

This project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement No 833955

Project No. 833955

Project acronym: SDN-microSENSE

Project title:

SDN - microgrid reSilient Electrical eNergy SystEm

Deliverable D4.2

Network management processes

Programme: H2020-SU-DS-2018
Start date of project: 01.05.2019
Duration: 36 months

Editor: IREC

Due date of deliverable: 31/12/2020 Actual submission date: 23/12/2020

Ref. Ares(2020)7970676 - 28/12/2020

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 2
Public document

DELIVERABLE DESCRIPTION:

Deliverable Name Network Management Processes

Deliverable Number D4.2

Work Package WP 4

Associated Task T4-2

Covered Period M4-M20
Due Date M18 moved to M20 in amendment

Completion Date M20

Submission Date 23/12/2020

Deliverable Lead Partner IREC

Deliverable Author(s) 0INF, ALKYONIS, AYESA, CERTH, ENERGYNAUTICS, IEIT, IREC, REAL, PPC, IPTO
and UOWM.

Version 1.0

CHANGE CONTROL

DOCUMENT HISTORY

Version Date Change History Author(s) Organisation

0.1 31/08/2020
ToC Defined. All the involved

partners start contributing
Representatives of all
the partners involved

All the partners

0.2 23/11/2020
Draft version ready for review Representatives of all

the partners involved
All the partners

0.3 9/12/2020
Second version ready for

review
Representatives of all
the partners involved

IREC

1.0 22/12/2020
Final version. Included a

separate annex for API details
(considered CO)

IREC, CERTH IREC

Dissemination Level

PU Public X

PP Restricted to other programme participants (including the Commission
Services)

RE Restricted to a group specified by the consortium (including the
Commission Services)

CO Confidential, only for members of the consortium (including the
Commission Services)

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 3
Public document

DELIVERABLE AUTHORS

AUTHOR INSTITUTION

YANNIS SPYRIDIS 0INF

ZHONGLIN SUN 0INF

ACHILLEAS SESIS 0INF

GEORGIOS EFSTATHOPOULOS 0INF

NIKOS SIAXABANIS ALKYONIS

ANGEL JAVIER JIMENEZ PEREZ AYESA

CRISTINA MARTÍN TORRES AYESA

JOSE MANUEL GARCIA CAMPOS AYESA

ACHILLEAS PASIAS CERTH

NIKOS VAKAKIS CERTH

GEORGE LAZARIDIS CERTH

ATHANASIOS KOTSIOPOULOS CERTH

KOSTAS PAPACHRISTOU CERTH

ASTERIOS MPATZIAKAS CERTH

NIS MARTENSEN ENERGYNAUTICS

MARIA ATANASOVA IEIT

MAGDA ZAFEIROPOULOU IEIT

PANAGIOTIS FAMELIS IPTO

ALBA COLET SUBIRACHS IREC

TONI CANTERO GUBERT IREC

JORGE ALEJANDRO TORRES IREC

POL PARADELL SOLA IREC

CHRISTOS DALAMAGKAS PPC

SOLON ATHANASOPOULOS PPC

ANTONIOS KARNEMIDIS PPC

ATHANASIOS KOURAPAS PPC

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 4
Public document

IOANNIS ZOIS PPC

NIKOLA PAUVONIC REAL

DIMITRIS PAPAMARTZIVANOS UBITECH

THOMAS LAGKAS UOWM

PANAGIOTIS RADOGLOU-GRAMMATIKIS UOWM

PANAGIOTIS SARIGIANNIDIS UOWM

ANTONIS PROTOPSALTIS UOWM

ANNA TRIANTAFYLLOU UOWM

STAMATIA BIBI UOWM

GEORGE KARAGIANNIDIS UOWM

MILTIADIS PARCHARIDIS UOWM

SAB APPROVAL

NAME INSTITUTION DATE

DR. MARC STAUCH ON BEHALF OF PROF. DR. TINA KRÜGEL LUH 23/12/2020

MR. DAVID PAMPLIEGA SCHN ES 23/12/2020

DR. DAVE RAGGETT ERCIM 23/12/2020

ACADEMIC AND INDUSTRIAL PARTNER REVISION

NAME INSTITUTION DATE

Panagiotis Radoglou Academic partner:

UOWM

22/12/2021

Magda Zafeiropoulou Industrial partner:
IEIT

26/11/2021

QUALITY MANAGER REVISION

NAME INSTITUTION DATE

Anastasios Drosou on behalf of Dimosthenis

Ioannidis

CERTH 23/12/2020

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 5
Public document

DISTRIBUTION LIST

Date Issue Group

23/11/2020 Revision
WP4 involved partners, UOWM(Academic
reviewer),IEIT (Industrial reviewer), SAB, Quality
Manager and Technical Manager

23/12/2020 Acceptance
WP4 involved partners, UOWM(Academic
reviewer),IEIT (Industrial reviewer), SAB, Quality
Manager and Technical Manager

23/12/2020 Submission Ayesa Advanced Technologies

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 6
Public document

Table of contents

Table of contents .. 6

List of acronyms .. 11

List of figures .. 13

List of tables ... 16

1 Introduction ... 19
1.1 Purpose of the deliverable ... 19

1.2 Relation with other WPs .. 19

1.3 Structure of the document .. 20

2 Self-healing techniques in Grid applications .. 21
2.1 Objective of self-healing .. 21

2.1.1 Safe systems ... 21

2.1.2 Fault-tolerant systems ... 22

2.1.3 Resilient Systems .. 24

2.2 Self-healing methods ... 25

2.2.1 General/Traditional Self-healing Methods in Power Systems 25

2.2.1.1 Reserves ... 25

2.2.1.2 Automatic Generation Control (AGC) .. 26

2.2.1.3 Low Frequency Demand Disconnection .. 27

2.2.1.4 Automatic Voltage Control (AVC) .. 27

2.2.2 Self-healing methods in smart grids .. 28

2.2.2.1 Variable Renewable Energy (VRE) and storage control ... 28

2.2.2.2 Demand response and demand side management (DR/DSM) 29

2.2.2.3 Controlled islanding (microgrids) ... 30

2.2.2.4 Optimized grid reconfiguration .. 31

2.2.2.5 SDN-Based Self-Healing Communication Network .. 31

2.2.3 Summary and Conclusions on Self-Healing Methods .. 33

3 Analysis of requirements for EDAE, SDN Controller and Northbound Interfaces 34
3.1 D2.2 Functional Requirements .. 34

3.2 SDN-microSENSE platform specifications (related to the WP4) .. 36

3.3 Technical constraints .. 39

3.4 Functional and non-functional requirements coverage .. 39

3.4.1 EDAE requirements .. 39

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 7
Public document

4 Architecture and detailed design .. 42
4.1 Architecture overview .. 42

4.2 Components view ... 43

4.2.1 Detailed information flow of the inputs and outputs .. 44

4.3 Interfaces Model .. 46

4.3.1 AIDB – EDAE ... 48

4.3.2 AIDB – EDAE Dashboard ... 49

4.3.3 AIDB – S-RAF... 49

4.3.4 AIDB – SDN-C .. 51

4.3.5 EDAE – EDAE-Dashboard .. 51

4.3.6 EDAE – S-RAF .. 52

4.3.7 EDAE – SDN-C ... 53

4.3.8 EDAE-Dashboard – SDN-C .. 54

5 SDN Controller design and implementation ... 56
5.1 Interfaces Model - Northbound Interfaces ... 56

5.1.1 Rest_topology API .. 56

5.1.2 Ofctl_rest API ... 57

5.1.3 Components Model.. 57

5.1.3.1 SDN dashboard architecture .. 57

5.1.3.2 Database schema ... 58

5.1.3.3 User roles and privileges .. 59

5.1.4 User Interfaces ... 60

5.1.4.1 Users ... 60

5.1.4.2 Homepage .. 64

5.1.4.3 Flows .. 64

5.1.4.4 Topology ... 66

5.1.4.5 Settings ... 67

5.1.5 SDN dashboard prototype deployment ... 68

5.1.5.1 Prerequisites and Installation .. 70

5.1.5.2 Source code repository .. 72

6 Electric data Analysis engine (EDAE) design and implementation 74
6.1 SDN-based System Model .. 74

6.1.1 Network .. 75

6.1.2 Power Grid ... 75

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 8
Public document

6.2 EDAE core: Architecture ... 75

6.2.1 Graph Construction Module .. 76

6.2.2 Control Module .. 76

6.2.3 Solvers Module... 76

6.3 EDAE Algorithm formulation .. 77

6.3.1 Related methods from the literature ... 77

6.3.2 Problem formulation .. 79

6.3.2.1 Variables and Symbols ... 79

6.3.2.2 Search for optimal path ... 80

6.3.2.3 PMU-PDC allocation for EPES observability ... 86

6.3.3 Problem Definition and Use Cases ... 88

6.4 EDAE Dashboard .. 89

6.4.1 Architecture and functionality ... 91

6.4.2 Interfaces.. 93

6.4.2.1 EDAE-Dashboard – EDAE: Network topology changes .. 94

6.4.2.2 EDAE-Dashboard – EDAE: Network topology proposal acceptance 94

6.4.2.3 EDAE-Dashboard – AIDB .. 95

6.4.2.4 EDAE-Dashboard – SDN Controller .. 95

6.5 Component Model ... 95

6.6 Interfaces Model .. 98

7 EDAE Core Engine Evaluation.. 102
7.1 Evaluation framework of re-routing functionality ... 102

7.1.1 Structure of the network topologies.. 102

7.1.1.1 One Ring Bottleneck Topology (ORB) .. 102

7.1.1.2 Two Ring Bottleneck Topology (TRB) ... 103

7.1.2 Scale of the network topologies .. 104

7.1.3 QoS requirements .. 104

7.1.3.1 Definition of QoS requirements ... 104

7.1.3.2 Modelling of QoS requirements ... 105

7.1.4 Modelling the status of the network ... 106

7.1.5 Comparison of EDAE’s modelling with something... 107

7.2 Results over the evaluation framework ... 107

7.2.1 Evaluation details ... 107

7.2.2 Computational time ... 108

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 9
Public document

7.2.3 Objective success ratio and resource management .. 110

7.2.3.1 Delay objective ... 111

7.2.3.2 Jitter objective .. 113

7.2.3.3 Bandwidth objective .. 115

7.2.3.4 Packet loss objective .. 117

7.2.3.5 Security objective ... 119

7.3 Evaluation framework for the maximization of the EPES observability 121

8 Assets inventory database design and implementation ... 123
8.1 Interface model .. 124

8.2 AIDB Information ... 125

8.2.1 SDN asset modelling... 125

8.2.1.1 Switch ... 127

8.2.1.2 Host .. 128

8.2.1.3 SDN Controller.. 129

8.2.2 SDN Topology ... 129

8.2.2.1 SDN Topology Asset node .. 130

8.2.2.2 SDN Topology Relationship .. 130

8.2.3 Grid asset modelling .. 131

8.2.4 Grid topology.. 132

8.2.5 SDN and Grid asset relationships ... 132

8.2.6 Vulnerability information ... 133

8.3 Asset inventory database Implementation .. 135

8.3.1 Architecture ... 135

8.3.2 LDAP ... 135

8.4 Asset inventory API .. 135

8.4.1 Code lists .. 137

8.4.2 Data partitions ... 138

8.4.3 AssetQuery() ... 138

8.4.4 Asset Create/Update/Delete().. 139

8.4.5 TopologicQuery() .. 140

8.4.6 GridModelQuery() .. 141

8.4.7 GridModelUpdate() .. 141

8.4.8 AssetRiskQuery() .. 141

9 Unit Testing .. 143

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 10
Public document

9.1 Northbound Interface unit tests .. 143

9.1.1 Technical environment .. 143

9.1.2 Unit tests .. 144

9.2 SDN Dashboard .. 153

9.2.1 Technical environment .. 153

9.2.2 Unit tests .. 154

9.3 EDAE core ... 161

9.3.1 Technical environment .. 161

9.3.2 Unit Tests ... 161

9.4 EDAE workflow ... 173

9.4.1 Technical environment .. 173

9.4.2 Unit tests .. 173

9.5 EDAE-Dashboard .. 177

9.5.1 Technical environment .. 177

9.5.2 Unit tests .. 177

9.6 Assets inventory database ... 180

9.6.1 Technical environment .. 180

9.6.2 Unit tests .. 180

10 Innovation Summary .. 185

11 Conclusions ... 187

12 References .. 188

13 Annexes .. 194
13.1 EDAE Interface details .. 194

13.2 Grid model example A .. 204

13.3 AIDB unit test results ... 206

13.4 EDAE unit testing details .. 217

13.4.1 Inputs for the workflow ... 217

13.4.2 Output of the workflow ... 227

13.5 SDN-C API details.. 228

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 11
Public document

List of acronyms

AGC Automatic Generation Control

AIDB Asset Inventory DataBase

AVC Automatic Voltage Control

AVR Automatic Voltage Regulation

API Applications Programming Interface

ASGI Asynchronous Server Gateway Interface

DER Distributed Energy Resources

DDoS distributed Denial-of-Service

DDPG Deep Deterministic Policy Gradients

DoS Denial-of-Service

DRL Deep Reinforcement Learning

EDAE Electrical Data Analysis Engine

EPES Electrical Power and Energy Systems

EU European Union

EVEM Electric Vehicle Energy management

FCR Frequency Containment Reserves

FPGA Field Programmable Gate Array

FRR Frequency Restoration Reserves

IED Intelligent Electronic Devices

JSON JavaScript Object Notation

M2M Machine-to-Machine

MILP Mixed-Integer Linear Programming

MITM Man-In-The-Middle

MTD Moving Target Defence

NBI Northbound Interface

ONF Open Network Foundation

PDC Phasor Data Concentrator

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 12
Public document

PMU Phasor Measurement Unit

RDBMS Relational DataBase Management System

RTU Remote Terminal Unit

SCADA Supervisory Control and Data Acquisition

SAP Shuffle Assignment Problem

SCS Synchronisation and Coordination Service

SDN Software-Defined Networking

SDN-C SDN Controller

S-RAF SDN-microSENSE Risk Assessment Framework

SUN Smart Utility Networks

UDCC Utility Data and Control Centre

VCS Version Control System

VRE Variable Renewable Energy

WAC Wide-Area Control System

WAMS Wide-Area Monitoring System

WAPS Wide-Area Protection System

WAMPAC Wide Area Monitoring, Protection and Control

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 13
Public document

List of figures
Figure 1: Types of reserves by the time and duration of activation (Source: ENTSO-E) 26

Figure 2: Example of controlled islanding in response to faults [39] .. 30

Figure 3: WAMS structure [42] .. 32

Figure 4: SDN-microSENSE Architecture Structural View .. 42

Figure 5: SDN-SELF in the application plane .. 42

Figure 6: Detail of the architecture overview related to task 4.2 .. 43

Figure 7: Interaction between components .. 44

Figure 8 Detailed information flow of the Input and outputs ... 45

Figure 9: Architecture of the SDN dashboard .. 57

Figure 10: The ER diagram of the SDN dashboard ... 58

Figure 11: Login page of the SDN dashboard ... 60

Figure 12: Reset password page of the SDN dashboard .. 61

Figure 13: Reset password notification of the SDN dashboard ... 61

Figure 14: The user management system of the SDN dashboard ... 62

Figure 15: Profile editing menu of the SDN dashboard ... 62

Figure 16: New user menu of the SDN dashboard .. 63

Figure 17: Homepage of the SDN dashboard .. 64

Figure 18: Flows menu of the SDN dashboard... 65

Figure 19: The Flow Control menu of the SDN dashboard .. 65

Figure 20: The topology menu of the SDN dashboard .. 67

Figure 21: The Settings menu of the SDN dashboard .. 68

Figure 22: Deployment architecture of the SDN dashboard ... 69

Figure 23: Import Appliance via Oracle VirtualBox .. 70

Figure 24: Locating the SDN dashboard OVA file ... 70

Figure 25: Import options for the SDN dashboard .. 71

Figure 26: Wait VirtualBox to finish importing the SDN dashboard OVA .. 71

Figure 27: Start the SDN dashboard image .. 72

Figure 28: SDN dashboard VM credentials .. 72

Figure 29: Aruba 2930F as a network switch ... 75

Figure 30: Schneider Electric RTU .. 75

Figure 31: EDAE Core Architecture .. 76

Figure 32: Illustration of the Naive (top) and EDAE's (Bottom) chromosome representation 86

Figure 33: EDAE-Dashboard user interface schema. ... 90

Figure 34: Architecture of the data acquisition and storage ... 92

Figure 35: Architecture of the front-end tool .. 92

Figure 36: Architecture of the EDAE proposal representation .. 93

Figure 37: Architecture of the EDAE proposal acceptance .. 93

Figure 38: Airflow workflow ... 96

Figure 39: Docker containers and APIs .. 96

Figure 40: Different machine/server in EDAE product environment .. 97

Figure 41: Relevant information for EDAE operation from S-RAF ... 98

Figure 42: Network topology selected to test EDAE .. 99

Figure 43: One Ring Bottleneck Topology .. 103

Figure 44: Two Ring Bottleneck Topology ... 104

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 14
Public document

Figure 45: Execution time to find a path for a pair of hosts for a specific topology for EDAE (ORB) .. 108

Figure 46: Execution time to find a path for a pair of hosts for a specific topology for [63] (ORB) ... 109

Figure 47: Execution time to find a path for a pair of hosts for a specific topology for EDAE (TRB) .. 109

Figure 48: Execution time to find a path for a pair of hosts for a specific topology for [63] (TRB) 110

Figure 49: Statistics for delay objective for each topology [EDAE - (ORB)] .. 111

Figure 50: Statistics for delay objective for each topology [[63] - (ORB)] .. 112

Figure 51: Statistics for delay objective for each topology [EDAE - (TRB)]) .. 112

Figure 52: Statistics for delay objective for each topology [[63] - (TRB)]) .. 113

Figure 53: Statistics for jitter objective for each topology [EDAE - (ORB)]) .. 113

Figure 54: Statistics for jitter objective for each topology [[63] - (ORB)]) .. 114

Figure 55: Statistics for jitter objective for each topology [EDAE - (TRB)])... 114

Figure 56: Statistics for jitter objective for each topology [[63] - (TRB)]) ... 115

Figure 57: Statistics for banwidth objective for each topology [EDAE - (ORB)]) 115

Figure 58: Statistics for banwidth objective for each topology [[63] - (ORB)]).................................. 116

Figure 59: Statistics for banwidth objective for each topology [EDAE - (TRB)]) 116

Figure 60: Statistics for banwidth objective for each topology [[63] - (TRB)]) 117

Figure 61: Statistics for packet loss objective for each topology [EDAE - (ORB)]) 117

Figure 62: Statistics for packet loss objective for each topology [[63] - (ORB)]) 118

Figure 63: Statistics for packet loss objective for each topology [EDAE - (TRB)])............................... 118

Figure 64: Statistics for packet loss objective for each topology [[63] - (TRB)]) 119

Figure 65: Statistics for security objective for each topology [EDAE - (ORB)]) 119

Figure 66: Statistics for security objective for each topology [[63] - (ORB)]) 120

Figure 67: Statistics for security objective for each topology [EDAE - (ORB)]) 120

Figure 68: Statistics for security objective for each topology [[63] - (TRB)]) 121

Figure 69: AIDB - Asset Inventory update .. 123

Figure 70: AIBD internal components .. 124

Figure 71: Interfaces with AIDB ... 124

Figure 72: AIDB - Information areas... 125

Figure 73: AIDB - SDN asset inventory example .. 126

Figure 74: Vulnerability info ... 133

Figure 75: AIDB/Vulnerability manager - Vulnerability life cycle states .. 134

Figure 76: Testing environment of the NBI .. 143

Figure 77: TLS traffic of NBI - Unit tests ... 148

Figure 78: Testing environment of the SDN dashboard .. 154

Figure 79: Initial communication paths ... 162

Figure 80: Resultant communication paths after security event .. 163

Figure 81: Initial communication paths ... 164

Figure 82: Resultant communication paths ... 165

Figure 83: Topology .. 166

Figure 84: Execution results ... 166

Figure 85: Example of a preliminary version of SRAF.json .. 199

Figure 86: AIDB Grid model example (single line) ... 204

Figure 87: AIDB - Grid Bus model ... 204

Figure 88: AIDB - Grid Trafo data model .. 204

Figure 89: AIDB - Grid Line data model .. 205

https://grupoayesaa41015322.sharepoint.com/sites/MICROSENSE/Shared%20Documents/WP04/04_Deliverables%20work/D4.2%20Self-healing%20Network%20Management%20Processes/SDNmicroSENSE_D4.2_Self-healing%20Network%20Management%20Processes%20_v5.docx#_Toc59487164
https://grupoayesaa41015322.sharepoint.com/sites/MICROSENSE/Shared%20Documents/WP04/04_Deliverables%20work/D4.2%20Self-healing%20Network%20Management%20Processes/SDNmicroSENSE_D4.2_Self-healing%20Network%20Management%20Processes%20_v5.docx#_Toc59487170

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 15
Public document

Figure 90: AIDB - Grid Load data model ... 205

Figure 91: AIDB - Grid external grid data model .. 205

Figure 92: AIDB - Grid Generator data model .. 205

Figure 93: AIDB - Grid Sgenerator data model .. 205

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 16
Public document

List of tables
Table 1: Self-healing methods and their applicability to electrical power distribution and transmission

grids .. 33

Table 2: Extracted and summarised requirements for each component .. 35

Table 3: Specifications coverage of each compoment .. 37

Table 4 Functional and Non-functional requirements for EDAE operation... 39

Table 5: AIDB-1 interface for EDAE component .. 48

Table 6: AIDB-2 interface for EDAE component .. 48

Table 7: AIDB-1 interface for EDAE-Dashboard component ... 49

Table 8: AIDB-1 interface for S-RAF component .. 50

Table 9: S-RAF-AIDB interface: Risk asset summary .. 50

Table 10: AIDB-3 interface for SDN-C component ... 51

Table 11: EDAE/EDAE-Dashboard interface for EDAE-Dashboard component 51

Table 12: EDAE/EDAE-Dashboard interface for EDAE component .. 52

Table 13: S-RAF/SDN-SELF-01 interface for EDAE component .. 52

Table 14: XL-EPDS_NBI-1 interface for EDAE component ... 53

Table 15: XL-EPDS_NBI-1 interface for EDAE-Dashboard component .. 54

Table 16: User Management Views ... 63

Table 17: Flows Views - SDN Dashboard .. 66

Table 18: Topology Views - SDN Dashboard .. 67

Table 19: Settings Views - SDN Dashboard .. 68

Table 20: Objective coverage per work displayed ... 77

Table 21: Notations and description of variables and symbols used in EDAE algorithm formulation .. 79

Table 22: Network topology changes message data ... 94

Table 23: Network topology proposal acceptance message data ... 94

Table 24 QoS requirements in applications related to an EPES .. 105

Table 25 Filtered applications and the required assets ... 105

Table 26 Ratio of each type of asset with respect to the total number of assets 106

Table 27: Evaluation results of MILP formulations .. 122

Table 28: AIDB – Switch table definition .. 127

Table 29: AIDB – Host table definition ... 128

Table 30: AIDB – SDN Controller table definition .. 129

Table 31: AIDB – SDN topology asset node table definition .. 130

Table 32: AIDB – SDN Controller table definition .. 130

Table 33: AIDB – SDN – Grid relationship table definition .. 133

Table 34: Vulnerability risk level ranges .. 133

Table 35: AIDB – vulnerability information table definition .. 134

Table 36: List of components used for the AIDB ... 135

Table 37: AIDB - Asset type code list.. 137

Table 38: AIDB - Asset level code list ... 137

Table 39: AIDB - Asset status code list ... 137

Table 40: AIDB - Asset Attribute code list .. 137

Table 41: AIDB – Asset query method ... 138

Table 42: AIDB - Create/Update/Delete asset operation methods ... 139

Table 43: AIDB – Topologic Query method .. 140

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 17
Public document

Table 44: AIDB – Asset risk query method ... 141

Table 45: NBI_01 unit test description .. 144

Table 46: NBI_02 unit test description .. 145

Table 47: NBI_03 unit test description .. 147

Table 48: NBI_04 test unit description .. 148

Table 49: NBI_05 test unit description .. 149

Table 50: NBI-06 test unit description ... 150

Table 51: NBI_07 test unit description .. 152

Table 52: NBI_08 test unit description .. 153

Table 53: SDNGUI_01 unit test description ... 154

Table 54: SDNGUI_02 unit test description ... 155

Table 55: SDNGUI_03 unit test description ... 156

Table 56: SDNGUI_04 unit test description ... 157

Table 57: SDNGUI_05 unit test description ... 158

Table 58: SDNGUI_06 unit test description ... 160

Table 59: List of software and version used for EDAE unit testing .. 161

Table 60: EDAE_GENETIC_01 unit test description ... 161

Table 61: EDAE_GENETIC_02 unit test description ... 163

Table 62: EDAE_GENETIC_3 unit test description ... 165

Table 63: EDAE_receiver_transmitter_1 unit test ... 167

Table 64: EDAE_receiver_transmitter_2 unit test ... 168

Table 65: EDAE_receiver_transmitter_3 unit test ... 170

Table 66: EDAE_receiver_transmitter_4.. 171

Table 67: List of software and version used for EDAE workflow implementation and testing 173

Table 68: EDAE_workflow1 unit test description .. 173

Table 69: EDAE_workflow2 unit test description .. 174

Table 70: EDAE_workflow3 unit test description .. 175

Table 71: EDAE_workflow4 unit test description .. 176

Table 72: EDAE_workflow5 unit test description .. 176

Table 73: List of software used for implementation and testing .. 177

Table 74: EDAE-Dashboard Unit tests summary .. 177

Table 75: EDAE_DASH_001 - Current SDN network state representation .. 177

Table 76: EDAE_DASH_002 – EDAE proposal representation ... 179

Table 77: Base software and version used for AIDB unit testing... 180

Table 78: AIDB Unit test summary ... 181

Table 79: AIDB_001 SDN Asset creation - Unit Test .. 181

Table 80: AIDB_002 SDN Asset update - Unit Test .. 181

Table 81: AIDB_003 SDN topology attribute update - Unit Test ... 182

Table 82: AIDB_004 SDN topology update - Unit Test ... 182

Table 83: AIDB_005 Grid definition registration - Unit Test .. 183

Table 84: AIDB_006 SDN-Grid relationship creation - Unit Test .. 183

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 18
Public document

Executive Summary

Self-healing capabilities refer to resilience against all kinds of faults, including faults in both the
communication system and in the electrical power grid. SDN applications as part of the self-healing
concept architecture enable important self-healing capabilities especially on the communication layer.

