizations, through an HTTP GET request with 

the name and symbol of the token as URL parameters 

5 The ESCO organization’s peer updates the balances of the applicants with 500 tokens for 

each account as an initial amount. This action is performed with an HTTP POST request 

with the name and symbol of the token, the amount of the tokens and the prosumer’s 

identification information (MSP ID and CertID). 

5 At this stage, each prosumer retrieves its balance, that should be equal to 500 tokens.  



   D4.5 
Version 1.0 

 

 

© SDN microSENSE consortium   Page | 77 
Public document 

 

Input 

data 

• Step1  

  { 

    "Name": "tok", 

    "Symbol": "BT", 

    "TotalSupply": 1000000 

   } 

• Step2 

  { 

    "Name": "tok", 

    "Symbol": "BT" 

  } 

• Step3 

  name=tok 
  symbol=BT 
  mspID=Org1MSP 
  certID=eDU...VVT 
 

• Step4 

  name=tok 

  symbol=BT 

• Step5 
 { 
    "Name": "tok", 
    "Symbol": "BT", 
    "Amount": 500, 
    "From": { 
     "MspId":"Org1MSP", 
     "CertId":"eDU…VVT" 
    } 

 } 

• Step6 

  name=tok 

  symbol=BT 



   D4.5 
Version 1.0 

 

 

© SDN microSENSE consortium   Page | 78 
Public document 

 

Result • Step1 

 

• Step2 

 



   D4.5 
Version 1.0 

 

 

© SDN microSENSE consortium   Page | 79 
Public document 

 

 

 

• Step3 

 

 

• Step4 



   D4.5 
Version 1.0 

 

 

© SDN microSENSE consortium   Page | 80 
Public document 

 

 

 

• Step5 

 

 

• Step6  



   D4.5 
Version 1.0 

 

 

© SDN microSENSE consortium   Page | 81 
Public document 

 

 



   D4.5 
Version 1.0 

 

 

© SDN microSENSE consortium   Page | 82 
Public document 

 

Test Case 

Result 

Achieved 

 

Table 31: E-AUCTION_02 unit test 

Test Case 

ID 

E-AUCTION_02 Component E-auction module of 

energy trading 

framework 

Descripti

on 

A priority table is managed by the related chaincode that keeps the total contribution 

to the markets for each organization. This test, showcases the initialization of the 

priority table by the ESCO organization peer and how organizations are registered to 

the priority table after applying to a market. 

Req ID FR-UC4-02 Priority High 

Prepared 

by 

CERTH Tested by CERTH 

Pre-

condition

(s) 

• Each component of the e-auction has to be up and listening on their respective 

port, which includes at least an orderer, a peer for the ESCO organization, one 

or more peers for prosumers and a couchdb for each peer. 

• The Priority Table and the Market chaincodes must be installed and 

instantiated on the e-auction channel of the blockchain network. 

• The application of each organization is running  

• A market has been initialized 

Test steps 

1 The ESCO organization’s peer initiates a new priority table using an HTTP POST request.  

2 ESCO peer retrieves the priority table with an HTTP GET request. The initial participants and 

market contribution lists should be empty. 

3 Peers of prosumer organizations (Org1 and Org2) apply to a market with an HTTP POST 

request including the ID of a market that they are applying for, the ID of the priority table 

and their role in the market (Org1 as Auctioneer and Org2 as Bidder) 

4 ESCO peer retrieves the priority table with a GET request. The organizations that have 

applied to a market should have been added to the lists of participants and contributions of 

the priority table and their initial contribution should equal to 0. 

Input 

data 

• Step1  

        ΗΤΤP POST request with empty request body 

• Step2 

ΗΤΤP GET request without parameters 



   D4.5 
Version 1.0 

 

 

© SDN microSENSE consortium   Page | 83 
Public document 

 

• Step3 

{ 
    "ID":"8680ccf55f5c4d03845ee82d4b1c35e5", 
    "PriorityTable": "6687732881c54b60a0168aefd4c6cf60", 
    "Role": "Auctioneer" 
} 
 
{ 
    "ID":"8680ccf55f5c4d03845ee82d4b1c35e5", 
    "PriorityTable": "6687732881c54b60a0168aefd4c6cf60", 
    "Role": "Bidder" 
} 
 

• Step4 

 

ΗΤΤP GET request without parameters 
 



   D4.5 
Version 1.0 

 

 

© SDN microSENSE consortium   Page | 84 
Public document 

 

Result • Step 1 

 

• Step 2 

 

• Step 3 

 



   D4.5 
Version 1.0 

 

 

© SDN microSENSE consortium   Page | 85 
Public document 

 

 

 



   D4.5 
Version 1.0 

 

 

© SDN microSENSE consortium   Page | 86 
Public document 

 

 

• Step4 

 

Test Case 

Result 

Achieved 

 

Test Case 

ID 

E-AUCTION_03 Component E-auction module of 

energy trading 

framework 

Descriptio

n 

Every 15 minutes, a new market is initialized. The organizations have a specific time 

slot (1 minute) to apply for that market and declare their roles. After the deadline 

passes then only the registered organizations will take part in the market. This test 



   D4.5 
Version 1.0 

 

 

© SDN microSENSE consortium   Page | 87 
Public document 

 

showcases the initialization of a market by the ESCO organization and 

successful/unsuccessfull applications from prosumers’ peers.  

Req ID FR-UC4-02 Priority High 

Prepared 

by 

CERTH Tested by CERTH 

Pre-

condition(

s) 

•  Each component of the e-auction has to be up and listening on their 

respective port, which includes at least an orderer, a peer for the ESCO 

organization, one or more peers for prosumers and a couchdb for each peer. 

• The Market chaincode must be installed and instantiated on the e-auction 

channel of the blockchain network. 

• The application of each organization is running  

• The priority table has been initialized and the ID is known to the organizations  
Test steps 

1 The ESCO organization’s peer initiates a new market, with an HTTP POST request with 

empty request body. 

2 Peer of prosumer Org1 applies to the market with an HTTP POST request including the ID of 

a market, the ID of the priority table and ‘Auctioneer’ role, successfully. 

3 Peer of prosumer Org2 applies to the market with an HTTP POST request including the ID of 

a market, the ID of the priority table and ‘Bidder’ role, successfully. 

4 Peer of prosumer Org3 applies to the market with an HTTP POST request including the ID of 

a market, the ID of the priority table and ‘Bidder’ role, unsuccessfully because the 

application deadline has already passed. 

5 The ESCO organization’s peer retrieves the markets list with an HTTP GET request. The 

market now includes Org1 and Org2 in the participants list, Org1 in the auctioneers list and 

Org2 in the Bidders list.  

Input data • Step 1 

        ΗΤΤP POST request with empty request body 

• Step 2 

{ 
    "ID":"8680ccf55f5c4d03845ee82d4b1c35e5", 
    "PriorityTable": "6687732881c54b60a0168aefd4c6cf60", 
    "Role": "Auctioneer" 
} 
 

• Step 3 & Step 4 

{ 
    "ID":"8680ccf55f5c4d03845ee82d4b1c35e5", 
    "PriorityTable": "6687732881c54b60a0168aefd4c6cf60", 



   D4.5 
Version 1.0 

 

 

© SDN microSENSE consortium   Page | 88 
Public document 

 

    "Role": "Bidder" 

} 

• Step 5 

ΗΤΤP GET request without parameters 
 



   D4.5 
Version 1.0 

 

 

© SDN microSENSE consortium   Page | 89 
Public document 

 

Result • Step 1 

 

• Step 2 



   D4.5 
Version 1.0 

 

 

© SDN microSENSE consortium   Page | 90 
Public document 

 

 

• Step 3 



   D4.5 
Version 1.0 

 

 

© SDN microSENSE consortium   Page | 91 
Public document 

 

 

• Step 4 



   D4.5 
Version 1.0 

 

 

© SDN microSENSE consortium   Page | 92 
Public document 

 

 

• Step 5 

 

 

 



   D4.5 
Version 1.0 

 

 

© SDN microSENSE consortium   Page | 93 
Public document 

 

Test Case 

Result 

Achieved 

 

Table 32: E-AUCTION_04 unit test 

Test Case 

ID 

E-AUCTION_04 Component E-auction module of 

energy trading 

framework 

Descriptio

n 

This unit test showcases an end-to-end VCG auction procedure with 2 winners. Org1 

is the auctioneer and 2 bidders apply to the market, Org2 and Org3. 

Req ID FR-UC4-01, FR-UC4-02, FR-UC4-

07 

Priority High 

Prepared 

by 

CERTH Tested by CERTH 

Pre-

condition(

s) 

•  Each component of the e-auction has to be up and listening on their respective 

port, which includes at least an orderer, a peer for the ESCO organization, one 

or more peers for prosumers and a couchdb for each peer. 

• The Market, Priority Table, ERC20 and Vickrey Clarke-Groves chaincodes must 

be installed and instantiated on the e-auction channel of the blockchain 

network. 

• The application of each organization is running  

• The priority table has been initialized and the ID is known to the organizations. 

• A market has been initialized and the ID is know to the organizations. Org1 has 

applied as auctioneer, while Org2 and Org3 have applied as bidders. 

• Org1, Org2 and Org3 have 500 tokens in their accounts.  

• Org1, Org2 and Org3 have 0 initial market contribution.  
Test steps 

1 Org1 (auctioneer) peer initiates a new Vickrey Clarke-Groves auction, selling 40KWh of 

energy with reserve price 5 tokens/KWh 

2 Org1 peer queries blockchain to get the state of the auction with an HTTP GET request. The 

state should include the information of the Vickrey Clarke-Groves auction that Org1 

provided as initialization parameters and ‘State’ field should be equal to ‘Initialized’. 

3 Org2 (bidder) peer submits a bid of 100 tokens for 15KWh of energy.  

4 Org3 (bidder) peer submits a bid of 150 tokens for 20KWh of energy.  

5 Org1 peer queries blockchain to get the state of the auction with an HTTP GET request. The 

state should include the cryptographic commitments to the bids of Org2 and Org3 and 

‘State’ field should be equal to ‘Bidding’. 



   D4.5 
Version 1.0 

 

 

© SDN microSENSE consortium   Page | 94 
Public document 

 

6 Org1 peer queries the blockchain to retrieve the markets list with an HTTP GET request. The 

bidders list of the only existing market should be empty, as after each bidding the bidder is 

removed from the list of bidders.   

7 Org2 peer reveals its bid to the Vickrey Clarke-Groves chaincode with an HTTP POST 

request. 

8 Org3 peer reveals its bid to the Vickrey Clarke-Groves chaincode with an HTTP POST 

request. 

9 Org1 peer queries blockchain to get the state of the auction with an HTTP GET request. The 

state should include the revealed bids of Org2 and Org3 and ‘State’ field should be equal to 

‘Revealing’. 

10 Org1 peer awards winners with an HTTP PORT request. At this step the chaincode calculates 

the e-auction results. 

11 Org1 peer queries blockchain to get the state of the auction with an HTTP GET request. The 

state should include the results of the e-auction, including the winners, the amount of 

energy sold, the amount of energy that was not sold, the shares of energy between winners 

and the amounts of tokens that they should pay to the auctioneer. The ‘State’ field should 

be equal to ‘Awarding’. 

12 Org1 peer queries the blockchain to retrieve the markets list with an HTTP GET request. The 

auctioneers list of the only existing market should be empty, as after awarding the 

auctioneer is removed from the list of auctioneers. 

13 Org2 peer transfers the number of tokens that correspond to its bid to Org1’s account with 

an HTTP POST request. 

14 Org3 peer transfers the number of tokens that correspond to its bid to Org1’s account with 

an HTTP POST request. 

15 Org1 peer queries blockchain to get the state of the auction with an HTTP GET request. The 

‘State’ field should be equal to ‘Settling’. 

16 Org1 peer retrieves its account balance through an HTTP GET request and should have 750 

tokens remaining, after receiving 100 tokens from Org2 and 150 tokens from Org3. 

17 Org2 peer retrieves its account balance through an HTTP GET request and should have 400 

tokens remaining after transferring 100 tokens to Org1’s account. 