In this document, a specific application called EDAE was developed as an innovative method for self-

healing applied to smart grids. EDAE component is the brain of the network managment process and

it has been designed to maximize the observability and the QoS of the communication network. EDAE

is not only rearranging logical connection in the communication network but also deciding the data

paths based on the risks of the assets that are present in the electrical grid and information of the SDN

switches.

The content of this deliverable is focused on the results of task T4.2, describing the network

management processes of the EPES when it is compromised, either by accident or through cyber-

attack. It is described in great detail the interfaces of EDAE and each of the components of SDN-uSENSE

architecture: SDN-C, AIDB and S-RAF, the requirements achived and the unit testing of those

components.

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 19
Public document

1 Introduction

1.1 Purpose of the deliverable
This deliverable is the second document of Work Package 4 (WP4) of SDN-microSENSE. WP4 focuses

on Cyber-secured & resilient SDN-based Energy Ecosystem: It includes components for the monitoring

and control of the equipment in the EPES infrastructures, for the analysis of the current situation in

EPES domain and issue mitigation through islanding or energy management mechanisms and also for

the recovery of the grid observability and the improvement of its QoS when the communication

network is under attack.

The content of this deliverable is focused on the results of task T4.2, describing the main EPES Self-

Healing Network Management processes and defining the mechanisms of the EPES under attack,

either by accident or through cyber-attack. These processes are establishing the corresponding

network connections that are rearranged when these are under fault or under attack. This is achieved

by establishing new communications paths: the SDN controller uses high-level decisions for guiding

underlying switches to handle data flows throughout the communication network. The network

control capabilities are separated from the switches that are supervised by the SDN controller. The

SDN controller is made in such a way that it is protected from malfunction or failures and therefore

the functionalities of the communication network can always be preserved. The approach and the way

how it works is described within this document.

More specifically, this document is structured in three parts. The first part (Section 2) describes the

state of the art and methodology on the self-healing techniques in grid applications. The second part

of the document is related to the overview of the architecture model, related behaviour in the system

architecture, requirements and specifications. Here are presented in a structured way (through

Sections 3 and 4) overall specifications and requirements to be used as roadmap to development and

implementation of all tools and their functionalities. The third part of this document (which includes

Sections 5, 6, 7, 8 and 9) is related to the tools’ specifications. These specifications includes tools’

design and implementation description. This third part of the document is actually the description of

the three main tools: SDN Controller, Electric Data Analysis Engine (EDAE), and Asset Inventory

Database (AIDB).

The purpose of the deliverable is to give a detailed overview of the software components and toolsets

that are involved in Task 4.2. EDAE, AIDB and SDN-C are the main components that are specified in this

document.

1.2 Relation with other WPs
The following tasks and deliverables are related to the current report:

• D2.2, where the requirements of the SDN-microSENSE platform are elicited;

• D2.3 describes the SDN-microSENSE architecture and specifications;

• D2.4 [SDN24] describes the validation methodology and the list of threats and attacks

associated to every pilot and use case;

• D3.5 describes the SDN-microSENSE Risk Assessment Framework and its very important part

about sending the incidents towards the SDN-SELF framework. In this particular case the

incidents are sent to the EDAE component;

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 20
Public document

• D4.1, where the SDN-based Measurement and Control Unit Configuration models are

presented, which is used to support SDN-enabled RTU prototype. Also, this deliverable

describes how all necessary interfaces and APIs are deployed, between the measurement and

control units, the OpenFlow switches and the SDN controller.

1.3 Structure of the document
This document is structured as follows:

• Section 2 is focused on the self-healing techniques in grid applications. Extensive research was

conducted in order to present detailed description on SOTA related to SDN relation to the self-

healing techniques.

• Section 3 covers the analysis of requirements and specifications. These are agreed among

project participants and they are presented within two deliverables from WP2, i.e. deliverables

D2.2 and D2.3. Requirements and specifications are extracted from previously mentioned

deliverables and presented only for the tools that are described in this document.

• Section 4 provides the WP4 architecture overview and describes relevant architecture and

interfaces model. This model gives further information on the mutual interaction of the

components.

• Section 5 describes the design and implementation of the SDN controller. Here are presented

detailed information on how this component interact with other components and how the

implementation is achieved.

• Section 6 describes the design and implementation of the component Electric Data Analysis

Engine (EDAE). Here are also presented SDN-based system model and used algorithms that are

used to implement mechanisms of the self-healing.

• Section 7 describes the EDAE core engine evaluation, a quantitative evaluation of the proposed

component.

• Section 8 describes the Asset Inventory Database and the ways of its implementation.

• Section 9 details the unit testing to validate the mechanisms described in all previous sections.

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 21
Public document

2 Self-healing techniques in Grid applications

2.1 Objective of self-healing
The world’s electrical power systems are undergoing major transformations with serious challenges,
namely the large-scale integration of variable generation based on renewable energy; increasing need
for energy efficiency; and fast increase of complexity due to new generation and transmission
technologies and new control systems. While the power systems have always been designed to
withstand some level of faults, the transformation also introduces new vulnerabilities to new types of
faults and threats (such as cyber-attacks) that need to be adequately addressed. Self-healing has been
coined as a term describing increased resilience in smart grid environments and the corresponding
system capabilities in particular.

Self-healing capabilities refer to resilience against all kinds of faults, including faults in both the
communication system and in the electrical power grid. Self-healing capabilities are thus an important
prerequisite to achieving a reliable smart grid, enabling secure system operation through protecting
against propagation of faults within and between the underlying systems, and contributing to speedy
post-disturbance system recovery. SDN applications as part of the self-healing concept architecture
enable important self-healing capabilities especially on the communication layer, but nevertheless also
significant impact on the electrical power grid. A brief overview of this approach is presented in the
following chapters, identifying the importance of SDN for dealing with grid faults and minimizing their
impact on the security of electricity supply.

2.1.1 Safe systems
The SDN technology offers significant benefits regarding the safety of the involved systems in terms of

network automation and management, programmability, global visibility and interoperability. Several

academic and industrial works have already identified the importance of SDN regarding safety and

security purposes. In [1] the authors introduce a detailed study, where they present how SDN can

enhance the safety of a smart grid environment. In particular, E. Leal et al. in [2] provide an SDN-based

architecture for the monitoring and automation of a substation. It is composed of three layers: (a)

infrastructure layer, (b) virtualisation layer and (c) functionality layer. The infrastructure layer and the

virtualisation layer are responsible for handling the physical and virtual resources, respectively. On the

other side, the functionality layer encloses the various operations. Furthermore, the proposed

architecture consists of four modules, namely (a) S3N-PROTECT, (b) S3N-MANAGE, (c) S3N-MEASURE

and (d) S3N-CONNECT. S3N-PROTECT protects and control the operational characteristics of the

substation. The second module and the third module offer management and measurement

operations, respectively. Finally, S3N-Connect focuses on the connectivity of the substation assets. In

a similar work in [3], S. Cahn et al. propose an SDN solution for auto-configuring a substation

environment. The proposed architecture focuses on the future characteristics of the smart substations

and relies on the Ryu controller. The authors give special attention to how to isolate the relevant

network traffic via Ryu without forming several VLANs. In order to evaluate their implementation, the

Mininet simulator is utilised.

Moreover, SDN participates actively in utility Machine-to-Machine (M2M) applications. In focusing on

the smart grid environment, various smart grid devices, such as smart meters, Phasor Measurement

Units (PMUs) and Intelligent Electronic Devices (IEDs) can communicate directly with each other as

well as with the Utility Data and Control Centre (UDCC). Through SDN, the appropriate data and

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 22
Public document

communications can be controlled and isolated. More specifically, taking full advantage of the Field

Programmable Gate Array (FPGA) advances, software-defined meters are available now in the market

[4]. These meters constitute significant building blocks for Smart Utility Networks (SUNs). A

characteristic case of SDN-enabled M2M is provided by [5]. In particular, in [5], the authors investigate

an SDN-enabled Electric Vehicle Energy management (EVEM) consisting of 100 Electrical Vehicles (EVs),

one gas generator and four wind turbines. The SDN controller undertakes to keep the information

related to the functional characteristics of EVs, such as charging time, location, charging status and

battery. In this case, the main goal of SDN is to optimise the mobility management of EVs as well as to

assist in performing resource allocation. Supposing that the number of EVs increases and

simultaneously the probability of a collision increases, the SDN controller can activate the resource

allocation block based on the particular requirement, thus reducing the number of the competing EVs.

Finally, a remarkable paper is also provided in [6] where the authors combine SDN and cloud

computing in order to virtualise functional SG hardware devices.

SDN also benefits the entire security status of an infrastructure. In [7], P. Manso et al. provide an SDN-

based intrusion detection system which can mitigate timely potential Denial of Service (DoS) and

Distributed DoS (DDoS) attacks that are usual threats against SG. The proposed intrusion detection

system relies on Ryu and Suricata. In particular, Suricata is responsible for detecting indications related

to DoS and DDoS, while Ryu is adopted in order to mitigate these indications. The authors utilised

Mininet in order to evaluate their implementation. Based on the experimental results, it seems that

their intrusion detection system can mitigate timely DoS and DDoS activities. On the other side, in [8],

the authors focus their attention on mitigating Distributed Network Protocol 3 (DNP3) cyberattacks

and anomalies again based on Ryu. More detailed, an autoencoder called DIDEROT autoencoder was

developed in order to recognise six DNP3 cyberattacks and anomalies, namely (a) masquerading, (b)

replay, (c) DNP3 reconnaissance, (d) flooding, (f) injection and (e) DNP3 anomalies. Next, based on the

outcome of the DIDEROT autoencoder, the Ryu controller transmits the necessary OpenFlow

commands in the SDN switches in order to isolate the malicious DNP3 flows.

2.1.2 Fault-tolerant systems

The traditional Software Defined Network (SDN) architecture is usually based on single controller that

is placed in the control plane. Therefore, network functioning become highly dependent on the

performance of the single controller in the Control Plane, which is undesirable for any reliable

application. According to many opinions, and despite many advantages of SDN, its deployment in the

practical field is restricted since reliability and fault-tolerance capabilities of the system are not

satisfactory [9]. It is possible to overcome these difficulties and there are many proposed architectures

that are consisting of one or multiple controllers. Commercial SDN controller solutions incorporate

fault tolerance, but there has been little discussion in the SDN community on the design of such

systems and the trade-offs involved [10]. Fault tolerant SDN should have implemented fault-tolerance

mechanisms in order to (for example) periodically update the controller’s state so that in case of fault

the SDN has ability to select another controller that is in operational state. Fault-tolerance mechanisms

are required to ensure high availability and high reliability in systems. SDN, as a newly developed

concept, has presented new challenges and provided opportunity to develop new strategies,

architectures, and standards to support fault-tolerance.

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 23
Public document

Several fault-tolerance techniques are being used to avoid service failure in the presence of faults [11].

Fault-tolerance is carried out through error detection and system recovery, or simply detection and

recovery mechanisms. Error detection identifies the presence of an error, while "recovery transforms

a system state that contains one or more errors and (possibly) faults into a state without detected

errors and faults that can be activated again " [11]. Recovery techniques can be further classified into

two main categories [11]: i) recovery with error handling; which eliminates errors from the system

state; and ii) recovery with fault-handling; which prevents faults from being activated again. The choice

of error detection and recovery techniques are being adopted based upon the underlying fault

assumption.

SDN architecture is usually comprised through several abstraction layers. The three most important

layers are Data Plane, Control Plane and Application plane. In the following text will be presented the

overview of fault-tolerance support of all three mentioned planes.

SDN DATA PLANE. SDN data plane fault-tolerance is related to the issues already present in traditional

architectures (e.g. Multiprotocol Label Switching technology) [12]. Due to the static nature of

traditional networks, these approaches can achieve good performance upon link and node failures.

However, failure detection and recovery approaches in dynamic networks such as SDN must be re-

designed to adapt to the dynamics of the rapidly changing networks. Traditionally, reactive and

proactive approaches were used to provide Fault-tolerance [13]. In the reactive approach, an

alternative path is calculated after the fault becomes active. In proactive techniques, the resources

and backup paths are pre-programmed before the occurrence of a fault (when a fault is dormant). If

the fault becomes active, the pre-programmed logic starts to defend immediately and recover the

system from faults [13].

SDN CONTROL PLANE. Control plane fault tolerance represents very important requirement for normal

operation in networks: the controller is vital and with that said the controller must be able to process

all required traffic commands in all situations. There are few approaches to implement SDN control

plane fault-tolerance. The first approach is to replicate a controller on a different control network. If

failure occur, the replicated controller takes over the traffic. In another approach, the controller must

be embedded with mechanisms (build-in module) to self-heal from targeted attacks such as Denial of

Service (DoS), flooding and fake traffic routing and other network- related targeted attacks. However,

the control plane time to recover from such attacks is critical, and ideally, recovery mechanisms must

be developed to mitigate failures within the set network requirements. In addition to these, the

recovery process must be efficient and must be able to selfheal during a failure event with minimum

overhead. In-band and out-of-band signalling solutions have been adopted to offer SDN control plane

reliability [14]. In practice, most SDN deployments use out-of-band control, where control packets are

managed by a dedicated management network [14]. In SDN architectures, the controller is a logically

centralized entity. It is responsible for translating the SDN applications requirement, via a Northbound

interfaces, down to the SDN data layer [12]. Furthermore, it is also responsible for providing SDN

applications an abstracted view of the network (including statistics and events). Currently, OpenFlow

is a default standard for the communication in southbound APIs. It is important to mention that

OpenFlow also has fault-tolerance capabilities. In SDN networks, operations rely on the proper

functioning of the controller. The control plane in SDN manages the control logic of switches. The

control logic is critical in SDN based networks. This problem is minimized in the latest version of the

OpenFlow protocol by a master-slave configuration at the control layer: to increase resiliency.

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 24
Public document

SDN APPLICATION PLANE. The application layer allows business applications to modify and influence

the way the network behaves in order to provide services to customers. This requires the definition of

an API, to allow third-party developers to build and sell network applications to the network operator.

The development of such an API has not yet properly addressed by the Open Network Foundation

(ONF) but is required in order to guarantee interoperability between a business application and

network controllers from different suppliers [12]. Existing SDN programming languages offer several

features such as flow installation, policy definition, programming paradigm and abstraction for

developing and enabling network and application fault-tolerance in SDN.

2.1.3 Resilient Systems
In recent years, the notion of resilient operation has become prominent in the context of self-healing

electrical power and energy systems (EPES). The profound impact of challenging events in such systems

has raised the requirement of increasing the network resilience and providing rapid-response

restoration capabilities in critical situations. Resilience refers to the self-healing aspect of power

systems that allows their prompt reconfiguration in case of emergency in order to endure critical

events and manage disturbances in an efficient manner, aiming to minimize the supply interruption

and maintain active services. With the ever-growing increase of distribution networks in capacity and

complexity, there is a growing need to include smart self-healing features that guarantee the system’s

resilience and enhance the grid’s stability when faults occur.

Introducing SDN-enabled architectures provides enhanced functionalities with regard to the reliability

of the involved system, as showcased in a number of related studies in literature [15], [16]. By dividing

the architecture into application, data, control, and management planes, the decision-making logic is

transferred to an SDN controller, which communicates with the switches through OpenFlow

commands. As a result, the introduced SDN features facilitate the process of monitoring the network

infrastructure and analysing the traffic, enabling the deployment of procedures that greatly support

the system resilience. In addition, SDN can suggest reconfigurations that complement the current

resilience strategy, or in some cases propose entirely new sophisticated strategies, enabling the

adoption of more adequate self-healing solutions [17].

In order to effectively address the issue of resiliency, the concept of self-sufficient microgrids is utilised

[18]. In this context, microgrids are small portions of the power grid that include distributed generators

and load centres and are able to operate both connected to the wider utility power grid and in islanded

mode, operating autonomously as independent components of the EPES. Utilising microgrids allows

the decentralized control of distributed energy resources (DERs), leading to the improvement of power

delivery and increasing the stability in unreliable distribution systems, while facilitating energy

conservation and resulting in reduced operational costs [19]. Efficient control of microgrids in islanded

mode provides flexibility to the EPES, by allowing the local management of the DERs, thus offering an

appealing approach for providing unhindered operations and establishing resilient self-healing power

systems [20].

The required functionality that offers these capabilities is often performed under an emergency

scenario, increasing the problem complexity due to existing operational and time constraints. In

addition, the solution has to incorporate mechanisms that minimise the imbalance between load and

generation [21]. As a result, addressing this problem efficiently is an arduous task. Several techniques

to achieve the desired resilient features in power systems have been proposed in literature. Common

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 25
Public document

approaches involve multi-agent systems, mixed-integer linear programming (MILP), fuzzy logic and

heuristic search. The most prominent methods are described in the next subsection.

The essential reconfigurations towards self-healing usually include breaker manipulation, generation

start-up or shutdown, and load shedding or pickup. These actions aim to alter the system’s operational

status and improve the overall condition following a fault occurrence. In general, to achieve robust

and resilient self-healing, an EPES should incorporate a number of crucial characteristics: the capacity

to comprehend emergency situations, the ability to respond rapidly to critical events, and a control

procedure that restores the functionality and leads the system to stable operation. The key

performance indicators used to evaluate self-healing in power systems typically involve the speed at

which a safe configuration is achieved and the number of components that remain active during the

self-healing process.

2.2 Self-healing methods
Electrical power systems have always been designed with fault tolerance and resilience in mind, hence

the self-healing concept is not a new concept for power system architects and operators. When

discussing self-healing approaches, it is useful to distinguish between general self-healing methods

applied in traditional power systems, and new self-healing possibilities that become both possible and

necessary with the power system transformation towards a renewables-based smart grid. Both

categories of self-healing approaches and methods are discussed in this chapter.

The smart grid is the background to which SDN applications enable an entirely new facet of the self-

healing concept. Only a brief overview of this approach is presented in this chapter since discussing

this new aspect in detail is in fact the focus of this document (and indeed of the entire project).

2.2.1 General/Traditional Self-healing Methods in Power Systems
Traditional self-healing methods are well-established and have been used for many years to ensure

the reliability of electrical power systems. A selection of these methods is presented in the sections

below. These approaches deal with maintaining the power balance (equivalent to maintaining the

frequency) or with maintaining the voltage by providing reactive power where and when necessary.

These aspects are a required component of the overall self-healing concept since disturbances in

power systems can happen at any time and for many different reasons.

2.2.1.1 Reserves

When the active power in the grid becomes imbalanced, the activation of reserves is an automatic

process that restores the balance and thereby ensures frequency stability. There are different types of

reserves, in particular Frequency Containment Reserves (FCR) and Frequency Restoration Reserves

(FRR), which are distinguished according to the time and duration of their activation as illustrated in

Figure 1.

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 26
Public document

Figure 1: Types of reserves by the time and duration of activation (Source: ENTSO-E)

Pursuant to [22] FCR have to be fully activated within 30 seconds after the disturbance to stabilize the

frequency. This is done by droop controllers of generators in the entire synchronous zone. After

maximum 15 minutes, the automatic Frequency Restoration Reserves (aFRR) in the area of the TSO

where the imbalance has occurred are fully activated to lead the frequency back to its nominal value.

The aFRR are replaced by the manual Frequency Restoration Reserves (mFRR) within 60 minutes after

the disturbance has occurred, in order to make the aFRR available again while keeping the frequency

at its set point. As the name suggests, mFRR are typically ordered manually by phone or through a web

portal, but in Germany this is now also retrieved automatically from a Merit-Order-List-Server [23].

The reserves described above are traded on dedicated energy markets, and their allocation needs to

be planned and controlled so that there is sufficient capacity available to be activated when needed.

This process of self-healing in terms of power balancing is only used in the transmission grid, since

distribution grids and the grid users connected there are not responsible for real-time balancing.

2.2.1.2 Automatic Generation Control (AGC)

Automatic Generation Control (AGC) is a mechanism used to adjust the power output of

interconnected generators in response to changes in the load demand, or more generally to changes

in the power balance in a balancing area. Therefore, it can be defined as an automatic control that

matches the generated output with the load demand. A control in the generated active power (P) is

able to regulate the frequency (f) and adjust it to the demand. On the other side, a control in the

generated reactive power (Q) is able to regulate the voltage (V) accordingly.

AGC has traditionally relied on hydro-powered generators mainly because of the following two

reasons: these units have the capability of responding quickly to changes in power reference set points,

and they do not have restrictive ramp limitations, other than the ones imposed by the maximum

generation capacity. Other units that are suitable for this control are turbine-controlled thermal units,

although the ramp limitations in these units are more restrictive.

AGC is not usually an ancillary service itself. It refers to the automatic mechanisms through which

resources are activated in the economic dispatch and aFRR processes. Besides the response to

frequency deviations, these mechanisms also address minimizing the area control error (ACE) of

balancing areas within large interconnected systems. [24]

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 27
Public document

2.2.1.3 Low Frequency Demand Disconnection

Low Frequency Demand Disconnection (“Load Shedding”) is the technique of temporarily reducing the

supply of electricity to an area to avoid overloading the generators. In line with the previously

described self-healing techniques, it is used when there is a frequency drop in the power system due

to an imbalance of the generated power and the load demand.

Many systems can be protected from frequency collapse by importing large blocks of power from

neighbouring systems to make up for the lost generation. However, in an islanded system, or in an

interconnected system with a shortage of tie-line capacity, this might not be possible and the only way

to prevent a frequency collapse following a large disturbance can be to employ automatic load

shedding. Automatic load shedding is implemented using under frequency relays. Each relay is

configured to trigger at a specific low frequency threshold at which it opens the breaker without delay.

As an ensemble, these relays detect the onset of decay in the system frequency and shed appropriate

amounts of system load until the generation and load are once again in balance and the power system

can return to its normal operating frequency. Load shedding relays are normally installed in

distribution and subtransmission substations, as it is from here that the feeder loads can be controlled.