18 Org3 peer retrieves its account balance through an HTTP GET request and should have 350 

tokens remaining after transferring 150 tokens to Org1. 

19 Org1 peer retrieves the priority table through an HTTP GET request. Org1’s contribution 

should be 35KWh, Org2’s contribution should be equal to 15KWh and Org3’s contribution 

should be equal to 20KWh. 



   D4.5 
Version 1.0 

 

 

© SDN microSENSE consortium   Page | 95 
Public document 

 

Input 

data 

• Step 1 

{ 
    "MarketID":"e616a322ca7d460e9f44730e1161bfbf", 
    "PriorityTableID":"b7b61ed1d28346b1a7b8988e7b561caf", 
    "Product":{ 
     "Name":"energy", 
     "Units":"kwh", 
     "Amount":40, 
     "Status":"ForSale" 
    }, 
    "ReservePrice":5 

} 

• Step 2 

auctionNum=5f57ce336f9a4962a3e2a32b5fff93e5 

 

• Step 3 

{ 
    "AuctionNum":"5f57ce336f9a4962a3e2a32b5fff93e5", 
    "Bid": 100, 
    "Amount": 15 
} 
 

• Step 4 

{ 
    "AuctionNum":"5f57ce336f9a4962a3e2a32b5fff93e5", 
    "Bid": 150, 
    "Amount": 20 

} 

• Step 5 

auctionNum=5f57ce336f9a4962a3e2a32b5fff93e5 

• Step 6 

HTTP GET request without parameters 

• Step 7 

{ 



   D4.5 
Version 1.0 

 

 

© SDN microSENSE consortium   Page | 96 
Public document 

 

    "AuctionNum": "5f57ce336f9a4962a3e2a32b5fff93e5", 
    "Bid": 100, 
    "Amount": 15 

} 

• Step 8 

{ 
    "AuctionNum": "5f57ce336f9a4962a3e2a32b5fff93e5", 
    "Bid": 150, 
    "Amount": 20 

} 

• Step 9  

auctionNum=5f57ce336f9a4962a3e2a32b5fff93e5 

• Step 10 

{ 
    "AuctionNum": "5f57ce336f9a4962a3e2a32b5fff93e5" 

} 

• Step 11 

auctionNum=5f57ce336f9a4962a3e2a32b5fff93e5 

• Step12 

HTTP GET request without parameters 

• Step13 &Step 14 

{ 
    "AuctionNum": "5f57ce336f9a4962a3e2a32b5fff93e5" 

} 

• Step15 

auctionNum=5f57ce336f9a4962a3e2a32b5fff93e5 

 

• Step16 

  name=tok 
  symbol=BT 



   D4.5 
Version 1.0 

 

 

© SDN microSENSE consortium   Page | 97 
Public document 

 

  mspID=Org1MSP 
  certID=eDU...VVT 

 

• Step17 

  name=tok 
  symbol=BT 
  mspID=Org2MSP 
  certID=eDU...VVT 
 

• Step18 

  name=tok 
  symbol=BT 
  mspID=Org3MSP 
  certID=eDU...VVT 
 
 

• Step19 

HTTP GET request without parameters 
 



   D4.5 
Version 1.0 

 

 

© SDN microSENSE consortium   Page | 98 
Public document 

 

Result • Step 1 

 

• Step 2 

 

• Step 3 



   D4.5 
Version 1.0 

 

 

© SDN microSENSE consortium   Page | 99 
Public document 

 

 

• Step 4 



   D4.5 
Version 1.0 

 

 

© SDN microSENSE consortium   Page | 100 
Public document 

 

 

• Step 5 



   D4.5 
Version 1.0 

 

 

© SDN microSENSE consortium   Page | 101 
Public document 

 

 

• Step 6 

 

• Step 7 



   D4.5 
Version 1.0 

 

 

© SDN microSENSE consortium   Page | 102 
Public document 

 

 

• Step 8 



   D4.5 
Version 1.0 

 

 

© SDN microSENSE consortium   Page | 103 
Public document 

 

 

• Step 9 



   D4.5 
Version 1.0 

 

 

© SDN microSENSE consortium   Page | 104 
Public document 

 

 

• Step 10 



   D4.5 
Version 1.0 

 

 

© SDN microSENSE consortium   Page | 105 
Public document 

 

 

• Step11 



   D4.5 
Version 1.0 

 

 

© SDN microSENSE consortium   Page | 106 
Public document 

 

 

• Step 12 

 

• Step13 



   D4.5 
Version 1.0 

 

 

© SDN microSENSE consortium   Page | 107 
Public document 

 

 

• Step14 



   D4.5 
Version 1.0 

 

 

© SDN microSENSE consortium   Page | 108 
Public document 

 

 

• Step15 



   D4.5 
Version 1.0 

 

 

© SDN microSENSE consortium   Page | 109 
Public document 

 

 

• Step16 

 

• Step17 



   D4.5 
Version 1.0 

 

 

© SDN microSENSE consortium   Page | 110 
Public document 

 

 

• Step18 

 

• Step19 

 

Test Case 

Result 

Achieved 

 

 



   D4.5 
Version 1.0 

 

 

© SDN microSENSE consortium   Page | 111 
Public document 

 

Table 33: E-AUCTION_05 unit test 

Test Case 

ID 

E-AUCTION_05 Component E-auction module of 

energy trading 

framework 

Descriptio

n 

This unit test showcases the rejection of a bidder that bids to an auction after the 

bidding deadline. 

Req ID FR-UC4-07 Priority Medium 

Prepared 

by 

CERTH Tested by CERTH 

Pre-

condition(

s) 

•  Each component of the e-auction has to be up and listening on their 

respective port, which includes at least an orderer, a peer for the ESCO 

organization, one or more peers for prosumers and a couchdb for each peer. 

• The Market, Priority Table, ERC20 and Vickrey Clarke-Groves chaincodes must 

be installed and instantiated on the e-auction channel of the blockchain 

network. 

• The application of each organization is running  

• The priority table has been initialized and the ID is known to the organizations. 

• A market has been initialized and the ID is known to the organizations. Org1 

has applied as auctioneer, while Org2 and Org3 have applied as bidders. 