Load shedding is an emergency measure to prevent blackout in case of large disturbances in the power

balance. As such it is only used as a last resort, when all other methods to restore the balance have

been exhausted, including reserves, adjusting the output of any electricity storage units, and loads

contracted to provide flexibility during contingencies. Therefore the frequency thresholds configured

at the relays are all well outside the normal frequency operation ranges. In order to disconnect only as

much demand as necessary, system operators in continental Europe split the demand to be

disconnected into at least 6 groups of similar size that get disconnected at decreasing frequency

thresholds. European transmission system operators publish their high-level load shedding schemes

as part of their system defence plans according to the Commission Regulation (EU) 2017/2196. [25]

Load shedding used to be implemented by disconnecting entire distribution systems. This concept is

being replaced to account for the fact that distribution systems (and even feeders) no longer represent

pure load, but with connected DER can also feed power back into higher voltage levels. A more fine-

grained approach is now implemented that takes into account the current state of each distribution

system by blocking the relay in case of reverse power flow, and by moving the relays from the HV/MV

transformers to the MV feeders. [26] [27]

Not all load will be shed during load shedding as it aims to disconnect only the minimum amount

required; also system operators usually take care that critical loads remain with the demand segment

for which automatic load shedding is never activated. In particular in small-scale setups with different

reliability requirements (such as microgrids), a related approach can be to assign different priority

levels to individual loads, and integrate load disconnection into the power balancing concept even

during “normal” island operation.

2.2.1.4 Automatic Voltage Control (AVC)

Controlling voltages on the power system allows for the efficient transmission of power whilst

respecting equipment limitations. One of the most efficient ways to control voltages on the power

system is to place generators in voltage control mode. This requires generating equipment to measure

a voltage, compare the measurement to a reference and increase/decrease the reactive power flow

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 28
Public document

out of the generating equipment. This can be accomplished by increasing/decreasing the excitation in

the field winding for a synchronous machine or changing the firing angle of inverter based equipment.

Automatic Voltage Regulation (AVR) is a device used in generators with the purpose of automatically

regulating voltage, which means that it will turn fluctuating voltage levels into constant voltage levels.

AVRs work by stabilizing the output voltage of generators at variable loads, but can also divide the

reactive load between generators that are running in parallel (voltage droop), and helps the generators

respond to voltage drops caused by short circuits in the grid [28] [29].

Beyond the asset-level control of the AVR, automatic voltage control (AVC) includes an automated

coordination of reactive power supply from multiple generators in the system, which allows an

optimized level of voltage in the system – and distribution of reactive power contributions – to help

minimize losses and ensure a sufficient margin against voltage instability and consequential voltage

collapse. This contributes to the self-healing capabilities of the system by making it more robust against

disturbances that affect the reactive power balance, such as outages of transmission lines or some

power plants.

2.2.2 Self-healing methods in smart grids
According to [30], the definition of smart grid given by the European Commission is as follows:

A Smart Grid is an electricity network that can cost efficiently integrate the behaviour and

actions of all users connected to it – generators, consumers and those that do both – in order

to ensure economically efficient, sustainable power system with low losses and high levels of

quality and security of supply and safety.

This description indicates that a smart grid needs to be highly observable. Also, in order to facilitate

efficient integration of the various users, bidirectional communication between relevant system actors

needs to be enabled. Especially at the distribution network level, this is not given in the traditional grid.

Smart grids implement more possibilities for the automation of processes and accordingly a greater

potential for self-healing processes.

Self-healing methods in smart grids are presented in the following subsections.

2.2.2.1 Variable Renewable Energy (VRE) and storage control

The transition from conventional thermal generation technology towards renewable energy sources is

implemented in many countries through increased capacities of wind and solar power generation,

together referred to as variable renewable energy (VRE). All modern VRE generators are based on

power electronic converter technology. Small-scale generator systems connected to the distribution

systems represent a significant share of installed VRE capacity.

Due to the primary energy being available at no cost, it is desirable in principle to have VRE generators

feed their power into the grid whenever it is available, thereby displacing conventional thermal

generation and reducing fossil fuel consumption and carbon dioxide emissions. However, this priority

dispatch approach comes into conflict with the power system’s needs for power balancing when the

installed VRE capacity reaches significant shares. This problem is addressed through two different but

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 29
Public document

complementary approaches: Firstly, VRE generators are equipped with smart inverter technology that

not only responds intelligently to variations of voltage and frequency, but also implements remote

control interfaces to enable real-time monitoring as well as remote operator access to setpoints,

operational constraints, and control modes and configurable characteristics. [31] Smart inverters

therefore provide additional flexibility to system operators. Secondly, VRE generators can be combined

with storage facilities such as battery storage. This option not only allows storing excess power instead

of just curtailing it, but of course also allows providing the stored power when there is not sufficient

primary renewable power available. In addition, battery storage is also inverter-based and can provide

extremely fast and intelligent response to voltage and frequency and to remote control signals. [32]

[33] [34] Flexibility from both VRE and storage has been increasingly used by system operators in the

past decade already, and will be used more in the future.

Due to VRE generation and storage often being connected to medium voltage and low voltage grids,

these technologies are introducing new flexibility and controllability capabilities to distribution

systems. This new flexibility is not a self-healing method in itself, but it is an enabler for improved

existing self-healing capabilities such as contingency management and for new self-healing methods

such as intentional islanding capabilities of distribution grid sections (microgrids). Efficient use of these

capabilities requires suitable communication infrastructure and control structures, hence it relies on

Smart Grid infrastructure to provide its flexibility benefits.

2.2.2.2 Demand response and demand side management (DR/DSM)

Since implementing and using flexibility from VRE and storage can be quite expensive, it is a good idea

in general to identify demand-side flexibility and make it accessible to system operators. This approach

is not limited to load shedding in emergency situations (reducing reliability of supply for affected grid

users); instead, the idea is to differentiate between required energy and the time when it has to be

supplied. Shifting required demand in time has the potential of significantly improving the power

balancing task involved in frequency control and contingency management.

Common approaches to accessing demand flexibility are referred to under the terms of demand

response (DR) and/or demand side management (DSM). DR usually means giving incentives to

consumers, but not necessarily controlling their response directly. This can be implemented through

time-variable power tariffs or even real-time prices, or offering other benefits coupled to a response

to some signal indicating the needs of the power system. In contrast, DSM is less clearly defined in that

multiple competing definitions are used in the literature. According to one of these definitions, it

means direct user access to defined flexibility of controllable loads, providing a specific and reliable

response to the DSM user (who can be a flexibility aggregator, or a system operator) as a contracted

service. [35] Another definition sees DSM as encompassing all sorts of demand modification including

both DR and energy efficiency measures. [36]

DR and DSM are already used in some countries today, although still to a limited extent (typically with

suitable industrial consumers). [37]

Similar to VRE and storage control, new flexibility from demand control is not a self-healing method in

itself, but enables improved contingency management and can support intentional islanding

capabilities for microgrids. This method also relies on Smart Grid infrastructure.

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 30
Public document

2.2.2.3 Controlled islanding (microgrids)

With conventional distribution system design and operation, there is only one feeding point, and the

electrical power flows through the system from the upstream substation to the downstream

customers [38]. When a fault occurs and is isolated, all customers downstream of the fault location are

disconnected.

Microgrids are an approach to minimize the unavoidable disconnection by making it possible for

sections of the distribution systems to operate in island mode (i.e., without any connection to the

upstream grid). Microgrids rely on the availability of local generation resources with sufficient capacity

to supply the load that otherwise would get disconnected. A microgrid can act as a reliable source to

supply customers in the area downstream of a fault, and help the system recover properly and quickly.

By forming island networks intentionally and systematically, the reliability and continuity of supply can

be increased for the loads in the islanded areas.

Once the disturbance has been eliminated, the microgrid is usually reconnected to the main grid. For

a coordinated reconnection, without intermediate interruption of supply, it is important to measure

the status of the main power grid and of the microgrid during the whole process, and implement a

resynchronization procedure.

The concept of controlled islanding in response to isolation of faults is illustrated in Figure 2 [39].

Figure 2: Example of controlled islanding in response to faults [39]

The example shows the connections between one transmission grid and three distribution grids (D)

before and after three different faults occur [39]. Distributed Energy Resources (DER)1 and loads are

connected to each distribution grid. Distribution grid D1 is split into two parts in response to an internal

fault. Part D1a remains coupled to the transmission grid and thus remains in grid-connected operation,

while part D1b operates as a microgrid in island mode and controls the local DERs to maintain stability

of voltage and frequency in the islanded grid section. Two additional faults occur, in the

interconnection between the transmission grid and D3 and in the transmission grid itself close to the

1 The following technologies are referred to under the term DER: Distributed generation (e.g., rooftop solar
photovoltaics), flexible load (e.g. electric vehicles), and energy storage.

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 31
Public document

interconnection to D2. To prevent an outage of D2 and D3, both distribution grids are transferred into

island operation after the faults and use the local DERs for voltage and frequency control. D2 and D3

are then connected to form a single island in order to improve the balancing of supply and demand.

Microgrids with black-start-capable DER may be able to restore themselves if a blackout occurs.

The SDN-microSENSE includes intentionally forming island networks in its holistic approach to

improving self-healing capabilities and resiliency. The decisions on where the boundaries of the islands

should be are taken care of by the IIM module developed in task 4.3; the processes related to balancing

the power within the islands and restoring consumer power supply are addressed by the EMO tool,

which is developed in task 4.4.

2.2.2.4 Optimized grid reconfiguration

Most distribution grids are operated in a radial configuration, although there are usually tie lines and

other connections that would allow meshed or ring configurations, since radial configurations are

simpler and easier to operate [40]. The radial feeders are configured through appropriate breaker

settings at the interconnection points with other feeders. Feeder configurations for normal operation

are typically selected for minimizing the losses and reducing the loading of grid equipment, thereby

increasing the economic efficiency of the distribution system.

This distribution grid design also allows reconfiguring the feeders after faults have forced the

disconnection of grid sections. If only the faulty grid segment (e.g., a line or a transformer) is isolated,

then it is usually possible to restore electricity supply to the downstream grid users by reconfiguring

the feeders through adjusting one or more circuit breakers or switches.

In today’s medium voltage and low voltage distribution grids this optimized grid reconfiguration is

usually carried out through human intervention. Fully automating this process can be useful not only

to further minimize losses in the presence of variable generation in the distribution grid, but also to

minimize power supply interruption times after faults, thereby implementing improved self-healing

capabilities in a smart distribution grid.

2.2.2.5 SDN-Based Self-Healing Communication Network

Any self-healing capability relies on measurements and signals that enable a state assessment of the

grid and automatic detection of any faults. For this purpose, digital and real-time devices are used to

measure and communicate the status at critical locations in the network at any time.

One of these devices is the Phasor Measurement Unit (PMU), which provides synchronized

measurements that accurately capture the real-time wide-range dynamics. The microsecond accuracy

of time synchronization required for this is facilitated via the Global Positioning System (GPS). The

interoperability of PMUs from different manufacturers is ensured through IEEE Standard C37.118.2-

2011. By placing PMUs in strategic locations, a wide-area visibility and near real-time observability of

dynamic phenomena in the power system is created. This allows grid operators to better identify and

diagnose upcoming grid problems and improves the implementation and evaluation of corrective

actions for maintaining system stability.

The measured data from several PMUs is delivered to a phasor data concentrator (PDC) [41]. This

device bundles the measurements and transfers them to the next-level PDC or a control centre. Since

PDCs provide the communication link between the PMUs and the control centre, they are a

predestined target for cyber-attacks. The physical and logical connection structure between PMUs,

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 32
Public document

PDCs and the control centre is illustrated in Figure 3. A switching network situated between PMUs,

PDCs, and the control centre, enables the physical connection between these components to be

changed, and PMUs to be assigned to other PDCs if a PDC is out of service due to a cyber-attack or

failure. The entire system that integrates PMU and PDC data into the control centre processes is called

Wide-Area Monitoring System (WAMS).

Figure 3: WAMS structure [42]

Together with the Wide-Area Protection System (WAPS) and the Wide-Area Control System (WACS),

the Wide-Area Monitoring System (WAMS) builds the Wide Area Monitoring, Protection and Control

System (WAMPAC) [38]. The WAMPAC combines the following capabilities:

• Dynamic measurement and depiction of events

• Wide-area system view

• Coordinated and optimized stabilizing actions

• Adaptive relaying in coordination with local protection devices

• Treatment of cascaded failures.

Thus WAMPACs provide improved possibilities for self-healing compared to conventional Supervisory

Control and Data Acquisition Systems (SCADA).

Not only the data collection hierarchy from the control centre through the PDCs to the PMUs, and the

control hierarchy from the control centre through the station controllers down to the asset controls,

but also the underlying communication infrastructure with routers and switches is usually set up to

operate in a tree-like structure where the path of the information flow is preconfigured. However,

similar to power distribution grids, there exist alternative connection paths that can be used if needed.

In SDN-enabled communication networks, the reconfiguration of information flows can be changed

dynamically based on the needs of the system; e.g., to optimize data transmission latency or

bandwidth. This also allows isolation of faulty elements in the communication network, for instance a

malfunctioning switch, or a PDC that has been detected to be compromised in a cyber-attack.

Disconnecting one or more PDCs or other critical elements in the data flow path results in constrained

observability and/or controllability of the power system. SDN controllers managing this

communication infrastructure therefore need to aim for two main goals [41]:

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 33
Public document

• Stage 1: Restoring power system observability and controllability by reconfiguring the

communication network as quickly as possible.

• Stage 2: Maximizing the system observability and controllability by recovering as many

communication endpoints as possible (e.g., all disconnected PMUs).

By being able to quickly and efficiently contribute to restoring power system observability and

controllability, SDN-enabled communication technology contributes to the self-healing of the energy

ecosystem in the case of communication malfunction or new threads such as cyber-attacks.

2.2.3 Summary and Conclusions on Self-Healing Methods
The following table illustrates the discussed self-healing methods and their applicability depending on

the grid level (transmission or distribution). Essentially only transmission grids have been equipped

with a high degree of self-healing capabilities in the past; today, modern smart grid technologies

enable new self-healing capabilities both in the transmission and distribution system.

Table 1: Self-healing methods and their applicability to electrical power distribution and transmission grids

 Method Transmission grid Distribution grid

Traditional Grids Reserves ✓

AGC ✓
AVC ✓

Load shedding ✓

Smart Grids VRE & storage control ✓ ✓

DR/DSM ✓ ✓

Controlled islanding ✓ ✓

Optimized grid
reconfiguration

✓ ✓

SDN-based data
rerouting

✓ ✓

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 34
Public document

3 Analysis of requirements for EDAE, SDN Controller and

Northbound Interfaces

The purpose of this section is to conduct analysis on the requirements and specification that are

provided by two deliverables D2.2 and D2.3. Deliverable D2.2 focuses on the requirements of the SDN-

microSENSE project. These requirements are there in order to describe what a software system should

do (functional requirements), as well as how the system should do it, including constraints and

restriction in this regard (non-functional requirements). Second, The Deliverable 2.3 focuses on the

overall architecture of the system, system behaviour, system specifications, technical constraints and

interaction between components of the architecture (such as interfaces for example). Using these two

documents, here is conducted analysis of all requirements and specifications which at the end

represent set of rules and guidelines for the development and implementation of all relevant

components related to this work package.

3.1 D2.2 Functional Requirements
In Deliverable D2.2 where all requirements are presented, it can be found that requirements are

provided without the mapping according to the tools and software components. They represent the

guidelines for the development of the tools. Here, in this section, the functional requirements are

extracted and presented only for those tools and software components that are the subject of this

deliverable. Some of the requirements provided by the D2.2 are covering the functionalities that are

covered with the broad number of components or the entire SDN-microSENSE system. Here, the

extraction and the summarisation of the requirements was done in such way that specified

requirements (provided in tables bellow) are extracted from the D2.2. Depending on the tool the

requirements were given through extraction of one or summarisation of more than one functional

requirements from D2.2. As addition, the non-functional requirements are here presented also in

summarised way and they were provided here to support the implementation of the functional

requirements (as by definition of the non-functional requirements, which are commonly used to

describe how the functional requirements are implemented).

 General user requirements to be considered in the tools developed in task 4.2 are:

• Enhanced protection from attacks against the IT/OT and electrical infrastructure.

• Usable and easy-to-understand graphical user interfaces (GUI) that can be used by personnel

who do not have advanced knowledge about cybersecurity.

• To include a tool that operates efficiently in terms of energy consumption and computational

resources.

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 35
Public document

Table 2: Extracted and summarised requirements for each component

Extracted and summarised requirements Related
component

Reference to used D2.2 requirements

The system shall be able to mitigate following
cyberattacks in near real time (in seconds) and
with high accuracy:

• DoS (Denial of Services) cyberattacks

• MITM (Man in the Middle) cyberattacks

• False Data Injection attacks

• unauthorised access

• Modbus TCP-related cyberattacks

• DNP3 cyberattacks

• EtherCAT cyberattacks
• IEC 61850, IEC 60850-5-101, IEC 60850-

5-102 and IEC 60850-5-104 cyberattacks

• PROCOME cyberattacks

• Ransomware

EDAE,

SDN-C

Functional requirements:

R-UR-03, FR-UR-04, FR-UR-05, FR-UR-06,
FR-UR-07, FR-UR-08, FR-UR-09, FR-UR-
10, FR-UR-11, FR-UR-12, FR-UR-13, FR-
UR-14, FR-UR-15

Non-Functional requirements:
NFR-DPT-27, NFR-SEC-03, NFR-RL-01,
NFR-RL-04, NFR-RL-06

The system shall be able to discriminate the
various types of cyberattacks with high accuracy.

AIDB Functional requirements:
FR-UR-16

Non-Functional requirements:
NFR-RL-01, NFR-RL-04, NFR-RL-06

The system shall maintain:

• An inventory of all the infrastructure
elements with their exact location

• Status of the inventory (e.g. ‘active’ or
‘not’)

• Explanation of the status of the
inventory (whether the cause is known
(e.g. due to maintenance work) or
unexpected (e.g., due cyber-attack or
failure)).

• Notifications system or a polling system
should be implemented in order to
notify status changes for each single
device.

• All infrastructure elements shall be
identified by a unique ID. This ID is to be
shared with different Databases in the
system

• The processing of historical data shall be
implemented (BIG data handling should
be implemented on the system level)

The requirement applies to all types of devices,
i.e. power, IT and OT network devices.
The system shall be able to encrypt data when
stored.

AIDB

Functional requirements:
FR-UR-18

General requirements:
FR-GR-1

Non-Functional requirements:
NFR-DPT-09, NFR-DPT-10, NFR-DPT-11,
NFR-DPT-15, NFR-DPT-16, NFR-DPT-27,
NFR-SEC-03 , NFR-SEC-15, NFR-RL-01,
NFR-RL-04, NFR-RL-06, NFR-BCK-01,
NFR-BCK-02, NFR-BCK-02, NFR-BCK-04

Graphical User interface should be implemented
in order to present a dashboard that will enable
users to configure the network. Depending on the

SDN-

Dashboard,

Functional requirements:
FR-UR-19

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 36
Public document

tool, part of the User Interface shall also be the
visual analytics tool and recommendations of the
actions for the grid operator.

EDAE-
Dashboard,

General requirements:
FR-GR-7, FR-GR-11,

Non-Functional requirements:
NFR-DPT-15, NFR-DPT-16, NFR-DPT-20,
NFR-DPT-27, NFR-SEC-03 , NFR-SEC-08,
NFR-SEC-15, NFR-RL-01, NFR-RL-04,
NFR-RL-06

The software component shall be able to support
multiple user roles with distinct privileges.

SDN-

Dashboard

Functional requirements:
FR-UR-24

Non-Functional requirements:
NFR-DPT-20, NFR-DPT-27, NFR-SEC-03,
NFR-SEC-08, NFR-SEC-15 , NFR-RL-01,
NFR-RL-04, NFR-RL-06

The system shall be able to provide network flow
metrics from raw network traffic data.

SDN-C General requirements:
FR-GR-5

Non-Functional requirements:
NFR-SDNSEC-01, NFR-SDNSEC-02, NFR-
SDNSEC-03, NFR-SDNSEC-04, NFR-
SDNSEC-05, NFR-SDNSEC-06, NFR-
SDNSEC-07,NFR-SDNSEC-08, NFR-
SDNSEC-09, NFR-SDNSEC-10, NFR-
SDNSEC-11, NFR-SDNSEC-12, NFR-RL-01,
NFR-RL-04, NFR-RL-06

The system shall provide the ability to the
security administrator to view, create, read,
update and delete network flows on the
underlying switches.

SDN-

Dashboard

General requirements:
FR-GR-13

Non-Functional requirements:
NFR-RL-01, NFR-RL-04, NFR-RL-06

The system shall propose countermeasures,
including the drop or the redirection of a network
flow, in order to tackle ongoing cyber threats.

SDN-

Dashboard,

General requirements:
FR-GR-14

Non-Functional requirements:
NFR-RL-01, NFR-RL-04, NFR-RL-06

The system shall allow the operator to control
any automation process.

EDAE-

Dashboard

General requirements:
FR-GR-23

Non-Functional requirements:
NFR-RL-01, NFR-RL-04, NFR-RL-06

3.2 SDN-microSENSE platform specifications (related to the WP4)
The tables from deliverable D2.3 were used as the source for the specification provided in this

deliverable. They were used to collect and summarise specifications which are suitable and more

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 37
Public document

related to the actions that are provided with the descriptions of WP4. Therefore, the following table

summarise the specifications that are extracted from the D2.3.

Table 3: Specifications coverage of each compoment

Specification ID
(source D2.3)

Action (Specification) Related components

SPEC-F6 SDN Control. To provide this functionality the SDN-microSENSE
architecture is enabled with an SDN Controller component, which
can receive specific instructions (from SDN applications) regarding
how the different network flows should be managed in the EPES
data network. This SDN Controller will act on the SDN-enabled
network devices in the EPES infrastructure by programming the
corresponding flow tables in their associated SDN switches. The
following functionalities are provided:

• Editing the settings related to the data network flow
control (this is the core functionality).

• Provide visibility on the underlying network resources.
This includes:

o Available SDN-enabled network elements (e.g.,
SDN switches, network links and hosts
connected to the SDN switches).

o Retrieval of the underlying network topology
(how the network elements are connected each
other).

o Access to network traffic statistics, network
state and events.

• Provide the necessary interfaces for the previous
functionalities:

o To the software applications requiring access to
the controller functionalities (this is called the
North-bound Interface; it is commonly
implemented by means of REST API interfaces).

o To the underlying infrastructure components
(this is typically called the South-bound
Interface; in SDN-microSENSE we will use the
OpenFlow protocol for implementing this
interface).

To the management components (e.g., the human operator’s UI).

SDN Controller and
SDN-enabled
infrastructure
components

SPEC-F7 Updated Assets Inventory. SDN-microSENSE integrates the
specific Assets Inventory Database (AIDB) component. The
database maintains an updated inventory of all the infrastructure
elements with their exact location and their status (e.g., which
devices are active or not, whether the cause is known (e.g. due to
maintenance work) or unexpected (e.g., due cyber-attack or
failure). This applies to all types of devices, i.e. power, IT and OT
network devices. All infrastructure elements shall be identified by
a unique ID, which would be shared by other components in the
system. The database component provides the necessary
interfaces for allowing other systems to update their respective
information. The data network related information is obtained
through the SDN Controller. The grid related information is
obtained through a direct interface with the infrastructure
components (when available) or even by manual entries (when

AIDB

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 38
Public document

automatic updates are not feasible for certain components). This
AIDB is constantly updated, and is redundant to avoid being a
single point of failure.

SPEC-F8 Data Gathering for Islanding & Optimisation. In SDN-microSENSE,

the IIM component (which is part of the self-healing framework) is

responsible for the gathering the data for implementing the

islanding schemas on the grid. IIM is to receive the following data:
• Information on the Security Incidents from Risk Level

Assessment component, where all necessary
information about location, involved asset and other
parameters will be attached

• Grid model and field device information (from the Assets
Inventory Database)

Operational data (from grid operator)

AIDB

SPEC-F9 Application of Islanding Schemas. Computing of optimal
islanding schemes is performed by the IIM (Islanding and
optimisation fraMework) within the self-healing framework. This
IIM generates a set of isolation actions to ensure undisrupted
operation and avoidance of failure in the grid. According to the
computing results, IIM is to display recommended islanding
schemes to a human operator (who can accept/reject the actual
application of the suggested islanding schemas). This information
is to be displayed directly in an IIM specific UI (which can be
accessed from the SDN-microSENSE common UI) with all relevant
data to the operator.

IIM

SPEC-F10 Network Reconfiguration based on the Electrical Data Analysis.

The EDAE component (within the SDN-microSENSE self-healing

framework) is to be responsible for sending the data about

network reconfiguration directly to the SDN Controller. This action

will utilize direct established interface between the EDAE

component and the SDN Controller. The EDAE component will

send information about the network reconfiguration parameters

of the affected nodes in order to provide alternative network paths

for the data flows.

To do that, the EDAE component gathers and processes the

following data:
• Information on the Security Incidents from Risk Level

Assessment component, where all necessary
information about location, involved asset and other
parameters will be attached.

• Network Topology, grid model and field device

information (from Asset Inventory Database).

Operational data (from the grid infrastructure elements).

EDAE, AIDB

Regarding the Operational specifications, they were extracted through the analysis of the non-

functional requirements in Deliverable D2.2, collection has been made on a higher level of

abstraction of the specification (due to maturity level and stage of the project when deliverable was

made) and provided within Deliverable D2.3. They are provided in the tables in D2.3 and covering the

following:

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 39
Public document

• TABLE 20. SPEC-OP1. RESILIENCE AND RELIABILITY

• TABLE 21. SPEC-OP2. DATA PROTECTION BY DESIGN.

• TABLE 22. SPEC-OP3. DATA SECURITY BY DESIGN.

• TABLE 23. SPEC-OP4. BACKUPS.

• TABLE 24. SPEC-OP5. USABILITY.

3.3 Technical constraints
There were defined three tables/groups with the technical constraints which actually are representing

the high level technical constraints. The high level of abstraction was introduced during the

preparation of the D2.3 because of the complexity of the system architecture and large number of

components with very diverse technologies.

The deliverable presents the following three constraints that are to be used as the initial guidance:

• CONS-T1. SECURE APPLICATION PROGRAMMING INTERFACES

• CONS-T2. SECURE AUTHENTICATION

• CONS-T3. AUTHORIZING TRAFFIC (IP AND PORTS RESTRICTION).

Detailed description of the constraints could be found within the Deliverable D2.3. All Technical

constraints are applicable to the all components of the SDN-microSENSE therefore the same are to be

used and followed during development and implementation of the component within WP4.

3.4 Functional and non-functional requirements coverage
In this section, a detailed description of how each component will address the requirements defined

in D2.2 and D2.3 will be described.

3.4.1 EDAE requirements

Functional Requirements:

The functional requirements that EDAE is responsible to address are presented in Table 4.

Table 4 Functional and Non-functional requirements for EDAE operation

Functional Requirements Non-functional Requirements

FR-UR-03, FR-UR-04, FR-UR-05, FR-UR-06, FR-UR-07,
FR-UR-08, FR-UR-09, FR-UR-10, FR-UR-11, FR-UR-12,
FR-UR-13, FR-UR-14, FR-UR-15

NFR-DPT-27, NFR-SEC-03, NFR-RL-01, NFR-RL-04,
NFR-RL-06

Each functional requirement of the aforementioned ones requires EDAE to mitigate a specific type of

attack. The operation of EDAE allows to address all the functional requirements with the same

mechanism, since EDAE obtains information for the security incidents to mitigate cyber-attacks.

Specifically, the information of the security events alongside with the risk assessment of each event

are provided to EDAE via S-RAF. Flowingly, EDAE consumes the information from S-RAF (network

security status) and by taking into account the network constraints (bandwidth capacity, available

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 40
Public document

bandwidth), the network quality (delay, latency and jitter between the switches), the QoS needs of the

applications and the sensitivity of the data that the applications handles, re-arranges the logical

network connections. The decision about the re-arrangement of the network logical connections is

performed using genetic algorithms and mixed integer linear programming (see section 6.2). The re-

arrangement of the logical connections is performed in such way that the produced alternative

communication paths are more secure for the applications that handle sensitive data and optimize the

QoS needs of the applications. Given that an attacker has already infected a host, performing this re-

arrangement makes it harder for an attacker to intrude to more sensitive hosts, since the attacker

should pass from more secure links.

Non-functional requirements:

The non-functional requirements that EDAE is responsible to address are presented in Table 4 above.

NFR-DPT-27:

According to NFR-DPT-27 “The system shall be able to utilize the right virtual machine backup strategy,

since it ensures systems are delivered with the highest level of availability”. EDAE operates in a Docker

environment inside the virtual machine in order to ensure that its operation is resilient against changes

that would occur in the virtual machine. As a second step, we are going to deploy EDAE Docker on a

Kubernetes environment to further boost and ensure the resilience and the availability of EDAE.

NFR-SEC-03:

According to NFR-SEC-03 “Connections among systems and equipment shall be secured by

authentication and encryption“. EDAE uses its interfaces to communicate with AIDB, EDAE Dashboard

and SDN-Controller via RESTful APIs over the TLS protocol. The interfaces will use the Privacy

Protection Framework which is placed inside the Management Plane of the SDN-microSENSE

architecture in order to ensure secured connections among systems.

NFR-RL-01:

According to NFR-RL-01 “The system shall be able to perform a required function under stated

conditions for a specified time”. The specified time should be defined for each action or operation of

the system in order for the system to follow these time constraints of operation. EDAE operates

continuously and monitors the network security and quality status in order to mitigate the cyber-

attacks.

NFR-RL-04:

According to NFR-RL-04 “The system shall implement mechanisms to ensure resilience against human

errors and interactions within the system”. There are two types of errors that could affect the EPES

system and which are in the scope of EDAE’s operation. The first is for an authorized user to change

the table flows of the SDN switches which will results in suboptimal communication links. EDAE is

resilient to this type of error since it frequently monitors the status of the network in order to restore

it to its optimal configuration. Another type of error that could occur is a PDC to be disconnected, or

blocked for whatever reason. The latest type of error can be mitigated by re-allocating the PMUs to

leftover PDCs in order to maximize the observability of the EPES electrical grid.

NFR-RL-06:

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 41
Public document

According to NFR-RL-06 “The system shall be designed for maintenance and automation. The system

will need monitoring and regular updates in order to ensure proper operation over time”. EDAE is

designed in such a way that it consists of multiple logical components, each one independent of the

development of the other. Each component performs a concrete function and is seen by the rest

components as black box with certain input and output. This allows EDAE to be developed in a

distributed way and to be easy for maintenance. Regarding the automation part, EDAE is fully

automated and run on a Docker environment.

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 42
Public document

4 Architecture and detailed design
In this section we provide information about the design of the SDN-SELF and how it works as part of

the overall SDN-microSENSE framework.

4.1 Architecture overview
This section presents how the components developed in this task fit in the general architecture of SDN-

microSENSE, as presented in Figure 4 from deliverable D2.3 [43].

Figure 4: SDN-microSENSE Architecture Structural View

SDN-SELF is placed in the application plane and has been developed in WP4. It is interacting with the

S-RAF that is responsible for assessing the level of risk in all the involved EPES devices and system.

Taking a closer look on the initial conceptual architecture, as presented in Figure 5, SDN-SELF includes

the components: EDAE (developed in task 4.2), IIM (developed in task 4.3), EMO (developed in task

4.4) and the Blockchain Trading System (developed in task 4.5).

Figure 5: SDN-SELF in the application plane

In this deliverable it is detailed the interactions that affect the EDAE, the AIDB and the northbound

interfaces of the SDN-C. The detailed interaction of the main components is presented in Figure 6.

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 43
Public document

Figure 6: Detail of the architecture overview related to task 4.2

EDAE is an application located in the application plane and interfaces the SDN-C, located in the

controller plane, through the northbound interfaces.

4.2 Components view
According the requirements on previous section two new components were needed and then
developed in this task. These are the graphical user interface for EDAE and SDN-Controller (EDAE-
Dashboard and SDN Dashboard). Summing up, for the proper operation of EDAE is needed the
interaction of three other components and two user interfaces: S-RAF, SDN-C, SDN Dashboard, EDAE
Dashboard and AIDB.

These components are described:

- In WP3, S-RAF.
- In Section 5, SDN-C and SDN Dashboard.
- In Section 6, EDAE and EDAE Dashboard.
- In Section 7, AIDB.

In Figure 7 it is displayed the interaction between components. The grey boxes are the interfaces
defined in D2.3. Notice that the interface EDAE/EDAE-Dashboard was never defined before so this is
the first time it appears in the component view. The blue boxes are the components described in this
deliverable. In the orange boxes are described some of the functionalities that these interfaces can
provide to the components. The arrows indicate the workflow of the information.

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 44
Public document

Figure 7: Interaction between components

EDAE will request the information from the AIDB to know the network topology and information of

the assets (AIDB-1), it will need the information of the assets in risk through S-RAF (S-RAF/SDN-SELF-

01) and all the relevant information from the SDN assets that are not present in the AIDB but its

information can be retrieved from the SDN-C (XL-EPDS_NBI-1). With all those inputs, EDAE will propose

a network topology change to EDAE-Dashboard in order to improve the network security, the

observability of the EPES and improve the QoS between assets (EDAE/EDAE-Dashboard). The topology

change will be evaluated by an operator that will provide back a response to EDAE through the same

interface. In case the topology change it is accepted, EDAE will propose some changes in the flow tables

(XL-EPDS_NBI_1) to the SDN-C. EDAE will also update the AIDB with the new values of the asset’s

attributes that has changed (AIDB-2).

AIDB will request network information to the SDN-C often, since this information will be used for other

components than EDAE (AIDB-3).

EDAE-Dashboard will retrieve information of the network topology form the AIDB too, and information

of network switch statistics from the SDN-C (XL-EPDS_NB1-1).

4.2.1 Detailed information flow of the inputs and outputs
The exact inputs and outputs of the EDAE core and the data exchange with each interface are

presented in Figure 8.

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 45
Public document

Figure 8 Detailed information flow of the Input and outputs

Inputs:

1) Network Topology Summary interface

The network Topology Summary interface requests from the AIDB for each asset the following

attributes:

• Asset ID: (The friendly name of the host)

• Type of Asset: (PMU, PDC, SCADA, RTU, PLC etc.)

• MAC address: (The unique hardware’s identifier)

• IP address: (Internet Protocol address assigned to the host)

• Risk assessment: (The security risk level of this host)

• Switch links: (The switches that that the host is connected to)

• QoS and security constraints of the hosts (Defined in section 6.2.2.2.2)

2) Active Paths

This interface requests from the controller the current active communication paths between

the hosts of the communication network. In SDN networking, multiple communication paths

can be constructed between two hosts. With the use of rules, that are stored in flow tables

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 46
Public document

inside the switches, someone can define the path that a packet will follow from a source host

to a destination host. The active communication path is the path that a packet will follow from

a source host to a destination source.

3) Switch Statistics Summary

This interface frequently requests from the controller port statistics for each switch in order

to store them in the timeseries database. The required statistics are the following:

• Number of packets received to a specific port

• Number of packets sent to a specific port

• Number of bytes received to a specific port

• Number of bytes sent to a specific port

4) Risk assets Summary

The Risk assets interface receives security events produced by S-RAF. This event informs EDAE

which assets were affected and how much they were affected.

5) Network Topology proposal acceptance

Through this interface, the EDAE output interfaces are informed if the proposed

communication paths of the EDAE core are accepted or not by the operator.

Outputs:

1) Network Topology Changes

This interface sends the old paths and the new paths as they are calculated from EDAE core to

EDAE DASHBOARD in order to visualize the results and allow the operator to decide whether

will apply the proposed solution or not. Additionally, the results are stored in AIDB.

2) Flow table changes

The flow table changes interface receives the old paths to be deleted and the new paths to be

created. To this end, this interface uses the RESTful API provided by the controller in order to

update the flow tables of the involved switches accordingly.

4.3 Interfaces Model
This section gathers information about the interfaces required for the implementation of the

integrated solution of SDN-microSENSE by defining the communication between the components

created in WP-3-4-5 and following the guidelines, requirements and specifications from WP2. The

interfaces are in alignment with provided WP4 architecture from the previous section. Previously

provided diagrams are representing the interaction between the components and those interactions

represents the interfaces that should be further defined and clarified. In order to produce basic

information on the interfaces the template for interfaces was developed in order to define those

interactions between components. The following subsections describe these interfaces (organized per

activity) by detailing the following information:

1. Description: Describes the purpose of the interface.

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 47
Public document

2. Component providing the interface: Describes the component that is offering the described

interface.

3. Consumer components: Describes the components that are using the described interface.

4. Used Technology: REST, XML-RPC, GUI, Java API, etc.

5. Input data: describes how data that is required by the described interface (e.g.: Methods or

Endpoints, values and parameters of the interface).

6. Output data: describes the data that is returned by the described interface (e.g.: the returned

data of methods or REST call).

7. API URL: URL of the interfaces through which API is accessed.

8. Constraints: Any security or authentication related topics regarding this interface, specifically

the need to use a secure transfer protocol. Also, any other constraints (e.g. specific

prerequisites, data-types, encoding, transfer rates) which apply to the interface.

9. State: Synchronous/Asynchronous, Stream.

10. Responsibilities: Partner that is responsible for the implementation and usage of the interface.

11. Documentation link: Link toward the documentation of the tool or its interface (public

address, or address to the project shared folder).

Previous numbered subsections of the interface can be represented through the table and thus

producing the template that can look the same for all interfaces. On the other side, the interface model

is not the same for all interfaces and this depends on the content of the tables, i.e. it depends on the

descriptions of this subsections where each interface will represent its own unique model, format and

used technology.

In this document and within WP4 following interfaces are covered. The interfaces were described in

general manner in D2.3. The names used in this document have the intention to be more descriptive,

however the interface identifier as it is named in D2.3 it is detailed between brackets [43].

1) AIDB – EDAE (AIDB-1, AIDB-2)

2) AIDB – EDAE-DASHBOARD (AIDB-1)

3) AIDB – S-RAF (AIDB-1)

4) AIDB – SDN-C (AIDB-2, AIDB-3)

5) EDAE – EDAE-DASHBOARD

6) EDAE – S-RAF (S-RAF/SDN-SELF-01)

7) EDAE – SDN-C (XL-EPDS_NBI-1)

8) EDAE-DASHBOARD - SDN-C (XL-EPDS_NBI-1)

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 48
Public document

4.3.1 AIDB – EDAE
This interface will request the following information from AIDB and it will provide to EDAE:

• Identifier of the asset in the network topology

• Asset type: Switch, Host, SDN-C.

• Additional information about the host purpose (PDC, PMU, RTU, SDN-Switch, SCADA…)

• IP: Internet Protocol address of the asset in communication to such asset.

• List of physical connections between assets

• Communication weights, indicator that represents the level of preference for the

communication between two assets

• Bandwidth in Mpbs of the physical network connection between two assets.

Additionally, EDAE requires to store into the AIDB the proposed changes in the network topology.

• IP changes: New Internet Protocol address of the asset in communication to such asset.

• Weight changes: New value of the calculated indicator that represents the level of preference

for the communication between two assets.

Table 5: AIDB-1 interface for EDAE component

Interface name: AIDB-1

Description Network topology summary
EDAE requires additional network information which cannot be provided by
SDN-C and gets it from the AIDB. This information is taken into account by Self-
healing algorithms to appraise the best topologic change purposes.

Component providing
the interface

AIDB

Consumer components EDAE

Used Technology REST

State Synchronous

Input data AssetQuery()

Output data - Switch(ExternalId)

- Hosts (ExternalId, Description, sdnIP)

- Network topology(Relationship, Weight, Bandwidth)

API URL NA

Constraints NA

Responsibilities AYESA

Documentation link AssetQuery()

Table 6: AIDB-2 interface for EDAE component

Interface name: AIDB-2

Description Network topology changes
EDAE will indicate to AIDB to proposed changes in the network topology, those
changes consist of IP redefinitions, and weight revision of directional
communication between assets.

Component providing the
interface

AIDB

Consumer components EDAE

Used Technology REST

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 49
Public document

State Synchronous

Input data AssetUpdate()

Output data - Host(sdnIP)

- Network topology(Weight)

API URL NA

Constraints NA

Responsibilities AYESA

Documentation link Asset Create/Update/Delete()

4.3.2 AIDB – EDAE Dashboard
The EDAE Dashboard requires additional information which is not provided by the SDN-C. This

information is paramount for the Self-healing algorithms and supplies the base to which draw different

topologic changes purposes given by the EDAE (from another interface).

Table 7: AIDB-1 interface for EDAE-Dashboard component

Interface name: AIDB-1

Description Advanced SDN Topology information
This interface provides additional information managed by EDAE about the SDN
topology, e.g. weight, which cannot be supplied by the SDN-C.

Component providing
the interface

AIDB

Consumer components EDAE Dashboard

Used Technology REST

State Synchronous

Input data AssetQuery()

Output data List of SDN Topologic relationships (Host/Switch - Host/Switch, Weight,
Bandwidth)

API URL

Constraints

Responsibilities AYESA

Documentation link AssetQuery()

4.3.3 AIDB – S-RAF
S-RAF summons to AIDB to retrieve information about the SDN infrastructure. It seems strange
involving the AIDB rather than the SDN-C, however on a second thought, the AIDB is needed due to
not all required information can be provided by the SDN-C. The required information compasses
following subjects:

• List of hosts. The AIBD centralizes the SDN asset information by the mean of an only
endpoint, avoiding to know the list of SDN-Cs belonging to different subnetworks in the
enterprise by the S-RAF side.

• Asset risk level. The risk level of each host is a worthy information to appraise the risk of an
eventual attack to some part of the SDN infrastructure.

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 50
Public document

Table 8: AIDB-1 interface for S-RAF component

Interface name: AIDB-1

Description Get all the SDN asset information
This interface provides information about all hosts (IP, hostname) belonging to
the SDN infrastructure, as well its vulnerabilities.

Component providing
the interface

AIDB

Consumer components S-RAF

Used Technology API REST

State Synchronous

Input data AssetQuery(), AssetRiskQuery()

Output data Complete list of Hosts(ExternalId, IP, MAC)
Active Vulnerabilities(CVE, RiskLevel)

API URL NA

Constraints The API User has to belong to a registered Use Case.

Responsibilities AYESA

Documentation link NA

Given the detected threats from the XL-EPDS framework and the vulnerabilities of the assets, S-RAF

can review the risk level of one or more hosts. This interface requirement is covered by the already

addressed in the Table 13: S-RAF/SDN-SELF-01 interface. Next table is identical to the already

mentioned one. Notice the row “Consumer components” both EDAE and AIDB receive the same

message.

Table 9: S-RAF-AIDB interface: Risk asset summary

Interface name: S-RAF/SDN-SELF-01

Description Risk asset summary
This interface allows sending the risk incidents to EDAE/AIDB with designated
criticality level. The interface is intended to provide the required information on
the equipment/asset that is under attack and has a risk level. This is designed as
the communication channel between S-RAF and SDN-SELF modules, including
AIDB

Component providing
the interface

S-RAF

Consumer components EDAE, AIDB

Used Technology KAFKA

State Asynchronous

Input data SDN-SELF consumes the risk assessment results from the KAFKA queue.

Output data Specific tables on the incidents containing the information about level of
criticality and information about the involved asset. Example of the S-RAF output
is given in section 13.1.

API URL NA

Constraints None

Responsibilities UBITECH

Documentation link SharePoint Link or Public link with the documentation
or
NA

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 51
Public document

4.3.4 AIDB – SDN-C
The AIDB stores the SDN infrastructure automatically without the User or any other component

involvement. Next, the rest of component can update additional information not provided by SDN-C

but available in AIDB. For this, the AIDB component contains a list of SDN-Cs and counts on a

programmable task which queries to them all SDN-C.

Table 10: AIDB-3 interface for SDN-C component

Interface name: AIDB-3

Description AIDB Updating Interface
AIDB utilises the Northbound Interface provided by the SDN-C to synchronize
the asset inventory with the current status of the network topology.

Component providing the
interface

SDN-C

Consumer components AIDB daemon

Used Technology HTTP (REST API)

State Synchronous

Input data requestNetworkTopology()

Output data outputNetworkTopology()

Constraints None

Responsibilities UOWM

4.3.5 EDAE – EDAE-Dashboard
Through this interface, EDAE will provide to EDAE-Dashboard the following data:

• Connections: new and/or modified connections between network nodes proposed by EDAE.

• Routes: new and/or modified routes from one node to another proposed by EDAE.

This information will be represented by the EDAE- Dashboard in order the operator can accept or reject

the proposals. Consequently, the EDAE-Dashboard must provide the following information to EDAE in

return, using a second interface for that purpose:

• User acceptance: Acceptance or rejection of the proposed network topology by the operator

or evaluator.

Table 11: EDAE/EDAE-Dashboard interface for EDAE-Dashboard component

Interface name: EDAE/EDAE-Dashboard

Description Network topology changes
This interface allows EDAE to send the information related to the topological
changes proposed by EDAE to the EDAE-Dashboard. These proposals will be
represented in the EDAE-Dashboard to be finally accepted or not by the
operator. This “evaluation” result is going to be received in this interface.

Component providing
the interface

EDAE

Consumer components EDAE - Dashboard

Used Technology AMQP (RabbitMQ)

State Asynchronous

Input data User acceptance or rejection of the EDAE proposals in a True/False format.

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 52
Public document

Output data New/modified connections and routes for each pair of nodes proposed by EDAE.

API URL NA

Constraints None

Responsibilities IREC

Documentation link NA

Table 12: EDAE/EDAE-Dashboard interface for EDAE component

Interface name: EDAE/EDAE-Dashboard

Description Network topology proposal acceptance
This interface allows the EDAE – Dashboard to send the acceptance signal to the
EDAE. This signal indicates if the topology changes proposed by EDAE have been
accepted or rejected by the operator. The EDAE will actuate in accordance to the
acceptance signal.
To do that previously the interface received the information regarding these
proposed changes for the topology.

Component providing
the interface

EDAE - Dashboard

Consumer components EDAE

Used Technology AMQP (RabbitMQ)

State Asynchronous

Input data New/modified connections and routes for each pair of nodes proposed by EDAE.

Output data User acceptance or rejection of the EDAE proposals in a True/False format.

API URL NA

Constraints None

Responsibilities AYESA

Documentation link NA

4.3.6 EDAE – S-RAF
This interface will request the following information from S-RAF and it will provide to EDAE:

• Source IP: Internet Protocol address of the asset from where the attack comes from

• Assets: List of the assets in risk

• Id: Identifier of the asset in risk

• Current risk: Current level of risk of the asset in risk

Table 13: S-RAF/SDN-SELF-01 interface for EDAE component

Interface name: S-RAF/SDN-SELF-01

Description Risk asset summary
This interface allows sending the risk incidents to EDAE/AIDB with designated
criticality level. The interface is intended to provide the required information on
the equipment/asset that is under attack and has a risk level. This is designed as
the communication channel between S-RAF and SDN-SELF modules, including
AIDB

Component providing
the interface

S-RAF

Consumer components EDAE, AIDB

Used Technology KAFKA

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 53
Public document

State Asynchronous

Input data SDN-SELF consumes the risk assessment results from the KAFKA queue.

Output data Specific tables on the incidents containing the information about level of
criticality and information about the involved asset. Example of the S-RAF output
is given in section 13.1.

API URL NA

Constraints None

Responsibilities UBITECH

Documentation link SharePoint Link or Public link with the documentation
or
NA

4.3.7 EDAE – SDN-C
This interface will request the following information from SDN Controller and it will provide to EDAE

the following information for each port of the SDN switch. Regarding the status of a port of a switch:

• rx_packets: Number of received packets

• tx_packets: Number of transmitted packets

• rx_bytes: Number of received bytes

• tx_bytes: Number of transmitted bytes

• rx_dropped: Number of packets dropped by RX

• tx_dropped: Number of packets dropped by TX

• rx_errors: Number of receive errors

• tx_errors: Number of transmit errors

• rx_frame_err: Number of frame alignment errors

• rx_over_err: Number of packets with RX overrun

• rx_crc_err: Number of CRC errors

• collisions: Number of collisions

On the other hand, EDAE will provide at least the following information to SDN-C:

• Dpid: Datapath identifier for the corresponding switch

• Table_id: Identifier of the table to put the flow entry in

• Priority: Priority level of flow entry

• Match: Fields to match

• Actions: Instructions set

Table 14: XL-EPDS_NBI-1 interface for EDAE component

Interface name: XL-EPDS_NBI-1

Description Interaction with SDN-C
This interface allows EDAE to interact with the SDN-C by inserting, removing or
modifying network flows. EDAE will gather the statistics of each port of each
switch in time windows of 30 minutes in order to calculate packet loss
percentage utilized bandwidth, jitter and other derived time series statistics.