Test steps 

1 Org1 (auctioneer) peer initiates a new Vickrey Clarke-Groves auction, selling 40KWh of 

energy with reserve price 5 tokens/KWh 

2 Org2 (bidder) peer submits a bid of 100 tokens for 15KWh of energy.  

3 Org3 (bidder) peer submits a bid of 150 tokens for 20KWh of energy but the bid is overdue.  

4 Org1 peer queries the blockchain to retrieve the markets list with an HTTP GET request. The 

bidders list of the only existing market should include Org3, since Org3’s peer bid got 

rejected and it should have the opportunity to take part in a subsequent auction of the 

market. 

Input data • Step 1 

{ 
    "MarketID":"", 
    "PriorityTableID":"", 
    "Product":{ 
     "Name":"energy", 
     "Units":"kwh", 
     "Amount":40, 
     "Status":"ForSale" 
    }, 



   D4.5 
Version 1.0 

 

 

© SDN microSENSE consortium   Page | 112 
Public document 

 

    "ReservePrice":5 

} 

• Step 2 

{ 
    "AuctionNum":"", 
    "Bid": 100, 
    "Amount": 15 
} 

• Step 3 

{ 
    "AuctionNum":"", 
    "Bid": 150, 
    "Amount": 20 
} 

• Step 4 

HTTP GET request without parameters 
 

Result • Step 1 



   D4.5 
Version 1.0 

 

 

© SDN microSENSE consortium   Page | 113 
Public document 

 

 

• Step 2 



   D4.5 
Version 1.0 

 

 

© SDN microSENSE consortium   Page | 114 
Public document 

 

 

• Step 3 



   D4.5 
Version 1.0 

 

 

© SDN microSENSE consortium   Page | 115 
Public document 

 

 

 

 

• Step 4 

 

Test Case 

Result 

Achieved 



   D4.5 
Version 1.0 

 

 

© SDN microSENSE consortium   Page | 116 
Public document 

 

 

 

5.2 Blockchain Based Intrusion and Anomaly Detection module unit tests 
 

Table 34: BIAD_01 unit test  

Test Case 

ID 

BIAD_01 Component BIAD network and 

chaincode 

Description The device is registered in the blockchain to be identified for futures 

interactions. 

Req ID FR-GR-06; FR-UC4-05 Priority High 

Prepared 

by 

TECNALIA Tested by TECNALIA 

Pre-

condition(s) 

• Each component of the BIAD has to be up and listening on their respective 

port, which includes at least an orderer (7050), a peer (7051), the CA 

(7054), couchdb (5084) and REST API (4040). 

• The chaincode must be installed and instantiated on the blockchain 

network. 

• The device must have a way to sign a transaction. In this case it is done via 

Rest API, so it must be log in.  

Test steps 

1 The device sends a POST HTTP request to the API, using RegisterDevice method, with its 

IP as identifier in the body and the authentication token in header. 

2 The orderer receives and mined the transaction in the next block, so that it can be added 

to the chain. 

3 Check if the device has been correctly registered using GetDeviceInfo route at the API.  

Input data {“dvcID”:”10.10.10.100”} 

Result • Step 1 



   D4.5 
Version 1.0 

 

 

© SDN microSENSE consortium   Page | 117 
Public document 

 

 

• Step 2 

 

• Step 3 



   D4.5 
Version 1.0 

 

 

© SDN microSENSE consortium   Page | 118 
Public document 

 

 

Test Case 

Result 

Achieved 

 

Table 35: BIAD_02 unit test 

Test Case 

ID 

BIAD_02 Component BIAD network and 

chaincode 

Description The device registers a hash and a processing parameter to be monitored with 

some initial values. If they already exist, the value is updated, and its validity is 

checked (same than BIAD_03 and BIAD_04 functionalities). 

Req ID FR-UR-06; FR-GR-06; FR-

UC4-05 

Priority High 

Prepared 

by 

TECNALIA Tested by TECNALIA 

Pre-

condition(s) 

• Each component of the BIAD has to be up and listening on their respective 

port, which includes at least an orderer (7050), a peer (7051), the CA 

(7054), couchdb (5084) and REST API (4040). 



   D4.5 
Version 1.0 

 

 

© SDN microSENSE consortium   Page | 119 
Public document 

 

• The chaincode must be installed and instantiated on the blockchain 

network. 

• The device must have a way to sign a transaction. In this case it is done via 

Rest API, so it must be log in.  

• The associated device must be previously registered on the blockchain 

and have a devID identifier. 

Test steps 

1 The device sends a POST HTTP request to the API, using RegisterHash or RegisterRecord 

methods, with their respective initial values in the body in JSON format. 

2 The orderer receives and mined the transaction in the next block, so that it can be added 

to the chain. 

3 Check if the Hash/Record has been correctly registered using GetDeviceInfo route at the 

API. 

Input data RegisterHash:  

{“dvcID”: “10.10.10.100”,  

“path”: “/etc/passwd”,  

“value”: “fn3y09bty340c0rf354tv4635bv37c3f04n5v2v5204ocweoi”}  

 

RegisterRecord:  

{“dvcID”: “10.10.10.100”,  

“param”: “USED_MEM”,  

“value”: 5,  

“max”: 60,  

“min”: 2} 

Result • Step 1 



   D4.5 
Version 1.0 

 

 

© SDN microSENSE consortium   Page | 120 
Public document 

 

 

• Step 2 



   D4.5 
Version 1.0 

 

 

© SDN microSENSE consortium   Page | 121 
Public document 

 

 

• Step 3 

 



   D4.5 
Version 1.0 

 

 

© SDN microSENSE consortium   Page | 122 
Public document 

 

Test Case 

Result 

Achieved 

 

Table 36: BIAD_03 unit test 

Test Case 

ID 

BIAD_03 Component BIAD network and 

chaincode 

Description The device updates the hash and the parameter registered on the blockchain, so 

it can be processed. This time there will not be any anomaly performance. This 

case is possible to do with RegisterHash function when the hash already exists 

on the ledger. 

Req ID FR-UR-06;FR-GR-06; FR-

UC4-05 

Priority High 

Prepared 

by 

TECNALIA Tested by TECNALIA 

Pre-

condition(s) 

• Each component of the BIAD has to be up and listening on their respective 

port, which includes at least an orderer (7050), a peer (7051), the CA 

(7054), couchdb (5084) and REST API (4040). 

• The chaincode must be installed and instantiated on the blockchain 

network. 

• The device must have a way to sign a transaction. In this case it is done via 

Rest API, so it must be log in.  

• The associated device must be previously registered on the blockchain 

and have a devID identifier. And in case of processing parameter, it must 

be previously registered as well. 

Test steps 

1 The device sends a POST HTTP request to the API, using UpdateHash or UpdateRecord 

methods, with their respective identity and actual values in the body, in JSON format. 

2 The orderer receives and mined the transaction in the next block, so that it can be added 

to the chain. 

3 Check if the Hash/Record has been correctly updated and if there is any alert, using 

GetDeviceInfo route at the API. 

Input data UpdateHash:  

{"hashID":"1kryIbFfcxraifnJxt84I3kdGKJ",  

"value":" fn3y09bty340c0rf354tv4635bv37c3f04n5v2v5204ocweoi"}  

 



   D4.5 
Version 1.0 

 

 

© SDN microSENSE consortium   Page | 123 
Public document 

 

UpdateRecord:  

{"recordID":"1kryIbFfcxraifnJxt84I3kdGKJ",  

"value": 6} 

Result • Step 1 

 

• Step 2 



   D4.5 
Version 1.0 

 

 

© SDN microSENSE consortium   Page | 124 
Public document 

 

 

• Step 3 

 



   D4.5 
Version 1.0 

 

 

© SDN microSENSE consortium   Page | 125 
Public document 

 

Test Case 

Result 

Achieved 

 

Table 37: BIAD_04 unit test 

Test Case 

ID 

BIAD_04 Component BIAD network and 

chaincode 

Description The device updates the hash and the parameter registered on the blockchain, so 

it can be processed. This time we will introduces an anomaly performance. 

Req ID FR-UR-06;FR-GR-06; FR-

UC4-05 

Priority High 

Prepared 

by 

TECNALIA Tested by TECNALIA 

Pre-

condition(s) 

• Each component of the BIAD has to be up and listening on their respective 

port, which includes at least an orderer (7050), a peer (7051), the CA 

(7054), couchdb (5084) and REST API (4040). 

• The chaincode must be installed and instantiated on the blockchain 

network. 

• The device must have a way to sign a transaction. In this case it is done via 

Rest API, so it must be log in.  

• The associated device must be previously registered on the blockchain 

and have a devID identifier. And in case of processing parameter, it must 

be previously registered as well. 

Test steps 

1 The device sends a POST HTTP request to the API, using UpdateHash or UpdateParam 

methods, with their respective identity and actual values in the body, in JSON format. 

2 The orderer receives and mined the transaction in the next block, so that it can be added 

to the chain. 

3 Check if the Hash/Parameter has been correctly updated and if there is any alert, using 

GetDeviceInfo route at the API. 

Input data UpdateHash:  

{"hashID":"1kryIbFfcxraifnJxt84I3kdGKJ",  

"value":"attack_to_10.10.10.100"}  

 

UpdateParam:  



   D4.5 
Version 1.0 

 

 

© SDN microSENSE consortium   Page | 126 
Public document 

 

{"recordID":"1kryIbFfcxraifnJxt84I3kdGKJ",  

"value": 80} “dvcID”:”10.10.10.100”} 

Result • Step 1 

 

• Step 2 



   D4.5 
Version 1.0 

 

 

© SDN microSENSE consortium   Page | 127 
Public document 

 

 

• Step 3 



   D4.5 
Version 1.0 

 

 

© SDN microSENSE consortium   Page | 128 
Public document 

 

 

Test Case 

Result 

Achieved 

 



   D4.5 
Version 1.0 

 

 

© SDN microSENSE consortium   Page | 129 
Public document 

 

Table 38: Lib_mon_001 unit test 

Test Case 

ID 

Lib_mon_001 Component BIAD Agent 

Description Testing of the Monitoring Lib  

Req ID FR-GR-06; FR-UC4-05 Priority -- 

Prepared 

by 

TECNALIA Tested by TECNALIA 

Pre-

condition(s) 

• Source code of the monitor_lib 

• No built code 

Test steps 

1 cd lib/monitor_lib 

2 make test 

3 cd test && ./test 

Input data  

Result 

 

Test Case 

Result 

Achieved 

 

Table 39: Lib_hash_001 unit test 

Test Case 

ID 

Lib_hash_001 Component BIAD Agent 

Descriptio

n 

Testing of the Hashing Lib  

Req ID FR-GR-06; FR-UC4-05 Priority -- 

Prepared 

by 

TECNALIA Tested by TECNALIA 

Pre-

condition(

s) 

• Source code of the hashlib 

• No built code 

Test steps 



   D4.5 
Version 1.0 

 

 

© SDN microSENSE consortium   Page | 130 
Public document 

 

1 cd lib/hashlib 

2 make test 

3 cd test && ./test 

Input 

data 

 

Result 

 

Test Case 

Result 

Achieved 

 

Table 40: Fabric_conn_001 unit test 

Test Case 

ID 

Fabric_conn_001 Component BIAD Agent 

Description Testing of the Fabric connection Lib  

Req ID FR-GR-06; FR-UC4-05 Priority -- 

Prepared 

by 

TECNALIA Tested by TECNALIA 

Pre-

condition(s) 

• Source code of the fabric_conn 

• No built code 

Test steps 

1 cd lib/fabric_conn 

2 make test 

3 cd test && ./test 

Input data  



   D4.5 
Version 1.0 

 

 

© SDN microSENSE consortium   Page | 131 
Public document 

 

Result Terminal does not show any error. 

Test Case 

Result 

Achieved 

 

Table 41: agent_001 unit test 

Test Case 

ID 

agent_001 Component BIAD Agent 

Description Testing of the agent.  