Component providing
the interface

SDN-C

Consumer components EDAE

Used Technology HTTP (REST API)

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 54
Public document

State Synchronous

Input data requestNetworkStatistics()
requestNetworkFlows()
addNetworkFlow()
deleteNetworkFlow()
modifyNetworkFlow()

Output data outputNetworkStatistics()
outputNetworkFlows()

API URL NA

Constraints None

Responsibilities UOWM

Documentation link https://documenter.getpostman.com/view/12079040/T1DjkfXx?version=latest

4.3.8 EDAE-Dashboard – SDN-C
Through this interface, the SDN Controller will provide to the EDAE-Dashboard the statistic information

and the current status of each SDN switch in the network. Specifically, the SDN Controller will provide,

for each SDN switch:

• Port description: current status and information of each port of the switch.

• Port statistics: statistics of each port of the switch.

• Table statistics: statistics of each table in the switch.

• Flow statistics: statistics of each flow entry currently installed in the switch.

A more detailed description of the information obtained with the Northbound Interface is presented

in the corresponding section.

Table 15: XL-EPDS_NBI-1 interface for EDAE-Dashboard component

Interface name: XL-EPDS_NBI-1

Description Switch statistics summary
EDAE – Dashboard uses the Northbound Interface provided by the SDN
Controller to retrieve the current status and statistics of each SDN switch. This
information is represented in the EDAE – Dashboard.

Component providing
the interface

SDN-C

Consumer components EDAE - Dashboard

Used Technology HTTP (REST API)

State Synchronous

Input data requestPortStats()
requestPortDescription()
requestSwitchFlows()
requestSwitchTables()

Output data A collection of json files with the outputs of the corresponding Northbound
Interface requests.
outputPortStats()
outputPortDescription()
outputSwitchFlows()
outputSwitchTables()

API URL NA

Constraints None

https://documenter.getpostman.com/view/12079040/T1DjkfXx?version=latest

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 55
Public document

Responsibilities UOWM

Documentation link https://documenter.getpostman.com/view/12079040/T1DjkfXx?version=latest

https://documenter.getpostman.com/view/12079040/T1DjkfXx?version=latest

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 56
Public document

5 SDN Controller design and implementation

This section provides the technical details concerning the development of the SDN Controller (SDN-C),
focusing on the SDN-C interaction with the application and management planes. It should be noted
that in D4.2, only the northbound interface of the SDN-C is provided, since the implementation of the
SDN-C is fully described in D4.1. Moreover, this section provides the technical documentation of the
SDN dashboard, a user interface that resides in the management plane and has been developed as a
user-friendly interface with the northbound interface, allowing the system administrator to interact
with the SDN-Cs and observe their status.

5.1 Interfaces Model - Northbound Interfaces

The Northbound Interface (NBI) is utilised by implementation-independent applications that aim to

interact with the SDN-Cs by retrieving information and apply configurations to the OpenFlow-enabled

intermediary devices (SDN switches). The API endpoints offered by SDN-C are grouped into two

categories:

• Ofctl_rest commands, based on the API specification provided by the Ryu project [44], aims to

retrieve information and update configuration of SDN switches, utilising the OpenFlow

protocol. All endpoints provided by this REST API are translated to a corresponding

synchronous OpenFlow command by the SDN-C and then, are instructed to the specified SDN

switch. In comparison to the original implementation, ofctl_rest has been improved in terms

of compatibility. In more detail, the response format of the command that retrieves the

network flows has been adequately re-formatted to use the correct keywords of match fields

defined in version 1.3 of OpenFlow. For example, instead of the dl_dst keyword that the

default ofctl_rest API utilises to indicate the destination Ethernet address, the keyword

“eth_dst” is utilised by the ofctl_rest provided by SDN-microSENSE, in compliance with

OpenFlow 1.3. And, more importantly, TCP and UDP related match keywords are now

distinguishable.

• Rest_topology commands, based on the corresponding application provided by the Ryu

project [45], aim to retrieve the network topology. In comparison with the original

implementation provided by the Ryu framework, the customised version of rest_topology

offered by SDN-microSENSE supports inputs and outputs only in decimal form (datapath IDs

and port numbers) to achieve compliance between rest_topology and ofctl_rest. Moreover,

rest_topology also integrates the responses of the delay monitoring expansion of the topology

module (technical details concerning how the delay monitoring is implemented, are provided

in D4.1).

The NBI provided by each SDN-C is secured via TLS by integrating an nginx server in each SDN-C, which

acts as a TLS termination proxy. Moreover, to ensure that each client is properly authorised to access

the NBI, Basic HTTP Authentication is configured on the nginx proxy of each SDN-C, requiring by the

client to provide the appropriate credentials in the header of each HTTP request. The details of this

implementation, in the context of the SDN-C architecture and implementation, is provided in D4.1.

5.1.1 Rest_topology API
This information is considered as confidential and it is found in annex 13.5

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 57
Public document

5.1.2 Ofctl_rest API
This information is considered as confidential and it is found in annex 13.5

5.1.3 Components Model

5.1.3.1 SDN dashboard architecture

An overview of the SDN dashboard architecture is presented in Figure 9. The SDN dashboard follows

the Model-View-Controller (MVC) architecture [46], according to which, the system functionality is

segmented into discrete MVC applications that are mainly characterised by:

• Models: Data structures that abstract components of the data model. The data model is stored in

a relational database that is part of the SDN dashboard.

• Views: Human-friendly interfaces that interact with the user.

• Controllers: Generate the views by retrieving the data contained in the models and applying any

necessary data transformations.

Figure 9: Architecture of the SDN dashboard

In a nutshell, the SDN dashboard is comprised of the following MVC applications (their details will be

analysed in the next subsections):

• Home: Provides an overview of the switches and the SDN-Cs.

• Flows: Provides the means to add, modify, delete, and view network flows.

• Settings: Provides the views to edit system preferences along with the corresponding models to

retrieve and save settings.

OpenFlow-controlled EPES network

SDN Dashboard

Zookeeper
Watcher

SCS
SDN-C #1 SDN-C #2SDN-C #3

Interface Server

SDN Switch

Home Topology Flows

D
ja

n
go

 A
pp

s

Ryu REST API

Database

Users Switches

Controllers

Channel Layer

Websocket messages http messages

Settings

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 58
Public document

• Topology: Renders the topology by retrieving the topology from the SDN-C.

• Users: Provides all the necessary views to view and manage users as well as for users to reset

their lost password.

As mentioned earlier, the SDN dashboard communicates transparently with the underlying SDN-Cs by

determining the master SDN-C for each SDN switch. To accomplish this, the Zookeeper Watcher

component of the SDN dashboard runs in parallel with the Django framework and maintains an

asynchronous communication channel with SCS (Synchronisation and Coordination Service). SCS is an

Apache Zookeeper database utilised by the SDN-Cs to elect a single master SDN-C for each SDN switch

(the details of this component are provided in D4.1). The Zookeeper Watcher is connected

asynchronously with SCS via the Python-based Kazoo library [47], and, during the initialisation, dumps

the relevant tables and replicates the contents of SCS to the internal database of the SDN dashboard.

After the initialisation phase, the Zookeeper Watcher listens for any change (caused by a new SDN-C

connection or by an SDN-C failure) and replicate those changes directly to the internal database and

the SDN dashboard applications.

Finally, all internal applications of the SDN dashboard, including Zookeeper Watcher, interface with

the Channel Layer. This is an architectural component which acts as a shared message queue and

allows real-time message exchange between the various components of the SDN dashboard. The

Channel Layer proves to be useful by transmitting real-time changes to the end-user frontend via

WebSocket. For example, when the master SDN-C changes or a new SDN-C is connected to an SDN

switch, while the user has opened the homepage, this information is transmitted via the WebSocket

protocol to the active webpage and the corresponding page section is changed via JavaScript.

5.1.3.2 Database schema

Figure 10: The ER diagram of the SDN dashboard

user
profile

controller

controllerswitchconnection

switch

cookieid

preferences
id intPK

password string

first_name string

username string

last_name string

email string

is_superuser bool

id intPK

image string

contact_phone string

language string

timezone string

auto_refresh bool

refresh_rate int

is_admin bool

user_id intFK

id intPK

ofp_port int

wsgi_port int

ip inet

id intPK

controller_id intFK

switch_id intFK

role string

id intPK

dpid string

value intPK

app_name string

id intPK

scs_port string

tls_enabled string

scs_ip string

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 59
Public document

The SDN dashboard uses an internal database to store operational states, the users and their privileges

as well as system customisation and preferences. In summary, the internal database consists of the

following tables:

• User: This is the default table used by the system to store the users that are able to login to the

system.

• Profile: This table has one-to-one relationship with the user table (by using the field user_id as

foreign key) and stores additional information about the user. Additional information includes a

contact/emergency phone number, language and time zone preferences, the path of the profile

picture uploaded by the user, and the options whether the user prefers that the SDN dashboard

UIs should auto refresh as well as the refresh rate.

• Preferences: This table represents system-wide configurations, including the TCP socket of the SCS

component and whether the communication with SCS should be secured via TLS.

• Cookieid: Each SDN app in the context of SDN-microSENSE reserves a unique cookie ID to facilitate

the management of the flow entries. This table stores the reserved cookie IDs as well as the name

of the corresponding SDN app.

Regarding the state of the underlying SDN infrastructure, the following tables are used and maintained

by the Zookeeper Watcher:

• Controller: This table stores all SDN-Cs detected in SCS. For each controller, the IP is stored as

well as the OpenFlow port and the TCP port used for the NBI requests.

• Switch: This table stores all SDN switches detected in SCS. For each switch, the datapath ID is

stored in its decimal form.

• Controllerswitchconnection: Since a controller may connect to multiple switches and a switch may

connect to multiple controllers, this extra table has been created to realise the many-to-many

relationships. For each such relationship detected in SCS, except of the two foreign keys that

correspond to the switch and the controller, the field role is inserted that represents the role of

the controller (1 for EQUAL, 2 for MASTER or 3 for SLAVE). Django reassures that only a single

controller/switch combination exists in this table.

5.1.3.3 User roles and privileges

The SDN dashboard uses three user roles to ensure that only authorised users manipulate the

programmable network and the registered users. The roles and their privileges are outlined below:

• Simple user: This is the user that has no extra privileges. The simple user can view the homepage

and the topology, although view-only access is granted to the network flows, meaning that they

cannot access the Flow Control page and modify, add, or delete network flows. Moreover, access

to the user management system is not allowed.

• Security administrator: This user has additional access to the Flow Control page, meaning that

they can modify, add, and delete network flows. However, the security administrator has no access

to the user management system. The role of security administrator is indicated by the field

is_admin of a user profile. Note that only the superuser can change this value for any user.

• Superuser: This user has access to all views of the SDN dashboard and is able to manage the

registered users as well as to create new ones. This role is indicated by the field is_superuser in a

user instance.

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 60
Public document

5.1.4 User Interfaces

5.1.4.1 Users

The user application provides all the necessary functionalities to view and manage users as well as for

users to reset their lost password.

First, when an unauthenticated user tries to access a view that requires authentication, then this user

is redirected to the login page (/login view), illustrated in Figure 11:

Figure 11: Login page of the SDN dashboard

After successful login, the user is redirected to the homepage, described in the next subsection.

If the user has forgotten their password, then they can click the option “I forgot my password” and the

user will be redirected to /password-reset in order to provide their email and receive instructions for

resetting their password. The corresponding pages are illustrated in Figure 12 and Figure 13.

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 61
Public document

Figure 12: Reset password page of the SDN dashboard

Figure 13: Reset password notification of the SDN dashboard

If the logged-in user has the superuser privilege, then access is granted to the user management

system (/users). The user management page is illustrated in Figure 14, where all users are displayed

along with their privileges and their most basic attributes, including their username, full name, contact

phone and email. For each user, the options Edit and Delete are provided. When Delete is clicked and

the user confirms their option, then the corresponding user is deleted. Naturally, the system prevents

a user from deleting themselves.

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 62
Public document

When the Edit option is clicked, then the user is redirected to the user editing view located in

/users/edit/[username], where username corresponds to the selected user. The user editing menu is

illustrated in Figure 15. In this menu, the user can edit the username, the first and last name, the profile

image, the contact phone, the language and the time zone. Only the superuser can alter the is_admin

field of the user profile to grant the corresponding user additional privileges.

Figure 14: The user management system of the SDN dashboard

Figure 15: Profile editing menu of the SDN dashboard

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 63
Public document

To create a new user, the /users/create view is provided, illustrated in Figure 16. In this form, the

superuser can insert basic information about the new user and upon the user is created, additional

information can be inserted by editing the corresponding profile in the user management system.

Figure 16: New user menu of the SDN dashboard

In summary, all views of the user application are provided bellow:

Table 16: User Management Views

Method URI Description Parameters

GET /admin Administration portal provided by
Django to manage the data
models.

-

GET /login The view utilised by users to login. -

GET /logout The view utilised by users to
logout.

-

GET /password-reset The view utilised by users to reset
their password.

-

GET /password-reset/done The view displayed after a
successful password reset.

-

GET /users Renders the page that displays all
users.

-

GET /users/create Renders the form utilised by the
superuser to create a new user.

-

GET /users/edit/[username] Allows to edit a user’s attributes. The username at the
end of the URL.

GET /users/get Returns all users in JSON format. -
GET /users/delete/[username] Deletes a user specified by their

username.
The username at the
end of the URL.

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 64
Public document

5.1.4.2 Homepage

The homepage is an application consisting of a single view that renders the landing page of the SDN

dashboard. This page, illustrated in fig. XX, provides an overview about the available SDN switches and,

for each SDN switch, the connected SDN controllers along with their details and roles as well as

information and statistics about the ports controlled by OpenFlow and the configured tables.

Figure 17: Homepage of the SDN dashboard

5.1.4.3 Flows

The Flows application encompasses all the necessary views to view and manage network flows. Two

pages are provided by this application:

• Flows to view the network flows from all SDN switches and for all non-empty OpenFlow tables.

• Flow Control to enable addition, modification, and deletion on the flow tables.

The Flows page (/flows) is directly accessible from the main sidebar menu and is rendered dynamically

by retrieving a) the SDN switches from the internal database, b) the flow tables of each switch and c)

the flows of each SDN switch. A separate HTML table is created for each switch/table combination and

each table displays basic attributes of each flow, including priority, match fields, the assigned cookie

ID and SDN app, the duration of the flow in seconds, the idle/hard timeouts, the packet/byte counters,

and the actions (instructions) applied upon matching. For each flow, there are two buttons, Edit and

Delete. The Edit button passes the network flow attributes to the Flow Control page (/flow/edit) via a

GET request whereas Delete issues a delete strict command to the corresponding SDN switch via the

SDN dashboard backend (/flows/action/delete-strict) in order to delete the specified flow. User

confirmation is ensured to avoid possibly costing human errors.

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 65
Public document

Figure 18: Flows menu of the SDN dashboard

Last, the Flow Control page is illustrated in Figure 19 and is also directly accessible via the main sidebar.

This menu allows the user to apply all the supported flow operations, including Add, Modify/Modify

Strict, and Delete/Delete Strict. The user can specify all the network flow options that are utilised in

the context of SDN-microSENSE, including undefined number of match fields, flow priority, timeouts,

cookie IDs and instructions (GOTO_TABLE and OUTPUT). When a user chooses to submit, the

appropriate backend API endpoint (depending on the selected flow action) receives the command

content in JSON format, determines the master SDN-C by consulting the internal database and issues

the appropriate NBI command. Note that only the Security Administrator and the Superuser have

access to this page. To aid the user navigate through the various options, a number has been placed in

the upper-left corner of each card.

Figure 19: The Flow Control menu of the SDN dashboard

All the views implemented by this application are provided in the table below:

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 66
Public document

Table 17: Flows Views - SDN Dashboard

Method URI Description Parameters

GET /flows Renders the Flows page, including the layout,
the DataTables, the pills and the tabs
dynamically.

-

GET /flows/edit Renders the Flow Control page. -

GET /flows/get-flows This view returns the flows of a specific
datapath ID by asking the appropriate master
SDN-C.

Dpid

GET /flows/get-switches Returns all switches in JSON format, tailored
to be consumed by the select2 dropdown
widget.

-

GET /flows/get-tables Returns all table IDs of a specific datapath ID
in JSON format, tailored to be consumed by
the select2 dropdown widget.

Dpid

POST /flows/action/add Instructs an “Add flow” request to the master
SDN-C of the dpid specified, by parsing the
data specified in the request body.

dpid, priority,
match, cookie,
idle_timeout,
hard_timeout,
actions

POST /flows/action/modify Instructs a “Modify flow” request to the
master SDN-C of the dpid specified, by parsing
the data specified in the request body.

POST /flows/action/delete Instructs a “Delete flow” request to the master
SDN-C of the dpid specified, by parsing the
data specified in the request body.

POST /flows/action/modify-
strict

Instructs a “Modify strict” request to the
master SDN-C of the dpid specified, by parsing
the data specified in the request body.

POST /flows/action/delete-
strict

Instructs a “Delete strict” request to the
master SDN-C of the dpid specified, by parsing
the data specified in the request body.

5.1.4.4 Topology

The topology is the application that renders the page which displays the network topology (/topology).

The page is directly accessible via the main sidebar. The topology page contains a JavaScript application

that communicates with the appropriate backend view (/topology/get-topology), to retrieve the

network topology in JSON format from any SDN-C holding the master role. The JSON object is then

delivered unedited to the JavaScript application [XX], which draws the SDN switches, the hosts and the

links between switches. The topology application is illustrated in Figure 20.

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 67
Public document

Figure 20: The topology menu of the SDN dashboard

All views provided by the topology application are outlined below:

Table 18: Topology Views - SDN Dashboard

Method URI Description Parameters
GET /topology This view renders the topology

page and the D3.js application
that illustrates the topology.

-

GET /topology/get-topology This view returns the topology as
a single JSON object.

-

5.1.4.5 Settings

The Settings application undertakes the management of user and system preferences. The main view

that renders the settings menu (/settings) is depicted in Figure 21. This menu provides three main

groups of configurations, divided in separate menu cards:

• Zookeeper parameters: The user can provide all the necessary connection parameters with SCS

(Zookeeper Server), including the IP address and the TCP port. If TLS is enabled in the port

specified, then the user can check the Zookeeper over TLS option and provide the KeyStore file &

password, the certificate file of SCS and the CA certificate used to sign the certificate of SCS. This

menu card is only available for the security administrator and the superuser.

• Cookies customisation: This menu card provides the means to add and delete mappings between

cookie IDs and SDN apps utilised by SDN-microSENSE. This card is only available for the security

administrator and the superuser.

• System preferences: This menu card provides user-tailored configuration options, bound to the

profile of each user, including the option to auto-refresh all tables across the SDN dashboard as

well as the refresh interval. This menu card is available to all users.

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 68
Public document

At this point, it should be mentioned that the settings menu is displayed differently, depending on the

role of the logged-in user. Since only the privileged users (superusers and security administrators) are

able to configure the communication with SCS and determine the cookies mapping, these options are

not shown to users not having the appropriate privileges.

Figure 21: The Settings menu of the SDN dashboard

All views provided by the Settings application are summarised below:

Table 19: Settings Views - SDN Dashboard

Method URI Description Parameters

GET & POST /settings The GET version of this view
renders the settings menu, while
the POST version saves the
configurations stored in the
forms.

POST only: scs_ip,
scs_port, tls_enabled,
auto_refresh,
refresh_rate,
keystore_file,
keystore_password,
scs_cert, ca_file.

GET /settings/cookies This view returns the existing
cookies in JSON format.

-

5.1.5 SDN dashboard prototype deployment
This subsection describes the implementation details and offers the necessary information for the

deployment of the SDN dashboard in operational environments. An illustration of the deployed SDN

dashboard architecture is illustrated in Figure 22.

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 69
Public document

Figure 22: Deployment architecture of the SDN dashboard

The deployment architecture follows a three-tier hierarchy, where a high-performant web server

receives all web requests and serves static files and applies end-to-end TLS encryption, while it proxies

dynamic requests to an Asynchronous Server Gateway Interface (ASGI), that in turn delivers the

requests in a standardised way to the SDN dashboard applications residing in the innermost tier.

NoSQL database is utilised to offer dynamic interaction between the backend and the frontend, while

persistent storage is ensured with SQL database.

Regarding the implementation details of the SDN dashboard, the Python-based Django framework was

chosen to implement the backend of the SDN dashboard, one of the most popular programming

frameworks that follows the MVC paradigm. To store the models, the registered users, user

preferences and any other static data described in the data model, a PostgreSQL database is utilised

by Django. PostgreSQL is an open-source relational database management system (RDBMS) that offers

persistent, SQL-compliant, and production-grade storage. In the front tier of the SDN dashboard, nginx

is employed to process the web requests and: a) serve static files, including images and HTML/CSS files,

b) apply end-to-end TLS encryption, c) apply load balancing and caching where required, and d) proxy

dynamic requests to Django. For Django to interpret web requests in a standardised way, the Daphne

ASGI framework is used. In comparison to WSGI and Gunicorn, ASGI is the new emerging standard and

spiritual successor to WSGI, that supports asynchronous web interfaces and the WebSocket protocol.

Finally, to facilitate the transmission of asynchronous messages between the various modules of the

SDN dashboard, Django Channels are used, a framework that abstracts the producers and consumers

of an asynchronous system and uses the Redis database to implement this abstraction in a transparent

way.

Regarding the front-end development, several JavaScript-based libraries and frameworks were used.

jQuery is a library that simplifies the creation of powerful widgets in the frontend, including select2

dropdowns, DataTables and switch buttons, while it undertakes asynchronous communication with

the backend via AJAX requests. The WebSocket protocol was also used to asynchronously change the

frontend by immediately reflecting changes occurred in the backend. Finally, the topology application

is based on the D3.js and the FlowManager project [48].

SDN Dashboard

High-performance web
proxy (nginx) Daphne

ASGI Server

NoSQL database

PostgreSQL
database

Static
Files

Django Channels models

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 70
Public document

5.1.5.1 Prerequisites and Installation

The SDN dashboard can be provided as a virtual appliance (.ova file) that can be used by multiple

hypervisors, including VMware Workstation, VMware ESXi, Oracle Virtualbox, Citrix Hypervisor,

Proxmox VE etc. The following minimum computing resources should be provided to the SDN

dashboard VM:

• x2 virtual CPU cores

• 1 GB RAM

• 20 GB HDD

• Ubuntu 20.04

Using the Oracle VirtualBox hypervisor as an example, the following steps can be executed to deploy

the SDN dashboard. The installation process should be adapted accordingly depending on the actual

hypervisor.

Step 1: From the tab named “File” of the Oracle VirtualBox, click the option called “Import

Appliance…” as illustrated in Figure 23:

Figure 23: Import Appliance via Oracle VirtualBox

Step 2: From the new window, insert the location of the provided SDN dashboard OVA file, as

depicted in Figure 24. Next, click the option “Next”.

Figure 24: Locating the SDN dashboard OVA file

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 71
Public document

Step 3: From the new window, click the option “Import”, as depicted in Figure 25, using the

predefined options.

Figure 25: Import options for the SDN dashboard

Step 4: Wait for VirtualBox to finalise the importing procedure of the SDN dashboard virtual image,

as illustrated in Figure 26.

Figure 26: Wait VirtualBox to finish importing the SDN dashboard OVA

Step 5: Start the SDN dashboard virtual machine by choosing the corresponding VM and clicking the

Start button, as depicted in Figure 27.