Req ID FR-GR-06; FR-UC4-05 Priority -- 

Prepared 

by 

TECNALIA Tested by TECNALIA 

Pre-

condition(s) 
• Source code of the agent 

• No built code 

Test steps 

1 cd agent 

2 make agent 

3 ./agent (with root permissions) 

Input data  

Result Terminal does not show any error. 

Test Case 

Result 

Achieved 

 

6. System Installation 
  

6.1 Ε-auction module  

6.1.1 Ε-auction module installation 
To deploy the e-auction module, first of all it is necessary to have an operative Hyperledger Fabric 

blockchain network and create a channel with the participants. For the proof of concept, we have 

launched a network using Docker containers, that is based on the basic network that Hyperledger 

Fabric provides. We have added 3 more organizations to simulate a network with 3 prosumers and 1 

ESCO company, because the basic network includes only 1 organization and 1 peer node.  

Requirements for the Hyperledger Fabric blockchain network and API: 



   D4.5 
Version 1.0 

 

 

© SDN microSENSE consortium   Page | 132 
Public document 

 

• Docker 

• Go language  

Commands for starting the network and the applications for each organization: 

1. cd basic-network from root project folder 

2. ./start.sh and wait until Fabric network is setup 

3. cd OrgXApp from root folder  

4. ./blocktion 

5. cd TokenBankApp from root folder 

6. ./blocktion 

 

6.2 Blockchain Based Intrusion and Anomaly Detection module  

6.2.1 BIAD installation 
To deploy the BIAD, first of all it is necessary to have an operative Hyperledger Fabric blockchain 

network and create a channel with the participants. For the proof of concept, we have launched a 

network using Docker containers.  

Requirements for the Hyperledger Fabric blockchain network and API: 

• npm  

• docker 

• nvm v8.17.0 

Commands for deployment the Hyperledger Fabric blockchain network and API: 

• yarn generate 

• yarn rest:start 

• yarn explorer:start 

Then, we install and instantiate the chaincode, named ccsdn for the example, on the created channel.  

Requirements for chaincode component: 

• fabric-tecnalia-cli 

• network-profile 

Commands for the deployment of chaincode component: 

• install -f ./network/cc.network-profile.yaml --channel ch1 -c [chaincodeName] -g ./ -p 

[chaincoidePath]  -t golang -V 

• instantiate -f ./network/cc.network-profile.yaml --channel ch1 -c [chaincodeName]  -V 

Finally, we need to deploy the agent on the client (see section 6.2.2) and create a certificate on the CA, 

which will be used to sign the transactions. The client will send input data to the REST API server, where 

the transaction will be generated and sent to the blockchain corresponding node.  

 



   D4.5 
Version 1.0 

 

 

© SDN microSENSE consortium   Page | 133 
Public document 

 

6.2.2 Agent installation 
Before any installation of the agent can take place, some prerequisites must be met (in the Project 

Raspberry PI simulating the devices are used to install the agent). To do so, the script 

install_prerequisites.sh must be run. Once the prerequisites are installed it is time to install the agent.  

The code provided contains a Makefile, which compiles all the software by writing make all. When 

doing make all, the next parts are compiled: 

• Hash_lib: Library which hashes files  

• Monitor_lib: Library which gets information about RAM, processes and uptime 

• Fabric_lib: Library which connects with the Blockchain module 

• Processhider_lib: Library which implements the process hider utility. 

• Agent: executable of the BIAD agent 

Before doing any make all command, it is required to configure the endpoint with the Blockchain, the 

files to be hashed and the ID of the device sending information. This is directly made in the agent.c file, 

by changing the variables. Here we have an example of a possible configuration, with the information 

to be modified in red color: 

 

#define num_files 2 

char deviceID[20]="1111"; 

char blockchain_node[20]="172.26.41.127"; 

 

char files[num_files][length_files]= 

{ 

    "/etc/passwd", 

    "/var/log/auth.log" 

}; 

Once this information has been updated, the make all command will install the whole software. Also, 

for testing purposes, a test/ folder is created within every library folder with code testing the 

functionality when make all is launched. This allows to test every single part of the agent before being 

integrated into the final platform. 

 

7. Innovation Summary  

As part of task T4.5, a complete and secure-by-design Blockchain-based Energy Trading Framework has 
been designed and developed as a part of the SDN-microSENSE project. The Blockchain-based Energy 
Trading Framework leverages the other modules of SDN-microSENSE to provide functionalities that 
enhance the robustness and efficiency of the grid. Specifically, any potential trades that have been 
calculated by the energy trading framework are further checked by the OTSC tool in terms of feasibility 
and with regards to the balance of the system, before they are actually applied to the grid. 
Furthermore, an integrated, distributed IDS (BIAD) have been developed to work complementary to 
the market that checks the validity of the participant’s devices. BIAD communicates with XL-EDPS and 
S-RAF providing another layer of security to the system and ensures that the participants are trusted 
and pose no risk to the overall operation of the electrical network. To our knowledge this complete 
approach regarding energy blockchain market have not been implemented in such a wide manner, 



   D4.5 
Version 1.0 

 

 

© SDN microSENSE consortium   Page | 134 
Public document 

 

encompassing trading, security, privacy and performance at the same time with regards to the whole 
system. 

One of the innovations is the use of the Hyperledger DLT open source project, in this case, Hyperledger 
Fabric. Hyperledger Fabric is better suited for the EPES domains in terms of performance [3] and data 
privacy in contrast to other initiatives which are based on other blockchain platforms. By relying on a 
permissioned architecture, security and privacy of the e-auction transactions are ensured towards the 
peers in the network in contrast to public blockchain technologies. On that aspect, the e-auction 
module is based on the use of smart contracts, providing an automated and decentralized way of 
resolving auctions and uses a Vickrey-Clark-Groves (VCG) auction model. VCG is a sealed-bid type of 
auction that ensures maximization of utility, as there could be multiple winners and the system would 
assign the sold energy to buyers in a socially optimal manner [4]. At the same time, VCG pushes the 
buyers to bid near their true estimated value. Additionally, incentives are provided to drive participants 
to participate in a regular manner in order to climb the priority table. Penalties ensure that participants 
will deliver the agreed amount of energy and will pay their debts, as non-compliance of these two 
factors would lead to a fall in the priority table. Finally, a bank mechanism protects any participants 
that is owed tokens. 

The second main innovation is the integration of security monitoring and reporting procedures in the 
energy trading framework by the BIAD module. The BIAD module is a distributed system comprising of 
lightweight agents, which are installed on the devices of the participants (i.e. RPI based smart meter, 
IEDs, RTUs). The agent calculates a hash from critical files of the system at regular intervals and uses 
the blockchain DLT to ensure the uncompromised status of the devices by checking for any difference 
with the previously reported hash. In case of any anomaly, the owner of the device cannot participate 
in any auctions; either as seller or as bidder and XL-EDPS is informed for further actions. One of the 
main advantages of the BIAD agents is that they are lightweight and are written in C, which enables 
support to any hardware in the market, while at the same time ensuring high-performance. The 
installation and any configuration of the agent is made locally, as such no information is disseminated 
outside of the device, other than the hash, further preserving the privacy of the device. Additionally, 
the agent can be equipped with process-hiding mechanisms in order to inhibit any attacker from 
discovering and tampering with the agent itself. Overall, BIAD is an innovative IDS, leveraging the 
distributed blockchain architecture to provide an easy indication of trust among participating devices 
and operating as another layer of defense against cyber-attacks. 

 

 

 

 

 

 

 



   D4.5 
Version 1.0 

 

 

© SDN microSENSE consortium   Page | 135 
Public document 

 

8. Conclusions  
In conclusion, this deliverable describes the final outcome of Task T4.5, Energy Exchange using 

Blockchain Technologies, which is included in WP4. Some minor updates are possible by the end of the 

project, in the context of the continuous improvement of the complete developed system. These 

updates will be mainly related to the algorithms run by the software agents participating in the Energy 

Trading Framework, and the further expansion of the Framework’s functionalities. 

The Energy Trading Framework has been implemented and its functionalities, inputs/outputs and 

interconnections with other SDN-microSENSE components and modules have been analytically 

described, along with a presentation of all the related work in the literature. Taking under 

consideration the project’s requirements (D2.2) and its architecture (D2.3), the system was developed 

using the Hyperledger Fabric framework. The system offers a safe and privacy preserving environment, 

in which energy transactions can be performed between prosumers of an islanded part of the main 

grid. Thus, the island can be sustainable and fully operational until it is ready to reconnect to the main 

grid. Moreover, the cryptographic mechanisms which were deployed ensure the participants’ sensitive 

data privacy, and the algorithms run by their corresponding software agents, ensure their economic 

sustainability. 

This deliverable produces the fourth layer of the SDN-SELF component, which aims to improve the 

robustness of the grid against cyberattacks. The blockchain-based Energy Trading Framework offers 

increased resilience against cyber threats, taking into account the real time security status of the 

network. The continuous monitoring of the grid’s infrastructure and the filtering of all the proposed 

transactions to verify their feasibility,  provides secure energy trading transactions between microgrids 

that do not jeopardize the grid’s stability. 

The adoption of an ERC20 token mechanism for financial transactions of trading parties, overcomes 

the computation overload that is imposed by cryptocurrency such as Bitcoin or Ether and makes 

transactions faster and more efficient. Also, the utilization of a private permissioned network that 

Hyperledger Fabric provides, enhances transaction privacy trough dedicated channels for energy 

trading between organizations and fosters an ecosystem of trusted parties that have competitive 

interests but common goals. Finally, the selection of Vickrey Clarke-Groves auction mechanism, keeps 

the benefits of simple Vickrey auction mechanism that other studies suggest, such as sealed bids that 

ensure the true valuation of the product and adds extra value by sharing the offered amount of energy 

to multiple winners according to their needs, maximizing the value of the product at the same time.  

The system presented in this document refers to islands not connected to the main distribution grid. 

These islands consist of prosumers, which have the ability to produce and store energy, apart from 

consuming it. The OTSC tool ensures the energy sustainability of the islands upon their initial creation. 

A possible improvement of the Energy Trading Framework is the addition of the functionality of trading 

energy with the main grid. In this case, consumers without the ability to produce or store energy can 

be included to the energy market by participating in energy auctions as bidders. Also, incentives will 

be given to the consumers, for example, for having lower consumption at peak hours of the day. All 

the stakeholders will receive the prices offered by the main grid for buying and selling energy, and they 

will compare these prices with the corresponding prices offered by the rest of the stakeholders. This 

way, they will have the ability to choose the market which ensures them the maximum profit and at 



   D4.5 
Version 1.0 

 

 

© SDN microSENSE consortium   Page | 136 
Public document 

 

the same time, the local, blockchain-based energy market will operate in alignment with the main 

grid’s market.    

The evaluation of the Energy Trading Framework during the implementation of the SDN-microSENSE 

pilot demonstrations will lead to further development and research regarding this component, and the 

possible improvement of its functionalities will be investigated. Another possible extension that may 

be explored, is the implementation of a web interface that provides suggestions to end users for 

participation to the market, instead of the current fully automated procedures that are processed by 

software agents. 

 

 

  



   D4.5 
Version 1.0 

 

 

© SDN microSENSE consortium   Page | 137 
Public document 

 

References 
 

[1]  "hyperledger.org," Hyperledger, [Online]. Available: https://www.hyperledger.org/wp-

content/uploads/2020/03/hyperledger_fabric_whitepaper.pdf. [Accessed 08 12 2020]. 

[2]  P. G. Sessa, N. Walton and M. Kamgarpour, "Exploring the Vickrey-Clarke-Groves Mechanism 

for Electricity Markets," IFAC-PapersOnLine, vol 50, issue 1, pp. 189-194, 2017.  

[3]  M. Dabbagh, M. Kakavand, M. Tahir and A. Amphawan, "Performance Analysis of Blockchain 

Platforms: Empirical Evaluation of Hyperledger Fabric and Ethereum," in 2020 IEEE 2nd 

International Conference on Artificial Intelligence in Engineering and Technology (IICAIET), Kota 

Kinabalu, Malaysia, 2020.  

[4]  P. G. Sessa, N. Walton and M. Kamgarpour, "Exploring the Vickrey-Clarke-Groves Mechanism 

for Electricity Markets," IFAC-PapersOnLine, Vol.50, Issue 1, pp. 189-194, July 2017.  