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 72
Public document

Figure 27: Start the SDN dashboard image

Step 6: Use the following credentials for login, as illustrated in Figure 27:

Username: user

Password: user

Figure 28: SDN dashboard VM credentials

5.1.5.2 Source code repository

For the development of the SDN dashboard, modern development techniques were followed to ensure

maximum code quality with continuous testing. To this aim, the SDN dashboard has been developed

(and will continue its development during the project lifetime and beyond), by using Gitlab, hosted by

UOWM, an open-source DevOps lifecycle tool that follows the Git Version Control System (VSC). The

repository is hosted under the following link:

https://snf-15142.ok-kno.grnetcloud.net/sdn-microsense/sdn_dashboard

https://snf-15142.ok-kno.grnetcloud.net/sdn-microsense/sdn_dashboard

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 73
Public document

Access to this repository is provided only to UOWM and PPC developers as well as to authorised

partners of the SDN-microSENSE consortium, upon request.

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 74
Public document

6 Electric data Analysis engine (EDAE) design and implementation

6.1 SDN-based System Model
According the grant agreement, the task 4.2 will deploy the network management processes that will
increase the observability of the EPES. When a part or unit of the EPES ecosystem is under attack,
either by accident or due to a cyber-attack, the corresponding logical connections will be rearranged,
establishing new communication paths.
The Electric Data Analysis Engine (EDAE) is the component that will provide the solution to maximize
the observability of the EPES. No other application was considering the interaction between the SDN-
C, the SRAF and the AIDB in order to propose an alternative routing paths between monitoring/control
units and measuring units in the power system. EDAE has been designed as a special need beyond
what it is written in the Grant Agreement.

EDAE main functionalities are:

• To provide an alternative network path from a measurement unit to a control/monitoring unit

in case it exist a redundancy in the control/monitoring system where the information could be

forwarded.

• To isolate a network element that is assessed to be in risk. Either if the risk affects a

control/monitoring unit, a measurement unit or if it is identified as an unknown attacker.

• To provide an alternative network path from a measurement unit to a control/monitoring unit

in case a network element is attacked or under risk and it exist a network loop between such

elements.

EDAE is not only maximizing the observability but improving the quality of service and the security of

the network elements:

• Considering the network latency between nodes so the path with less latency will be selected

when it exist different options.

• Considering the risk assessment of the assets present in the network topology in order to avoid

potential risks.

• Considering the port statistics of the network switches in order to prevent overloading or other

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 75
Public document

6.1.1 Network
There are two types of network elements to consider:

• Network switches: It is required that the network switches can be managed by the OpenFlow

protocol. In Figure 29, an Aruba 2930F is a network switch that supports OpenFlow protocol,

hence, it can be used for SDN applications. They can be controlled by the SDN Controller. In

D4.1 a detailed description of SDN-Controller and SDN-Switches configuration is explained and

it is very relevant for the development of this task and the whole integration of tools and

components.

Figure 29: Aruba 2930F as a network switch

• Hosts: It is considered all the network elements or power grid elements connected to a

network switch. They belong to the infrastructure plane.

6.1.2 Power Grid
There are two types of power grid elements to consider:

• Monitoring/control Units: Are those elements that gather information from the measurement

units such as Phasor Data Concentrators (PDC) or central elements that monitor the grid

behaviour and control some network elements, such a SCADA.

• Measurement Units: Are those elements that are taking measurements such as Phasor

Measurement Units (PMU) or Remote Terminal Units (RTU). In Figure 30 an example of a

Schneider Electric RTU that is going to be used in the different pilots.

Figure 30: Schneider Electric RTU

6.2 EDAE core: Architecture
In the previous section, the main EDAE functionalities were described. This section is devoted to

describe the operation of the EDAE core. Figure 31 depicts the EDAE core Architecture.

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 76
Public document

Figure 31: EDAE Core Architecture

6.2.1 Graph Construction Module
The graph construction module requests from the AIDB information related to network topology in

order to create the network graph in a representation useful for the process. Concretely, each node

(host or switch) of the graph is augmented with risk assessment metadata (packet loss percentage,

latency, jitter and the available bandwidth of the links) from AIDB. Finally, the graph is augmented

with metadata that contain a list with the active paths between the hosts.

6.2.2 Control Module
The Control module inspects each active path for QoS and Security constraints violation or if a PDC is

disconnected (packet loss percentage above a certain threshold). The inspection is periodical (every 1

minute) or asynchronous if an S-RAF event occurs. If a security constrain is violated the control module

initializes the genetic algorithm for path reconstruction. If a PDC is disconnected, the control module

initializes the Mixed Integer Linear Programming (MILP) algorithm for the optimal PMU-PDC allocation.

6.2.3 Solvers Module
The solvers Module consists of the multi-objective genetic algorithm and the MILP algorithm.

Concretely, if an objective for a host is violated, the genetic algorithm search for an alternative path

that will not violate the constraints of the host, by taking into account also the constraints of the rest

of the hosts. If a solution is found, it is provided to the output interfaces. A detailed explanation about

the genetic algorithm is given in section 6.3.2.2.

If a PDC disconnects from the network due to a cyber-attack or a malfunction, then a matchmaking

algorithm for optimal PDC-PMU re-allocation using Mixed Integer Linear programming is invoked. The

objective of this algorithm is to restore the redundant observability of the EPES infrastructure by re-

assigning the PMUs to the rest of the PDCs, taking into account the bandwidth constraints of the

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 77
Public document

PDCs/PMUs and the average latency between each PMU and PDC connection. More information about

the MILP algorithm is given in section 6.3.3.2.3. If the optimal solution is achieved, the new PDCs and

PMUs allocation is passed to genetic algorithm to construct the communication paths of the whole

network.

6.3 EDAE Algorithm formulation

6.3.1 Related methods from the literature
In this paragraph, various techniques regarding rerouting mitigation strategies in an SDN-based

communication network are presented. Specifically, the techniques to be analysed cover the aspects

of Quality of Service (QoS) optimization, security optimization on a cyber-attacked network and

observability optimization.

Table 20: Objective coverage per work displayed

 QoS Security Observability Energy
 [49] ✔ ✔ ✘ ✔

 [50] ✔ ✔ ✘ ✘
 [51] ✔ ✘ ✔ ✘
 [52] ✘ ✔ ✘ ✘

 [53] ✔ ✔ ✘ ✘
 [54] ✘ ✘ ✔ ✘

The QoS describes how a given service meets the user and functional requirements. Network

depended services are heavily relied on the qualitative performance of the network service. SDN

architecture allows the reconfiguration of the network in order to allow achieving certain objectives

such as security, latency and observability. Thereby, an application can be developed such that it takes

into account the QoS of each network depended-service and try to reconfigure the network in a way

that will meet the needs of each service.

In the work presented in [49] the aspects of energy consumption of the communication infrastructure,

the network QoS and security criteria are taken into account. Regarding QoS, the team quantifies it as

the sum of the delay of each intermediate links between two nodes and the objective is to minimize

the aforementioned path. The Pareto front set of the optimal solutions are extracted using a genetic

algorithm and the deviation of the current structure of the network with respect to the optimal

solutions is calculated and recommendations to restructure the network (flow tables) are provided to

the network operator.

The work presented in [50] is unique because it incorporates Deep Reinforcement Learning (DRL) using

Deep Deterministic Policy Gradients (DDPG) [55] in its solution. They propose an online routing self-

trained decision-making algorithm that takes decisions based on the current state of the network while

optimizing QoS and security. Specifically, they add an additional layer in the SDN architecture called

Agent-layer, which is similar to the application layer but it differs in the way that it actually moves the

intelligent and intense by means of processing power decision-making part of the controller to a

separate application. The formulation of their problem is separated into three entities. First, they

determine the state vector, which is a vector that contains the frequency of packet-in message, the

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 78
Public document

occupancy of the flow table and the channel occupancy rate between node and the controller for every

switch. Next, they determine the action vector that is used to decide on which switch the next hop will

be assigned. They define it as a tensor that holds the weights that a node J will be assigned as the next

hop from the node i. Finally, and most important, is the Reward function that consists of two sub

rewarding functions that are related with security and QoS rewards respectively. The QoS reward

function takes into account the propagation delay and the link packet loss between the nodes. Finally,

they continue with the formulation of the loss function that incorporates the aforementioned entities

with training details.

A QoS aware mechanism suited for SDN-Based Wide Area Measurement System (WAMS)

infrastructure is presented in [51]. The critical components of a WAMS infrastructure are the Phase

Measurement Units (PMUs), the Phasor Data Concentrators (PDCs) and the relevant applications that

make use of them. There are applications that their functionality is depended on the timely arrival of

the necessary data. Not meeting the demanded QoS of some applications might lead to disastrous

decision-making. The authors, of [52] propose the classification of the traffic flows into different class

of services depending on the target application with an application of QoS aware mechanism alongside

with a content-aware queuing algorithm in order to provide low latency for critical WAMS applications.

Specifically, they initially classify the traffic into two classes, namely normal and QoS0. QoS0 traffic is

the traffic between PMU and PDC, while each other traffic that passes from PDC is tagged as Normal.

Consequently, the class QoS0 is further classified between PDC and control centre as QoS1 and QoS2.

The Normal traffic passes without any changes. QoS1 class contains traffic that should be sent to the

control centre immediately since they carry critical information (e.g. voltage above a certain

threshold). QoS2 class has a lower priority than QoS1 but is less delay-sensitive. Afterwards, they

develop a routing algorithm that finds the shortest path between a PMU and PDC. The routing

algorithm is formed as an Integer Linear Programming (ILP) problem by taking into account the leftover

resources of each switch, the leftover resources of each link, the required resources of the PMU and

the cost of each link without specifying what resources are or how the cost is calculated. After a

solution has been found, the algorithm searches for a backup solution but the links that are included

in the first solution are discouraged to be included in the backup solution by adding a high cost for

those links. Furthermore, they include a queuing method, which treats each aforementioned traffic

class differently in order to prioritize newer acquired data and to selectively drop the less important

data due to the limited capacity of the queue. Finally, in the traditional WAMS the PDC has a timer

with fixed value in which time interval waits for the PMUs to send their data. If the latency between

all PMUs and PDCs is lower than this threshold then a delay is injected. Hence, they dynamically

calculate the timer’s value in specific time intervals as the maximum latency observed between a PMU

and PDC.

The work proposed in [52] is regards reconfiguration of the network topology bun in the application

layer. For each host they identify a set of characteristics that form their diversity ID. Such

characteristics can be the type of the operating system, version of the operating system, known

vulnerabilities of the system, type of antivirus, software versions, type of administrative personnel etc.

Their goal is to construct the paths in such way that in order an attacker to reach a target host ℎ𝑡 in

the network through an already attacked host ℎ𝑎 to have to pass through a lot of diverse hosts. They

propose a Moving Target Defence (MTD) technique, solving a Shuffle Assignment Problem (SAP). Their

technique has two modes, an active and a reactive mode. In the active mode, the technique calculates

a number of different configurations, which alternates over time in order to make harder for an

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 79
Public document

attacker that has not been detected yet to reach a specific target. The reactive mode is enabled when

an attacker has been identified, and chooses the configuration that is optimal for the specific attacked

host. Consequently, in the reactive mode the algorithm iterates over a predefined number of iterations

in order to find the shortest attack path and increase its length by adding a neighbour host in the path.

RouteGuardian is the technique named by the author of [53]. In this paper, their goal is to construct

fast paths that take into account the capacity and security requirements of the application. In order to

achieve that they collect a list with the security devices. After the acquisition of the list, they compute

the K shortest paths between ℎ1 and the first security device in the list using k-shortest algorithm,

which is an extension of Dijkstra. From the k shortest paths, they choose the one that has the maximum

capacity (bandwidth). Finally, they iterate over the same procedure to connect the first security device

with next one in the list etc. until the last device in the list is connected with the destination host.

Finally, the work of [54] is a self-healing mechanism specified for wide-area monitoring protection and

control (WAMPAC) applications in modern electrical grids. This work has to do with PMU and PDC

devices. The notion of observability in the context of their work is simplified on how many buses are

measured through PMUs, if all the buses are measured by PMUs then the grid is observable. The aim

of authors is to restore the observability, in case a PDC is disconnected, by reconnecting the PMUS as

fast as possible in such way that all the bases are observable. Their technique consists of two stages.

The first one is aided to recover observability by connecting that many PMUs such that all the bases

are observable and the PDCs are capable to host such many connections of PMUs. The PMU-PDC

allocation problem is formed as an Integer Linear Programming (ILP) problem. Consequently, after the

PMU-PDC pairs have been identified, the second stage of algorithm is to find the paths that will serve

the connection of the PMU-PDC pairs. Again, they formulate a second ILP problem that aims to find

paths that will require the less possible installation rules such that the total traffic load on each link of

the path never exceeds the bandwidth.

6.3.2 Problem formulation
First it is described the algorithm that finds the optimal path between two hosts by means of QoS and

security and finally the algorithm that assigns the leftover PMUs to the PDCs. Table 19 presentes the

notation of variables and symbols and a descripton of them.

6.3.2.1 Variables and Symbols
Table 21: Notations and description of variables and symbols used in EDAE algorithm formulation

Notation Description

𝑆𝑊 Set of communication network forwarding devices (switches)

𝐵𝑆 Set of buses in the power transmission network

𝑃𝑀𝑈 Set of PMUs in the network

PDC Set of PDCs in the network

𝐿 Set of active communication paths between all hosts with QoS and/or Security
constraints

𝐿𝑇𝑐(ℎ𝑖) Latency constraint for host i

𝐴𝐵𝑐(ℎ𝑖) Available bandwidth constraint for host i

𝑃𝐿𝑐(ℎ𝑖) Packet loss constraint for host i

𝐽𝑇𝑅𝑐(ℎ𝑖) Jitter constraint for host i

𝑆𝑅(ℎ𝑖) Security constraint for host i

𝐿𝑏𝑠𝑖 , 𝑏𝑠𝑗 Set of transmission lines between buses

𝑃𝐷𝐶𝑐 ∈ 𝑃𝐷𝐶 Set of compromised/faulty PDCs

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 80
Public document

𝑃𝑀𝑈𝑑 ∈ 𝑃𝑀𝑈 Set of disconnected PMUs

𝑝ℎ𝑖 , ℎ𝑗 A full communication path between two hosts

𝑏𝑠𝑖 Bus 𝑖

ℎ𝑖 End-host 𝑖

𝑠𝑖 Switch 𝑖

𝑎𝑖 A network asset could be switch or host.

𝑇𝑘 ∈ ℕ Discrete measurement of time in seconds e.g. (kth sec)

𝑔 ∈ [0,1] Degree of weighting decrease for exponential weighted average

< 𝑎𝑖 , 𝑎𝑗 > Link between two assets of the network.

𝑡𝑥[𝑖→𝑗](𝑇𝑘) Number of packets transmitted from switch 𝑖 to switch 𝑗 until time 𝑇𝑘

𝑟𝑥[𝑖→𝑗](𝑇𝑘) Number of packets received switch 𝑗 from switch 𝑖 until time 𝑇𝑘

𝑡𝑥𝑏[𝑖→𝑗](𝑇𝑘) Number of bytes transmitted from switch 𝑖 to switch 𝑗 until time 𝑇𝑘

𝑟𝑥𝑏[𝑖→𝑗](𝑇𝑘) Number of bytes received switch 𝑗 from switch 𝑖 until time 𝑇𝑘

𝑏<𝑎𝑖,𝑎𝑗>(𝑇𝑘) Bandwidth between two network assets a specific time 𝑇𝑘

𝑝𝑙<𝑎𝑖,𝑎𝑗>(𝑇𝑘) Packet loss percentage between two network assets within a specific time
window

𝑡ℎ<𝑎𝑖 ,𝑎𝑗>(𝑇𝑘) Throughput between two network assets within a specific time window

𝑎𝑏<𝑎𝑖,𝑎𝑗>(𝑇𝑘) Available bandwidth between two network assets a specific time 𝑇𝑘

𝑗𝑡𝑟<𝑎𝑖,𝑎𝑗>(𝑇𝑘) Jitter between two network assets a specific time 𝑇𝑘

𝑙𝑡<𝑎𝑖,𝑎𝑗>(𝑇𝑘) Latency between two network assets a specific time 𝑇𝑘

𝑠𝑟<𝑎𝑖,𝑎𝑗> Security risk level between two switches

𝑠𝑟𝑠𝑖 Security risk level of switch 𝑖

𝑠𝑟ℎ𝑖 Security risk level of host 𝑖

𝑃𝐿 ∶ 𝑃ℎ𝑖 , ℎ𝑗 ↦ ℝ+ Function that maps a full communication link to its packet loss

𝐵 ∶ 𝑃ℎ𝑖 , ℎ𝑗 ↦ ℝ+ Function that maps a full communication link to its bandwidth

𝐴𝐵 ∶ 𝑃ℎ𝑖 , ℎ𝑗 ↦ ℝ+ Function that maps a full communication link to its available bandwidth

𝐽𝑇𝑅 ∶ 𝑃ℎ𝑖 , ℎ𝑗 ↦ ℝ+ Function that maps a full communication link to its jitter

𝐿𝑇 ∶ 𝑃ℎ𝑖 , ℎ𝑗 ↦ ℝ+ Function that maps a full communication link to its latency

𝑆𝑅: 𝑃ℎ𝑖 , ℎ𝑗 ↦ ℕ Function that maps a full communication link to its security risk level

A Set of available PMUs to connect with PDCs in MILP problem

B Set of available PDCs to connect with PMUs in MILP problem

x(a,b) Decision Variable of the MILP model

6.3.2.2 Search for optimal path

The goal of this algorithm is to find the optimal path between two hosts by means of security and QoS

given a number of constraints. The section is structured as follows, first is presented the mathematical

formulation of the variables and functions, consequently the objective function and the constraints

are formulated and finally is presented the solving method.

6.3.2.2.1 Variables and functions

In this section, the definition and the origin of the variables and functions that construct the input to

EDAE takes place.

Below are presented the variable s that are collected through various APIs that interface EDAE with

other components:

𝑏<𝑎𝑖 ,𝑎𝑗>(𝑇𝑘) = 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑒𝑑_𝑓𝑟𝑜𝑚_𝐴𝐼𝐷𝐵 (𝑆𝑤𝑖𝑡𝑐ℎ 𝑆𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐𝑠 𝑠𝑢𝑚𝑚𝑎𝑟𝑦)

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 81
Public document

𝑙𝑡<𝑎𝑖 ,𝑎𝑗>(𝑇𝑘) = 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑒𝑑_𝑓𝑟𝑜𝑚_𝑃𝑜𝑠𝑡𝑔𝑟𝑒𝑆𝑄𝐿 𝑠𝑒𝑟𝑣𝑒𝑟_𝑡𝑖𝑚𝑒𝑠𝑒𝑟𝑖𝑒𝑠_𝑑𝑎𝑡𝑎𝑏𝑎𝑠𝑒

𝑡𝑥[𝑖→𝑗](𝑇𝑘) = 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑒𝑑_𝑓𝑟𝑜𝑚_𝑃𝑜𝑠𝑡𝑔𝑟𝑒𝑆𝑄𝐿 𝑠𝑒𝑟𝑣𝑒𝑟_𝑡𝑖𝑚𝑒𝑠𝑒𝑟𝑖𝑒𝑠_𝑑𝑎𝑡𝑎𝑏𝑎𝑠𝑒

𝑟𝑥[𝑖→𝑗](𝑇𝑘) = 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑒𝑑_𝑓𝑟𝑜𝑚_𝑃𝑜𝑠𝑡𝑔𝑟𝑒𝑆𝑄𝐿 𝑠𝑒𝑟𝑣𝑒𝑟_𝑡𝑖𝑚𝑒𝑠𝑒𝑟𝑖𝑒𝑠_𝑑𝑎𝑡𝑎𝑏𝑎𝑠𝑒

𝑡𝑥𝑏[𝑖→𝑗](𝑇𝑘) = 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑒𝑑_𝑓𝑟𝑜𝑚_𝑃𝑜𝑠𝑡𝑔𝑟𝑒𝑆𝑄𝐿 𝑠𝑒𝑟𝑣𝑒𝑟_𝑡𝑖𝑚𝑒𝑠𝑒𝑟𝑖𝑒𝑠_𝑑𝑎𝑡𝑎𝑏𝑎𝑠𝑒

𝑟𝑥𝑏[𝑖→𝑗](𝑇𝑘) = 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑒𝑑_𝑓𝑟𝑜𝑚_𝑃𝑜𝑠𝑡𝑔𝑟𝑒𝑆𝑄𝐿 𝑠𝑒𝑟𝑣𝑒𝑟_𝑡𝑖𝑚𝑒𝑠𝑒𝑟𝑖𝑒𝑠_𝑑𝑎𝑡𝑎𝑏𝑎𝑠𝑒

𝑠𝑟<𝑎𝑖,𝑎𝑗> = 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑒𝑑_𝑓𝑟𝑜𝑚_𝐴𝐼𝐷𝐵

𝑠𝑟𝑠𝑖 = 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑒𝑑_𝑓𝑟𝑜𝑚_𝐴𝐼𝐷𝐵

𝑠𝑟ℎ𝑖 = 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑒𝑑_𝑓𝑟𝑜𝑚_𝐴𝐼𝐷𝐵

Below are presented the mathematical equations that are used to calculate other variables from

variables collected from the interfaces. In the context of the application 𝑇𝐾 will be the time that the

latest measurement of the aforementioned variables occurred.

Equation (1) calculates the packet loss percentage from switch i to switch j based on the packets

transmitted from switch i and the packets received from switch j over a period.

𝑝𝑙<𝑎𝑖 ,𝑎𝑗>(𝑇𝑘) =
[𝑡𝑥[𝑖→𝑗](𝑇𝑘) − 𝑟𝑥[𝑖→𝑗](𝑇𝑘−𝑁)] − [𝑟𝑥[𝑖→𝑗](𝑇𝑘) − 𝑟𝑥[𝑖→𝑗](𝑇𝑘−𝑁)]

𝑡𝑥[𝑖→𝑗](𝑇𝑘) − 𝑡𝑥[𝑖→𝑗](𝑇𝑘−𝑁)
∗ 100 (1)

Equation (2) calculates the throughput (utilized bandwidth) as the exponential weighted average of

the throughput over a period. The reason that the latest measurement is not taken as the actual value

of the throughput is to avoid spikes that might not represent the actual state of the link by means of

throughput between the network assets. Older values have less weight in the calculation of the mean

value.

𝑡ℎ<𝑎𝑖,𝑎𝑗>(𝑇𝑘) (2)

= 𝑔 ∗ ∑(1 − 𝑔)𝑛−1
𝑛=1

𝑛=𝑁

[𝑡𝑥𝑏[𝑖→𝑗](𝑇𝑘−𝑛+1) − 𝑡𝑥𝑏[𝑖→𝑗](𝑇𝑘−𝑛)] + [𝑟𝑥𝑏[𝑖→𝑗](𝑇𝑘−𝑛+1) − 𝑟𝑥𝑏[𝑖→𝑗](𝑇𝑘−𝑛)]

𝑇𝑘−𝑛+1 − 𝑇𝑘−𝑛

Equation (3) describes the available bandwidth as the deference of the maximum bandwidth (capacity

of the link) and the throughput (utilized bandwidth).

𝑎𝑏<𝑎𝑖,𝑎𝑗>(𝑇𝑘) = 𝑏<𝑎𝑖,𝑎𝑗>(𝑇𝑘) − 𝑡ℎ<𝑎𝑖,𝑎𝑗>(𝑇𝑘−𝑁 , 𝑇𝑘) (3)

Equation (4) quantifies jitter as the average of the first discrete derivative of the latency. Jitter

expresses whether the latency of the link will frequently deviate from the mean value or not.

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 82
Public document

𝑗𝑡<𝑎𝑖 ,𝑎𝑗>(𝑇𝑘) = ∑
|𝑙𝑡<𝑎𝑖,𝑎𝑗>(𝑇𝑘−𝑛+1) − 𝑙𝑡<𝑎𝑖,𝑎𝑗>(𝑇𝑘−𝑛)|

𝑁 − 1

𝑛=1

𝑛=𝑁

 (4)

Below are presented the functions that map sets to values.

Function (5) assigns the bandwidth of a full communication path as the minimum bandwidth between

the underlying links.

𝐵 (𝑃ℎ𝑖 , ℎ𝑗) = min
∀ <𝑎𝑖,𝑎𝑗> ∈ 𝑝ℎ𝑖 , ℎ𝑗

𝑏<𝑎𝑖,𝑎𝑗> (5)

Function (6) assigns the available bandwidth of a full communication path as the minimum available

bandwidth between the underlying links.

𝐴𝐵 (𝑝ℎ𝑖 , ℎ𝑗) = min
∀ <𝑎𝑖,𝑎𝑗> ∈ 𝑝ℎ𝑖 , ℎ𝑗

𝑎𝑏<𝑎𝑖,𝑎𝑗> (6)

Function (7) assigns the jitter of a full communication path as the maximum jitter between the

underlying links.

𝐽𝑇𝑅 (𝑝ℎ𝑖 , ℎ𝑗) = 𝑚𝑎𝑥
∀ <𝑎𝑖,𝑎𝑗> ∈ 𝑝ℎ𝑖 , ℎ𝑗

𝑗𝑡𝑟<𝑎𝑖,𝑎𝑗> (7)

Function (8) assigns the packet loss percentage of a full communication path as the difference of the

probability of a packet to pass through n links from the probability of the sure event. Since the

probability of a packet to pass from a link to another is an independent event then the probability

(packet loss percentage) can be calculated as follows.

𝑃𝐿 (𝑝ℎ𝑖 , ℎ𝑗) = 1 − ∏ (1 − 𝑝𝑙<𝑎𝑖 ,𝑎𝑗>)

∀ <𝑎𝑖,𝑎𝑗> ∈ 𝑝ℎ𝑖 , ℎ𝑗

 (8)

Function (9) assigns the latency of a full communication path as the sum of the latency of each

underlying link.

𝐿𝑇 (𝑝ℎ𝑖 , ℎ𝑗) = ∑ 𝑙𝑡<𝑎𝑖,𝑎𝑗>(𝑇𝑘)

 ∀ <𝑎𝑖,𝑎𝑗> ∈ 𝑝ℎ𝑖 , ℎ𝑗

 (9)

Function (10) assigns the security risk of a full communication path as the weighted mean of the

security risk of each. Specifically, the risk values are six [1, 6] the higher the risk the higher the value,

hence each risk value has the same weight with itself. The weighted mean favours higher values and

thus penalizes paths that contain links with high-risk values.

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 83
Public document

𝑆𝑅 (𝑝ℎ𝑖 , ℎ𝑗) =
∑ 𝑠𝑟<𝑎𝑖 ,𝑎𝑗>(𝑇𝑘)

2
∀ <𝑎𝑖,𝑎𝑗> ∈ 𝑝ℎ𝑖 , ℎ𝑗

∑ 𝑠𝑟<𝑎𝑖,𝑎𝑗>(𝑇𝑘)∀ <𝑎𝑖,𝑎𝑗> ∈ 𝑝ℎ𝑖 , ℎ𝑗

 (10)

6.3.2.2.2 Objective functions and Constraints

In this section, the objective functions and the constraints will be presented. The objective functions

are related to QoS and security aspects. All the objective functions are transformed to dimensionless

by dividing the objective of the function by the constrain of the host. Additionaly, a threshold value is

introduced that works as a regulirizer parameter that controls the degree of the resource over

allocation. The lower the threshold the higher the over-allocation is permited.

The goal of objective function (11) is to minimize the latency between the two hosts.

𝑚𝑖𝑛: 𝐽𝐿𝑇(𝑝) = max (𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑,
𝐿𝑇 (𝑝ℎ𝑖 , ℎ𝑗)

 𝐿𝑇𝑐(ℎ𝑖)
) (11)

The objective function (12) has a negative sign, since the objective is to find the path that maximizes

the available bandwidth. For this objective no threshold is used since the available bandwidth will be

usually 10ths to 100s of times more than the required. Hence, whenever the remaining bandwidth is

les than 10% than its capacity, death penalty is applied to the chromosome by assigning the highest

possible value that is able to be produced by the specific machine.

𝑚𝑖𝑛: 𝐽𝐴𝐵(𝑝) = −
𝐴𝐵 (𝑝ℎ𝑖 , ℎ𝑗)

max ((ℎ𝑖)
 (12)

Objective function (13) should minimize the packet loss percentage.

𝑚𝑖𝑛: 𝐽𝑃𝐿(𝑝) = max(𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑,
𝑃𝐿 (𝑝ℎ𝑖 , ℎ𝑗)

𝑃𝐿𝑐(ℎ𝑖)
) (13)

Objective function (14) should minimize the jitter.

𝑚𝑖𝑛: 𝐽𝐽𝑇𝑅(𝑝) = max (𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑,
𝐽𝑇𝑅 (𝑝ℎ𝑖 , ℎ𝑗)

𝐽𝑇𝑅𝑐(ℎ𝑖)
 (14)

Finally, objective function (15) is related to security and should minimize the security risk of the path.

If he security requirement is not fullfiled then death penalty is applied to restrict using this path.

𝑚𝑖𝑛: 𝐽𝑠𝑒𝑐𝑢𝑟𝑖𝑡𝑦(𝑝) =
𝑆𝑅 (𝑝ℎ𝑖 , ℎ𝑗)

𝑆𝑅𝑐(ℎ𝑖)
 (15)

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 84
Public document

𝑠. 𝑡

{

 𝐿𝑇(𝑝ℎ𝑖 , ℎ𝑗) ≤ min (𝐿𝑇𝑐

(ℎ𝑖), 𝐿𝑇𝑐(ℎ𝑗))

𝐴𝐵 (𝑝ℎ𝑖 , ℎ𝑗) ≥ max (𝐴𝐵𝑐
(ℎ𝑖), 𝐴𝐵𝑐(ℎ𝑗))

𝑃𝐿 (𝑝ℎ𝑖 , ℎ𝑗) ≤ min (𝑃𝐿𝑐
(ℎ𝑖), 𝑃𝐿𝑐(ℎ𝑗))

 𝐽𝑇𝑅 (𝑝ℎ𝑖 , ℎ𝑗) ≤ min (𝐽𝑇𝑅𝑐
(ℎ𝑖), 𝐽𝑇𝑅𝑐(ℎ𝑗))

𝑆𝑅 (𝑝ℎ𝑖 , ℎ𝑗) ≤ min (𝑆𝑅𝑐
(ℎ𝑖), 𝑆𝑅𝑐(ℎ𝑗))

|

|

|

∀ 𝑝ℎ𝑖 , ℎ𝑗 ∈
(𝐿 + 𝑝 − 𝑝′)

2

6.3.2.2.3 Solver

In order to solve the aforementioned problem, genetic algorithms will be used. Specifically, the

problem has been formed as a multi-objective constrained problem and the convergence to a near

optimal solution should be fast. Hence, PaDe [56] multi-objective genetic algorithm is proposed as the

solution since, it allows the parallel solving of multi-objective problems. For each chromosome in the

population, PaDe decomposes a multi-objective problem into single-objective ones and using the

asynchronous generalized island model [57] to distribute the solution process to multiple processors.

At the end of the evolution, the population is set as the best individual in each single-objective island.

PaDe is not suitable to solve constrained problems; therefore, the problem should be transformed into

a non-constrained one. A solution to this is to add an additional objective, which will quantify the

violation of the constraints and will be used as a penalty to the overall objective function. The

additional, objective function is the norm of the total constraint violation.

A constrain violation of type is calculated as (e.g. for latency and available bandwidth) :

𝐶_𝑣𝑙𝑖 = max (0,𝐿𝑇 (𝑝ℎ𝑖 , ℎ𝑗)−𝑚𝑖𝑛 (𝐿𝑇𝑐
(ℎ𝑖), 𝐿𝑇𝑐(ℎ𝑗))) (16)

𝐶_𝑣𝑙𝑖 = max (0,𝑚𝑎𝑥 (𝐴𝐵𝑐(ℎ𝑖), 𝐴𝐵𝑐(ℎ𝑗)−𝐴𝐵 (𝑝ℎ𝑖 , ℎ𝑗))) (17)

Therefore, the additional objective function is formed as:

𝑚𝑖𝑛: 𝐽𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛(𝑝) = √
∑ 𝐶_𝑣𝑙𝑘

2

𝑘 ∀ 𝑝ℎ𝑖 , ℎ𝑗 ∈(𝐿+𝑝−𝑝′)

 (18)

Since, the problem is multi-objective, six dimensional specifically; there will be probably multiple

solutions, each one being optimal at different objectives or combinations of objectives. After the final

population of solutions has been calculated, the Pareto Front of solutions with respect to the function

below is calculated:

𝑎𝑟𝑔
𝑝
𝑚𝑖𝑛: 𝛼𝐽𝐿𝑇(𝑝) + 𝛽𝐽𝐵(𝑝) + 𝛾𝐽𝑃𝐿(𝑝) + 𝛿𝐽𝐽𝑇𝑅(𝑝) + 𝜀 𝐽𝑠𝑒𝑐𝑢𝑟𝑖𝑡𝑦(𝑝)+ 𝜁 𝐽𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛 (19)

Where α + β + γ + δ + ε + ζ = 1. The values of α, β, γ, δ, ε, ζ define the user’s preference.

2 (𝐿 + 𝑝 − 𝑝′) means that the old path (𝑝′) is removed from set L and the new path 𝑝 is added

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 85
Public document

The solutions with the minimal value are chosen in order to construct the Pareto Front of solution with

respect to the given policy. Finally, an additional filtering step takes place in orde to select the value

that utilizeis the minimum number of the resource allocation.

6.3.2.2.4 Representation of the chromosomes

The representation of the chromosomes is a critical factor for the scalability of the model. The

straightforward approach to represent the chromosome is the absolute one. A chromosome

representation is called absolute such that length of the chromosome is equal to the number of the

switches and the range of values that each genome of the chromosome can’t take is also equal to the

number of the switches. This approach allows the existance of each possible combination of a path

including paths that are not sensical (a switch can be present multiple times) or paths that are not

present considering the links of the network topology. This method overpopulates the genetic

algorithm with solutions that are not feasible, and when a feasible solution is found the genetic is

biased to produce solutions very similar to this one. The authors of [58] suggest a repairer method

based on Dijkstra algorithm in order to repair the chromosome that led to unfeasible solution. The

repair method based on Dijkstra has a complexity in worst case scenario equal to 𝑂(|𝑉|3(𝑀 + log|𝑉|))

where 𝑉 is the total number of nodes and 𝑀 is the total number of QoS objectives. Even though this

technique increases the computational complexity, the chromosomes are always feasible paths and

hence, decreases the required number of generations for convergance. It should be also noted that

the repair method suggested in [58] repairs the chromosomes based on solutions of Djikstra applied

on each QoS requirement and thous the repaired chromosomes are not repaired in random but in an

optimal way dictated by Dijkstra. In order to produce feasible chromosomes, a dynamic and relativistic

approach with repair was introduced for EDAE. This method has the advantage that the additional

computational complexity is 𝑂(𝑉 ∗ log|𝑉|), but the disadvantage is that the repair is random. An

illustration of the naïve representation and EDAEs representation can be seen in Figure 32.

The dynamic and relativistic representation with repair of the chromosome requires the introduction

of a new variable, which will be reffered as connectivity. Conectivity (𝐶𝑖) measures the total number

of the connected switches to switch 𝑖. Therefore, the range of each genome of the chromosome is

equal to the amount of connectivity of the previous genome (i.e switch). This approach shrinks the

search space of the hypervolume of the solution allowing the genetic examine more feasible solutions.

The relativistic part of this representation is that in order to map the representation of the

chromosome to the true representation of a path containing the actual values of the switches, requires

to decode the value of a specific genome relative to its previous one. The dynamic part is that each

genome does not always have the same range of possible values but its always changes with respect

to 𝐶𝑖 . Finally, whenever a mutation or cross-over takes place, the new chromosomes might produce

solutions that are not feasible. Hence, a random repair mechanism takes place to repair the genomes

that have values higher than its connectivity value.

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 86
Public document

Figure 32: Illustration of the Naive (top) and EDAE's (Bottom) chromosome representation

6.3.2.3 PMU-PDC allocation for EPES observability

This section presents two MILP algorithms responsible for maximizing the observability of the EPES

after a cyberattack or a malfunction on a PDC. The bandwidth constrained MILP and the PMU

constrained MILP. The difference between each algorithm relies on the data transfer rate of each

PMU. Normally, each PMU is configured to send data over a specific data transfer rate3 [64]. If a PMU

modifies each data transfer rate in minutes, then the PMU constrained MILP algorithm will be selected,

since it allocates one PMU to at most one PDC. In this way, we avoid any potential conflicts regarding

the connection of a PMU to multiple PDCs, which will demand the rearrangement of the

communication paths in a short period of time. In general, the bandwidth constrain MILP is modified

in a Binary ILP in order to add the constrain of one PMU to send data to at most one PDC.

3 Almas, Muhammad Shoaib, and Luigi Vanfretti. "A method exploiting direct communication
between phasor measurement units for power system wide-area protection and control algorithms."
MethodsX 4 (2017): 346-359.

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 87
Public document

The MILP algorithms are applicable to every device that transfer current or voltage or active/reactive

power, not only with PDCs and PMUs, since the observability of an EPES is related with the availability

of electricity measurements from each bus of the EPES4 5.

6.3.2.3.1 Bandwidth constrained MILP

The proposed MILP algorithm focuses on the matchmaking between PMUs and PDCs with constrains

regarding the communication bandwidth of PMUs and PDCs. The constrains are chosen in accordance

with the IEC/IEEE 60255-118-1 standard “Synchrophasor for power systems – Measurements” [59],

with the IEEE C37.118.2-2011 [60], which both describe the functional requirements for a PMU and in

accordance with the IEEE C37.247-2019 standard for Phasor Data Concentrators for Power Systems

[61].

Let A = {𝑃𝑀𝑈1 , 𝑃𝑀𝑈2 , … , 𝑃𝑀𝑈𝑁}, a set of N available PMUs to be connected with all the available

PDCs. Let B = { 𝑃𝐷𝐶1, 𝑃𝐷𝐶2, … , 𝑃𝐷𝐶𝑀 }, a set of M available PDCs to be connected with all the

available PMUs, where M≤N.

Furthermore, the Decision Variables of the model are defined as the data that can be transferred from

all the available routes from PMUs to PDCs, therefore the Decision Variables can be expressed as:

x(a, b) ≥ 0…∀a ∈ A, b ∈ B

x(a, b) ∈ 𝑍…∀a ∈ A, b ∈ B

The objective function of the problem is expressed as the minimization of the average communication

network latency between the available PDCs and PMUs. In this case, the objective function is described

as:

𝑚𝑖𝑛 ∑ 𝑙𝑎𝑡𝑒𝑛𝑐𝑦(𝑎, 𝑏)𝑥(𝑎, 𝑏)

𝑎 ∈𝐴,𝑏 ∈𝐵

The constrains of the MILP problem are the available bandwidth of each PMU and the available

bandwidth of each PDC. Concretely, A PMU cannot connect to i+1 PDCs if the data rate exceeds its

bandwidth capacity dA.

∑ 𝑥(𝑎, 𝑏) ≤ 𝑑𝐴… ∀𝑏 ∈ 𝐵

𝑎 ∈𝐴

A PDC cannot accept data from j+1 PMUs if the data rate of the PMUs exceeds the bandwidth capacity,

dB of a PDC.

∑ 𝑥(𝑎, 𝑏) ≤ 𝑑𝐵… ∀𝑎 ∈ 𝐴

𝑏 ∈𝐵

4 Baldwin, Thomas L., et al. "Power system observability with minimal phasor measurement placement." IEEE
Transactions on Power systems 8.2 (1993): 707-715.
5 Krumpholz, G. R., K. A. Clements, and P. W. Davis. "Power system observability: a practical algorithm using
network topology." IEEE Transactions on Power Apparatus and Systems 4 (1980): 1534-1542.

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 88
Public document

6.3.2.3.2 PMU constrained MILP

To ensure the reliable operation of the EDAE in case a PMU data transfer rate is shifting in minutes,

the above MILP formulation is replaced by a binary ILP with the constrain of each PMU to send data to

only one PDC.

Concretely, let A = {𝑃𝑀𝑈1, 𝑃𝑀𝑈2, … , 𝑃𝑀𝑈𝑁}, a set of N available PMUs. Let B =

{ 𝑃𝐷𝐶1, 𝑃𝐷𝐶2 , … , 𝑃𝐷𝐶𝑀 }, a set of M available PDCs.

The decision variables are the sets of PMU-PDC pairs {a, b} ∀ 𝑎 ∈ 𝐴, ∀ 𝑏 ∈ 𝐵 with binary values:

{𝑎, 𝑏} = 1, 𝑖𝑓 𝑃𝑀𝑈 𝑎 𝑠𝑒𝑛𝑑𝑠 𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑎𝑙 𝑑𝑎𝑡𝑎 𝑡𝑜 𝑃𝐷𝐶 𝑏

Or

{𝑎, 𝑏} = 0, 𝑖𝑓 𝑃𝑀𝑈 𝑎 𝑎𝑛𝑑 𝑃𝐷𝐶 𝑏 𝑎𝑟𝑒 𝑛𝑜𝑡 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑

The objective function of the problem is to select the PMU-PDC pairs which minimize the average

communication network latency. In this case, the objective function is described as:

𝑚𝑖𝑛 ∑ 𝑙𝑎𝑡𝑒𝑛𝑐𝑦(𝑎, 𝑏){𝑎, 𝑏}

𝑎 ∈𝐴,𝑏 ∈𝐵

A PDC cannot accept data from j+1 PMUs if the connected PMUs exceed the amount kB of PMUs that

a PDC can host.

∑{𝑎, 𝑏} ≤ 𝑘𝐵 … ∀𝑏 ∈ 𝐵

𝑎 ∈𝐴

Finally, each PMU should send data to at most one PDC:

∑{𝑎, 𝑏} ≤ 1… ∀𝑎 ∈ 𝐴

𝑏 ∈𝐵

6.3.3 Problem Definition and Use Cases
The goal of EDAE is to enhance the resiliency of Electrical Power Energy Systems (EPES) by adding a

self-healing technique that leverages the network capabilities offered by SDN technology. Specifically,

EDAE should mitigate the impact of an attack, optimize the observability of the EPES infrastructure and

optimize the QoS of the applications. EDAE needs to enable its self-healing mechanism whenever one

of the three following scenarios takes place.

Scenario 1) QoS of monitoring equipment is not sufficient

The necessity of monitoring the electrical network is of high criticality, since it allows other applications

or specialized personnel on decision-making related to activities that affect the health of the

equipment, the prevention of dangerous disastrous events and the economy of the whole EPES life

cycle. Phasor Measurement Units (PMUs) and Phasor Data Concentrators (PDCs) are the main

components responsible to monitor the underline electrical network of an EPES. Other components

responsible for monitoring are the RTUs, PLCs and IDEs. All the aforementioned components interface

the physical equipment of the electrical network and make it observable to the rest ecosystem

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 89
Public document

(applications/personnel). A strong requirement is that the measurements from the electrical grid

should be broadcasted in the targeted applications in a specific time window. Therefore, QoS of

monitoring instrument directly affects the observability in EPES.

EDAE as a self-healing mechanism should ensure that the QoS of the monitoring equipment is met.

Whenever some of the QoS criteria is not met then EDAE should rapidly find an alternative

communication path (if existent) such that the QoS are met and the security level of this path is

sufficient with respect to the sensitivity of the equipment’s data with respect to the QoS constraints

of the rest monitoring devices.

Scenario 2) PDC is disconnected from the network

This scenario is related with scenario 1 since its objective is to maximize the observability of the EPES.

In this scenario, a PDC is disconnected due to a malfunction or a cyber-attack from the network and

the PMUs that were connected to the PDC should forward their measurements to another PDC if

possible. Multiple PMUs can be connected to a PDC. PMUs are attached to a bus in the electrical grid

and are able to take measurements from the bus and neighbouring buses. When a PDC is disconnected

from the network, EDAE should assign the most PMUs that is possible (target PDCs have sufficient

leftover bandwidth) that maximize the observability (observable buses) by finding communication

paths that meet the QoS and security constrains of the PMU and does not affect the QoS constraints

from the rest of the monitoring devices. In this scenario, the core algorithm of EDAE proposes the

paths that do not violate QoS constrains to the MILP algorithm, and the MILP algorithm assigns the

PMUs to the PDCs by minimizing the average latency of the paths between each PMU and PDC.

Afterwards, the matchmaking is send back to the core algorithm and consequently, the core algorithm

applies the new communication paths. It should be noted that the scenario is functional even without

the usage of PDCs and PMUs. Any device that could transmit and receive electrical data

(current,voltage,active/reactive power) can be handled. More details are presented in section 6.3.2.1.

Scenario 3) The security level of a network asset changes

S-RAF reports to EDAE whenever the risk assessment of a host is altered. Whenever the risk assessment

of a host is increased, the risk assessment of the switches that forward information from this host is

also changed. EDAE, checks if there are existing applications that require that their data should follow

a path up to a certain level of risk and if this update of the risks violates those constraints. If so, then

EDAE should find an alternative path for those applications such that the risk is less or equal to the

specified risk level, the QoS are met (if present) and the QoS of the rest applications is intact. This

scenario uses the same algorithm as scenario 1.

6.4 EDAE Dashboard

EDAE-Dashboard is a friendly user interface that has a triple functionality. First, the current state of

the SDN network is monitored. Second, this tool provides a representation of the EDAE´s proposals,

i.e. the proposed topological changes derived from the EDAE algorithm. Finally, the user of the EDAE-

Dashboard (the operator) is able to accept or not the proposals provided by the EDAE.

These functionalities are available through a simple and intuitive web interface that can be operated

by the user. Figure 33 shows a graphic schema of the different views that conform the EDAE-Dashboard

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 90
Public document

user interface. As it was previously described both the current state of the network topology and the

EDAE proposed changes are represented in two different views. On the left view, the current SDN

network is shown, and additional information can be depicted depending on the user actions. Thus, in

the traffic metrics pop-up, the user can obtain network performance information from the nodes

(switches and hosts) just positioning the cursor over the desired node. Moreover, with a click over the

node statistical information of the component is also shown in the switch statistics dialog box.

On the right view of the interface, the EDAE proposal is represented. In this case, the operator can

accept or reject the proposed changes totally or partially, which means that the operator could accept

only part of the EDAE proposal. To that end, a dialog box (the proposed paths dialog box in the figure)

with the proposed changes appears when the user clicks on the host icon. These proposals are a list of

the proposed connections/path between the selected host and the others in the network. The user

can accept or reject each change using an available button inside the dialog box.

Figure 33: EDAE-Dashboard user interface schema.

The development of the EDAE-Dashboard has been divided in two parts or tools, the back-end and the

front-end, which is a common practice in web design. The back-end tool is in charge of extracting the

necessary data (statistics, topology and proposed changes) from other parts of the self-healing system

(i.e. the SDN-C, AIDB and EDAE) and process it in order to obtain valuable information, the network

performance metric in this case. Additionally, all the retrieved statistics and the calculated metrics are

stored in databases. On the other hand, the front-end tool is responsible of representing all the

information. To that end, the databases are consulted.

After this first review of the EDAE-Dashboard functionality and web interface, a deeper explanation of

its architecture and used technology is described in the following subsections.

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 91
Public document

6.4.1 Architecture and functionality

As commented before, the EDAE-Dashboard functionality can be divided in three parts: the monitoring

of the current network, the representation of the EDAE proposal and the acceptance of the EDAE

proposal. Each functionality and its architecture are described separately in the following.

a) Current network topology

With the aim to represent the status of the SDN network, the current topology of the network and a

set of stats and metrics are showed. On the one hand, the topological information is retrieved from

the AIDB, using the API services available to that end (see the Interfaces section below). On the other

hand, the statistic information of the SDN network is obtained from the SDN Controller through the

available NBI. A python application, from now on python adapter, has been developed to request the

previous information periodically.

The python adapter is also in charge of calculating some network performance metrics, which provides

valuable information of the current status of the network traffic, based on previous obtained statistic

information. Specifically, the necessary stats are the ones related to the flow entries and ports

information for each SDN switch in the network. A list of the calculated performance metrics is

presented below:

• Current port throughput [Mbps]: is the bits per second consumed by each port of a switch at

the calculation moment.

• Current switch throughput [Mbps]: is the bits per second consumed by a switch at the

calculation moment.