[5]  J. Wang, Q. Wang, N. Zhou and Y. Chi, "A novel electricity transaction mode of mocrogrids 

based on blockchain and continous double auction," Energies, vol 10 , p. 1971, November 2017.  

[6]  M. Andoni, V. Robu, D. Flynn, S. Abram, D. Geach, D. Jenkins, P. McCallum and A. Peacock , 

"Blockchain technology in the energy sector: A systematic review of challenges and 

opportunities," Renewable and Sustainable Energy Reviews, Elsevier vol 100, pp. 143-174, 

February 2019.  

[7]  S. Nakamoto, "Bitcoin: A Peer-to-Peer Electronic Cash System," 2009. 

[8]  P. Vytelingum, "The structure and behaviour of the Continous Double Auction," 2006. 

[9]  A. Hahn, R. Singh, C. C. Liu and S. Chen, "Smart contract-based campus demonstration of 

decentralized transactive energy auctions," in IEEE Power and Energy Society Innovative Smart 

Grid Technologies Conference, ISGT, 2017.  

[10]  V. Buterin, "Ethereum Whitepaper," 9 October 2020. [Online]. Available: ethereum.org. 

[11]  L. M. Ausubel and P. Milgrom, "The Lovely but Lonely Vickrey Auction," in Combinatorial 

Auctions, 2005.  

[12]  J. Guerrero, A. C. Chapman and G. Verbic, "Decentralized P2P Energy Trading Under Network 

Constraints in a Low-Voltage Network," IEEE Transactions on Smart Grid, vol. 10, pp. 5163-

5173, September 2019.  

[13]  Z. Li, J. Kang, R. Yu, D. Ye, Q. Deng and Y. Zhang, "Consortium blockchain for secure energy 

trading in industrial internet of things," IEEE Transactions on Industrial Informatics , pp. 3690 - 

3700, Augoust 2018.  



   D4.5 
Version 1.0 

 

 

© SDN microSENSE consortium   Page | 138 
Public document 

 

[14]  K. Gai , Y. Wu, L. Zhu, M. Qiu and M. Shen, "Privacy-Preserving energy trading using consortium 

blockchain in smart grid," IEEE Transactions on Industrial Informatics, vol. 15, pp. 3548-3558, 

June 2019.  

[15]  M. A. Ferrag and L. Maglaras, "DeepCoin: A Novel Deep Learning and Blockchain-Based Energy 

Exchange Framework for Smart Grids," IEEE Transactions on Engineering Management vol. 67, 

pp. 1285-1297, November 2020.  

[16]  S. Wang, A. F. Taha, J. Wang, K. Kvaternik and A. Hahn, "Energy Crowdsourcing and Peer-to-

Peer Energy Trading in Blockchain-Enabled Smart Grids," IEEE Transactions on Systems, Man, 

and Cybernetics: Systems, vol. 49, pp. 1612-1623, June 2019.  

[17]  A. S. Yahaya, N. Javaid, F. A. Alzahrani, A. Rehman, I. Ullah, A. Shahid and M. Shafiq, "Blockchain 

Based Sustainable Local Energy Trading Considering Home Energy Management and Demurrage 

Mechanism," Sustainability, vol 12, pp. 1-28, 21 2020 April.  

[18]  D. Han, C. Zhang, J. Ping and Z. Yan, "Smart contract architecture for decentralized energy 

trading and management based on blockchains," Energy, vol. 199, 15 May 2020.  

[19]  R. Chaudhary, A. Jindal, G. S. Aujla, S. Aggarwal, N. Kumar and K. R. Choo, "BEST: Blockchain-

based secure energy trading in SDN-enabled intelligent transportation system," 

Computers&Security, pp. 288-299, Augoust 2019.  

[20]  "Blockchain-Based Distributed Energy Trading in Energy Internet: An SDN Approach," IEEE 

Access, vol. 7, pp. 173817-173826, 2 December 2019.  

 

 

 

 

 


	Table of contents
	Acronyms
	List of Figures
	List of Tables
	Executive Summary
	1. Introduction
	1.1 Purpose of this document
	1.2 Relation to other tasks and deliverables
	1.3 Structure of this document

	2. State of the art in blockchain-based energy trading systems
	3. Architecture and Requirements
	3.1 Objective of the system and placement in SDN-microSENSE architecture
	3.2 Requirements analysis
	3.2.1 Major inputs and outputs
	3.2.2 Functional requirements
	3.2.3 Non-functional requirements


	4. System analysis
	4.1 Component model
	4.1.1 E-auction module
	4.1.1.1 E-auction mechanism
	4.1.1.2 Penalty mechanism
	4.1.1.3 Vickrey-Clarke-Groves chaincode
	4.1.1.4 ERC20 token chaincode
	4.1.1.5 Priority table chaincode
	4.1.1.6 Market chaincode
	4.1.1.7 E-auction module APIs
	4.1.1.7.1 Auctioneer-Bidder API
	4.1.1.7.2 ESCO API


	4.1.2 Blockchain Based Intrusion and Anomaly Detection module

	4.2 Interfaces model
	4.2.1 External interfaces with other SDN-microSENSE application plane modules
	4.2.1.1 Communication of e-auction module with EMO
	4.2.1.2 Communication of e-auction module with S-RAF
	4.2.1.3 Communication of Blockchain-based Intrusion and Anomaly Detection with XL-SIEM

	4.2.2 External interfaces with SDN-microSENSE infrastructure plane modules
	4.2.2.1 Connection of e-auction module with RPI of smart meter
	4.2.2.2 Connection of Blockchain Based Intrusion and Anomaly Detection module with RPI of smart meter



	5. System verification
	5.1 Ε-auction module unit tests
	5.2 Blockchain Based Intrusion and Anomaly Detection module unit tests

	6. System Installation
	6.1 Ε-auction module
	6.1.1 Ε-auction module installation

	6.2 Blockchain Based Intrusion and Anomaly Detection module
	6.2.1 BIAD installation
	6.2.2 Agent installation


	7. Innovation Summary
	8. Conclusions
	References