• Current end-to-end throughput [Mbps]: is the bits per second consumed by a path between

two end points (hosts) of the network at the calculation moment.

The python adapter has another functionality that consists in storing the retrieved information of the

network along with the calculated performance metrics. This storage is divided into two categories.

Firstly, a backup of the statistic and network performance metrics is stored in a MongoDB. To ease the

management of the historical information, this data is saved only for 30 days. The idea is to create an

accurate historical record that can be consulted on demand by the users. Secondly, the updated data,

i.e. the last obtained data from the SDN-C and the last values of the performance metrics, is stored in

a Redis database. Redis database is selected for this end since it is used as a database cache, which

means faster speed queries.

The schema in Figure 34 shows the architecture of the data acquisition procedure from the SDN-C and

the AIBD, and the information storage in both internal databases. This storage is done by the python

adapter, which is continuously running in order to capture the statistics (provided by the SDN-C) and

to calculate the network performance metrics. To simplify the schema, the interfaces have not been

represented, but they can be consulted in the interface section below.

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 92
Public document

Figure 34: Architecture of the data acquisition and storage

The front-end tool is connected to both internal databases (MongoDB and Redis) in order to consult

and represent the topology, statistics and network performance metrics. In Figure 32, it is represented

a simplification of the workflow that permits the representation of the actual network state by the

front-end. It must be clarified that the Redis database is consulted to represent the latest network

status, while the MongoDB will be consulted to retrieve historical information if it is required by the

operator. To that end, an API has been developed in order to consume the data from both databases,

but that API is omitted in Figure 35 to simplify the representation.

Figure 35: Architecture of the front-end tool

b) EDAE proposal representation

Apart from the current status of the network, the EDAE-Dashboard is configured to represent the EDAE

proposals, which can be seen as the principal functionality of this dashboard. To that end, the

communication between EDAE tool and EDAE-Dashboard is mandatory. This communication is set

through RabbitMQ (AMQP protocol), which works as a message-queueing software. Additionally, the

approval signal of the EDAE proposals is send back to the EDAE with another communication in the

inverse direction. This one is also established through RabbitMQ.

Figure 36 shows the workflow regarding the EDAE proposal representation, from the event-generation

by the EDAE-tool proposal until the storage of the proposal into the Redis and Mongo databases. The

way of working is: EDAE tool provides an event, which is queued through RabbitMQ, this one is

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 93
Public document

captured by a python application, from now event listener, and finally the proposal message is stored

in both databases.

Figure 36: Architecture of the EDAE proposal representation

c) Acceptance of the EDAE proposal

As part of the user interface, a functionality to accept or reject the proposal by the EDAE tool is

developed. This one corresponds to the Acceptance/Rejection button (see Figure 30). In case of being

accepted, the EDAE will act accordingly sending the required control actions to the SDN Controller.

After the application of the accepted proposals, the network status (the current network view) will be

updated by the python adapter. It must be notice that this functionality will be only available is the

EDAE proposal requires approval (see the description in Section 6.3.2).

In this case the workflow is as follows. The acceptation is sent to EDAE tool throughout RabbitMQ. The

event listener also captures the changes in the RedisDB, these changes can be the acceptance or not

of the EDAE proposal by the user of the EDAE dashboard. The event listener queues the message

(accept or reject the EDAE proposal) in the queue. Then, the EDAE-tool captures the message and this

one provides the change, or not, to SDN-C.

In Figure 37 it is shown the workflow from the moment the Event Listener detects the changes in a

specific field of the RedisDB, which was added for that end, until the EDAE tool captures that change

and the control actions are sent to the SDN-C.

Figure 37: Architecture of the EDAE proposal acceptance

6.4.2 Interfaces

In order to provide the functionalities described in the previous section, the EDAE – Dashboard
interfaces with other tools of the self-healing system to retrieve and send the necessary information
(see Figure 7). These interfaces are described in the following. However, some of them has been

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 94
Public document

already defined in their specific sections in this document, so a simple description with the reference
to the corresponding section will be exposed.

6.4.2.1 EDAE-Dashboard – EDAE: Network topology changes

The representation of the EDAE proposals is done on the basis of the information retrieved from this
interface. The AMQP protocol (RabbitMQ) is employed and the EDAE send the topology proposal
messages that is inserted in the network topology changes queue. This message contains the
information described in Table 22: Network topology changes message data.

Table 22: Network topology changes message data

Field Type Description
PROPOSAL_ID Int Identifier of the proposal.

DATA: Dict Information that describes the topological changes
proposed by EDAE.

APPROVAL_REQUIRED True/False If true, the proposal requires the acceptance of the
EDAE-Dashboard operator and the EDAE will wait for an
acceptance/rejection signal.
If false, no approval is required by EDAE. In this case, the
acceptance/rejection functionality is not available in the
EDAE-Dashboard.

PMU List of dicts List of changes in terms of connections proposed of
PMUs with PDCs.
This list contains specific information of each proposed
connection:

• ID: identifier of the PMU

• PDC: list with the IDs of the PDCs that the PMU is
sending data to.

• traffic_demand: minimum traffic demand of the
PMU.

PATHS List of dicts Set of proposed new paths between pairs of edge nodes
(PMUs and PDCs). These paths are given as a list of IDs
of the nodes that compounds the path.

6.4.2.2 EDAE-Dashboard – EDAE: Network topology proposal acceptance

Once the EDAE proposal is represented, the operator can accept or reject them if the approval is
required by EDAE. In that case, a proposal acceptance message is sent by the EDAE-Dashboard using
the proposal acceptance queue. This message consists on the information described in Table 23.

Table 23: Network topology proposal acceptance message data

Field Type Description
PROPOSAL_ID Int Identifier of the proposal.

APPROVAL True/False If true, the operator has accepted the changes proposed
by EDAE and the EDAE will act in accordance sending the
required actions to the SDN Controller.
If false, the operator has rejected the changes proposed by
EDAE.

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 95
Public document

6.4.2.3 EDAE-Dashboard – AIDB

The API services of the AIDB, which will be described in Section 7, are employed to get current
topological information of the SDN network as well as additional information managed by EDAE that
cannot be retrieved from the SDN Controller, such as the link weights. Specifically, the AssetQuery()
method is used to obtain the required information (see Section 7.3 for a detailed explanation of the
method).

6.4.2.4 EDAE-Dashboard – SDN Controller

The representation of additional statistical information for each switch is another functionality
provided by the EDAE-Dashboard. This information must be retrieved from the SDN Controller through
its corresponding Northbound Interface, which was described in Section 5.1. This interface provides
two groups of API services, ofctl_rest and rest_topology, from which the following endpoints are used
in this interface:

• Get port description.

• Get port statistics.

• Get table stats.

• Get flow stats (all).

A description of the output information that can be retrieved with the above endpoints is presented
in the corresponding sections.

6.5 Component Model
From implementation point of view, some tasks to be done has been determined in order to satisfy

the requirements.

These tasks are independent processes implemented in python with its unitary tests. Some of these

tasks are dedicated to get information from external APIs and transform data in a friendlier format for

internal purposes. Some other are dedicated to save the tracking information in our own database.

Moreover, the most important are those that apply the required functionality, the main purpose for

the whole workflow.

To put all together has been decided to use an open source software called Apache Airflow to act as

orchestrator. Using this software, a workflow with those individual tasks can be built and then schedule

the whole workflow, manage globally and individually all the logs, errors, email notifications … that are

generated during the execution.

Airflow uses a database to manage itself. From the set of possibilities Airflow proposes, PostgreSQL

has been chosen and also was decided to have a separated server so it could be used from everywhere

in the workflow.

Although Airflow have a great tracking system, some more information is stored in the PostgreSQL

database. This information stored relates to the tasks and it is valuable for tracking, to reproduce

certain situations in order to debug them and also it’s needed from the dashboard to show the

aggregate information useful for the "decision making" process.

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 96
Public document

This is the workflow representation with its tasks and the way how they interact with each other (image

from Airflow):

1. Main workflow: from inputs to notify proposal or implement changes if it needs to be

approved or not respectively.

2. Approval Result workflow: from EDAE-Dashboard response to implement changes or do
nothing if the proposal was approved or not respectively.

Figure 38: Airflow workflow

In terms of deployment, Docker is used for the development process so it lets to simulate the different

servers that are supposed to exist in the real implementation.

Figure 39: Docker containers and APIs

Several Docker containers are going to be used for this purpose:

• Apache Airflow server:
Created from Airflow Docker image and having shared local folders for logs and dags.

• PostgreSQL server:
Created from PostgreSQL 11 Docker image with Pipeline extension (for time series) installed.
It’s going to be used by:

o Airflow to manage itself.

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 97
Public document

o Workflow on itself or tasks inside the workflow to save inputs, outputs, execution
times, errors, data transportation from one task to another (for large data
exchanging).

o EDAE process as a time series database to get some statistics from historical
information stored previously.

• EDAE process:
Created from a python 3.7 image.
It will contain the main EDAE process and a rest API to expose it.

• Kafka:
This will be the communication mechanism between S-RAF and EDAE workflow. So, EDAE
workflow will receive information from S-RAF about incidences as a starting point of our
process who is in charge to give a response.

• RabbitMQ:
This will be the communication mechanism between EDAE workflow and EDAE-Dashboard.
The proposal to be approved will go in one direction and the result of this evaluation should
go in the opposite direction in order to manage the actions to implement within the proposal.

• APIs:
While the original (or a draft of it) can’t be called, a dummy API is going to be used. A Docker
container will contain our own rest API returning a json example for each API.

Each of these containers is supposed to be a different machine/server in production environment, so

we decided to set an IP for each one in order to do the call to its resources as much similar to the real

world as possible. Dummy APIs are still useful in production environment in order to run acceptation

tests. Figure 34 shows the topology of the ecosystem created in the virtual machine for that matter:

Figure 40: Different machine/server in EDAE product environment

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 98
Public document

6.6 Interfaces Model
For the proper operation of EDAE is needed at least four interfaces for the different components: S-
RAF, SDN-C, AIDB and EDAE-Dashboard. In the following lines, it is described the relation between
them according Figure 7:

1) S-RAF and EDAE

This interface has to provide to EDAE the information about the risk level of the assets of the network
topology. S-RAF will output a set of .json files (Section 13.1) that will be read by the interface S-
RAF/EDAE and it will provide another .json file to EDAE with the information needed for the proper
operation.

From the set of .json files detailed in the annex, the relevant information for EDAE is highlighted in

Figure 41:

Figure 41: Relevant information for EDAE operation from S-RAF

2) AIDB and EDAE

This interface has to provide to EDAE the summary of the network topology configuration. The AIDB
will output a .json file that will be read by the interface AIDB/EDAE and it will provide some .json files
to EDAE with the information needed for the proper operation.

An example of the following configuration is prepared for EDAE (Figure 42):

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 99
Public document

Figure 42: Network topology selected to test EDAE

From the .json detailed in (13.1) the following information can be obtained:

PDC_input.json

[
 {
 "ID": "PDC_1", // ID of the requested PDC
 "ipv4": "10.0.0.1", // Ip address of Internet Protocol Version 4
 "MAX_PMUS": 20, // Maximum number of PMUs that can be connected to the PDC
 "PMUS_con": 2, // Number of connected PMUs
 "PMUS": ["PMU_1, PMU_2"] // A list with the IDs of the PMUs that are connected to the PDC
 },
 {
 "ID": "PDC_2", // ID of the requested PDC
 "ipv4": "10.0.0.2", // Ip address of Internet Protocol Version 4
 "MAX_PMUS": 30, // Maximum number of PMUs that can be connected to the PDC
 "PMUS_con": 2, // Number of connected PMUs
 "PMUS": ["PMU_3, PMU_4"]/ A list with the IDs of the PMUs that are connected to the PDC
 }

PMU_input.json

[
 {
 "ID": "PMU_1", // ID of the requested PMU
 "PDC": ["PDC_1”] // A list with IDs of the PDCs that the PMU is sending data to
 "traffic_demand": "10 Mbps" // Minimum traffic demand of the PMU
 },
 {
 "ID": "PMU_2", // ID of the requested PMU

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 100
Public document

 "PDC": ["PDC_1"], // A list with IDs of the PDCs that the PMU is sending data to
 "traffic_demand": "20 Mbps" // Minimum traffic demand of the PMU
 },
 {
 "ID": "PMU_3", // ID of the requested PMU
 "PDC": ["PDC_2”] // A list with IDs of the PDCs that the PMU is sending data to
 "traffic_demand": "10 Mbps" // Minimum traffic demand of the PMU
 },
 {
 "ID": "PMU_4", // ID of the requested PMU
 "PDC": ["PDC_2"], // A list with IDs of the PDCs that the PMU is sending data to
 "traffic_demand": "20 Mbps" // Minimum traffic demand of the PMU
 }

]

3) SDN- Controller and EDAE

This have been already implemented by us using the restful API presented in the link below and
transforming the input accordingly.

https://ryu.readthedocs.io/en/latest/app/ofctl_rest.html

4) EDAE and EDAE Dashboard

In this case, two independent interfaces are implemented between EDAE and EDAE – Dashboard

applying in both cases the AMQP protocol (using RabbitMQ), which permits to send messages from

one tool to the other using two separate queues. These messages are .json files containing the

information, as it was described in Section 6.3.2.

The first interface permits to send the topology changes proposed by EDAE to the EDAE-Dashboard.

Thus, the topology proposal message send from EDAE is a .json file with the information required by

the dashboard to represent the EDAE proposals:

{
 "PROPOSAL_ID":53427606,
 "DATA": {
 "APPROVAL_REQUIRED":true,
 "PDC": [
 {
 "ID":"PDC_1",

https://ryu.readthedocs.io/en/latest/app/ofctl_rest.html

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 101
Public document

 "PMUS_con": 2,
 "PMUS": ["PMU_1", "PMU_4"]
 },
 {
 "ID": "PDC_3",
 "PMUS_con": 3,
 "PMUS": ["PMU_1”, “PMU_2", "PMU_4"]
 }
],
 "PMU": [
 {
 "ID": "PMU_1",
 "PDC": ["PDC_1", "PDC_13"],
 "traffic_demand": "10 Mbps"
 },
 {
 "ID": "PMU_2",
 "PDC": ["PDC_12"],
 "traffic_demand": "20 Mbps"
 }
]
 }
}
[
 {
 "path": ["PMU_1", "SW_3", "SW_2", "SW_1", "PDC_2"]
 },
 {
 "path": ["PMU_4", "SW_2", "SW_1", "PDC_1"]
 }
]

The second interface allows the EDAE-Dashboard to send the approval signal (the acceptance or
rejection of the EDAE proposals from the operator) to the EDAE, when this approval is required. Thus,
the proposal acceptance message send by the dashboard is a .json file like this one:

{
 "PROPOSAL_ID":53427606,
 "APPROVAL": "True"
}

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 102
Public document

7 EDAE Core Engine Evaluation
This section presents a series of experiments performed to evaluate the performance of EDAE core

engine by means of computational complexity and the quality of solutions. The section consists of five

subsecitions with the following context. Subsections 7.1 will describe the evaluation framework and

methodology that was followed in order to evaluate the rerouting functionality of EDAE. Subsection

7.2 presents the results followed by a discussion upon them. Respectively, subsections 7.3 and 7.4

present the evaluation framework and the results with respect to the MILP re-allocation functionality.

Finally, in subsection 7.5 conclusions and open points will be discussed.

7.1 Evaluation framework of re-routing functionality
The performance of an algorithm depends on the specific scenario in which it is executed. Therefore,

the evaluation framework is based on two network topologies, One Ring Bottleneck (ORB) and Two

Ring Bottleneck (TRB), that are common in and representative of data center, metro, grid, and

enterprise networks [62]. Additionally, the aforementioned topologies are also suitable for the

evaluation framework since they are characterized by a high number of connected hosts, which means

that multiple QoS requirements shall be satisfied with limited hardware resources. Details will be

presented in subsection 7.1.1.

Besides of the structure of the network topology, another critical factor is the size of the topology.

Therefore, experiments are conducted for various sizes of the two network topologies in order to

assess the scalability capability of the re-routing functionality. Details will be presented in subsection

7.1.2.

Another important aspect that should be taken into account during the design of the evaluation

framework is the mixture of the type of hosts and the applications that are aided for. In this evaluation

framework the hosts reflect devices that are common in an EPES infrastructure, such as PMUs, SCADA,

PLC, PDC, RTUs, and IEDs. Each host usually implements more than one functionality, hence the QoS

requirements vary for each host with respect to the application that implements. Therefore, for each

host, classes of QoS requirements, with respect to the underlying application that serve, were

identified. Details will be presented in subsection 7.1.3.

The modelling of the status of the network (i.e., delay, bandwidth, and packet loss) is a parameter that

should be taken into account during the design of the evaluation framework. Details will be presented

in subsection 7.1.4.

Finally, a comparison between EDAE’s re-routing mathematical formulation of the problem with the

one proposed in [63] takes place. Details regarding the modeling of [63] are presented in 7.1.5.

7.1.1 Structure of the network topologies
ORB topology is discussed in section 7.1.1.1 while TRB topology in section 7.1.1.2.

7.1.1.1 One Ring Bottleneck Topology (ORB)

As it observed from Figure 42, the ORB topology consists of a base ring of 𝑚+ 1 switches. One and

only one device is connected to the base ring and specifically to the 𝑚 + 1𝑛𝑡ℎ switch. Each switch of

the base of the ring is connected to a column that connects n hosts. In order to allow the

communication between two hosts that are present in different columns the information should pass

from the base ring switches, hence the communication is bottlenecked by the base ring.

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 103
Public document

The parameters that define the size of the topology are the width (𝑚) and the height (ℎ). The total

number of switches in ORB topology is 𝑚+ 1 + 𝑛 ∗ 𝑚 and the total number of connected devices is

𝑛 ∗ 𝑚 + 1.

Figure 43: One Ring Bottleneck Topology

7.1.1.2 Two Ring Bottleneck Topology (TRB)

The TRB topology extends ORB topology with an additional ring consisting of 𝑚+ 1 switches at the

bottom of the ORB topology. This topology adds additional hardware resources and increases and the

number of available re-routing solutions.

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 104
Public document

Figure 44: Two Ring Bottleneck Topology

7.1.2 Scale of the network topologies
The scale of the network topology is controlled by two parameters, the width (𝑚) and height (ℎ). For

the evaluation infrastructure all the available combinations (49) between 𝑚 and ℎ were utilized, with

both 𝑚 and ℎ varying from 4 to 10.

7.1.3 QoS requirements
The objective of this section is to present the rational and the assumptions that were made in order to

extract the QoS requirements of the hosts. The QoS requirements for various applications are

presented in section 7.1.3.1, while section 7.1.3.2 presents the modelling of the QoS requirements

with respect to the evaluation framework.

7.1.3.1 Definition of QoS requirements

In order to make the evaluation framework specified for EPES applications, the types of the various

hosts and their respective QoS requirements were selected based on sources that were found in the

literature regarding the EPES QoS requirements. Specifically, table 22 presents a summary of the

information gathered from the following sources [64] [65] [66] [67] [68]. Requirements regarding jitter

in EPES related applications were not found in the literature. From [69] the maximum acceptable value

for jitter regarding VoIP applications is set to 30ms while the delay to 150ms. Given that the quality of

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 105
Public document

VoIP applications is highly affected by jitter, the jitter requirements for all the applications bellow were

specified as the 10 percent of the required latency.

Table 24 QoS requirements in applications related to an EPES

Asset Type Application Requirements

 Bandwidth6
(Mbps)

Delay
(ms)

Jitter
(ms)

Packet Loss
(%)

Security
(Categorical)

PMU

PMU to PDC data
transfer

0.064, 0.088,
0.128, 0.176,
0.181, 0.362

20 2 99,99 High

State Estimation >> 1000 100 >> >>

Transient
Stability

>> 100 10 >> >>

Small Signal
Stability

>> 1000 100 >> >>

Voltage Stability >> 1000 100 >> >>

Postmortem
analysis

>> N/A N/A >> >>

AMI (Smart
Meters)

Various functions 0.01 – 0.5 2000-
15000

200-
1500

99.99 High

Multiple Demand
Response

0.014 – 0.1 500 50 99.99 High

Multiple Wide Area
Situational
Awareness

0.6 – 1.5 20-200 2-20 99.99 High

Multiple Distribution
Energy
Resources and
Storage

0.0096 – 0.056 20-15000 2-1500 99.99 High

Multiple Electric
Transportation

0.1 2000-
15000

200-
1500

99.99 Medium

Multiple Distribution Grid
Management

0.0096 – 0.1 100-2000 10-200 99.99 High

Distributed
Agents

Multi Agent
applications7

0.01 – 0.1 50 5 99.99 High

7.1.3.2 Modelling of QoS requirements

Taking into consideration Table 22 that was presented in section 7.1.3.1, the most demanding

applications were filtered and were used for the evaluation framework. As a second step, the assets

of the EPES that will perform the aforementioned applications were selected. The filtered applications

and the assets that will perform the applications are the following:

Table 25 Filtered applications and the required assets

Application Source asset Destination asset

6 The required bandwidth of the PMU depends on the frames/sec ratio and the number of phasors. The values
were taken from [68] and where multiplied by a factor of 2 in order to take into account the bandwidth
overheap that would be introduced by encrypting the data.
7 The requirements regarding applications that are based on Multi Agent architectures were extracted from
tools that will be used in the project, such as MAS tool.

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 106
Public document

PMU to PDC data transfer PMU PDC
Transient Stability PMU Application Servers

Wide Area Situational Awareness PDC SCADA

Distribution Energy Resources and Storage Smart meters, RTUs,
IEDs

SCADA, Agents

Distribution Grid Management Smart meters, RTUs,
IEDs

SCADA, Agents

Multi Agent applications Agents Agents, SCADA

After defining the applications and the assets that will be included in the evaluation framework, the

next step is quantify the ratio of each specific class of the assets with respect to the total number the

assets. It should be noted here that the SCADA for all the experiments is only 1 and is places at the tip

of the ring. The following table presents the percentage of presence for each type of asset.

Table 26 Ratio of each type of asset with respect to the total number of assets

SCADA PMU PDC IEDS RTUs Smart Meters Application Servers Agents

1 15% 2% 30% 30% 10% 3% 10%

Assumptions

The following assumptions, which are derived from table 23, apply in the evaluation framework:

1) All agents can communicate with the rest of the agents

2) The agents communicate only with agents and the SCADA

3) Smart meters, RTUs and IEDs communicate with SCADA and agents

4) PMUs communicate with application servers and PDCs

5) PDCs communicate with SCADA

Most of the QoS requirements, as shown in table 22, are not crisp values but lie in a closed range of

values. Therefore, the QoS requirements were transformed to crisp values by uniformly sampling a

number from the given range. It should be noted that the upper bound of their range for latency and

jitter requirements was thresholder to 120 ms and 12ms respectively if it was higher than the

aforementioned threshold. The reason that this threshold applied is to include in the evaluation

framework only the most demanding applications.

7.1.4 Modelling the status of the network
This section presents the modelling of the status of each switch in the network. Based on [70] the

typical delay value for SDN switch is 7.5μs and support duplex mode. The delay in our evaluation

framework was set from 0.5ms up to 4ms. For the evaluation framework, delay, jitter, packet loss

percentage and the security level of each switch was split into multiple categories and probabilities

assigned on each category in order to sample a category. Delay and packet loss are represented as lists

of ranges. After the category has been sampled the value is uniformly sampled from the selected range.

Table 25 presents the categories and the distribution of the probabilities for each metric that describes

the status of each switch.

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 107
Public document

Metric Categories Distribution of
probabilities

Delay (ms) [(0.5, 0.1), (1, 1.5), (1.5,2), (2,2.5), (2.5,3), (3., 3.5), (3.5, 4)] Uniform

Jitter (int)8 [2, 3, 4, 5] [10%, 20%, 30%,
40%]

Packet loss (%) [(0, 0.01), (0.01, 0.02), (0.02, 0.05), (0.05, 0.1)] [30%, 20%, 30%,
20%]

Security (int) [1, 2, 3] [70%, 20%, 10%]

7.1.5 Comparison of EDAE’s modelling with something
The work of [63] is the most recent attempt to solve the re-routing problem in order to produce paths

that are characterized by low delay and packet loss values and in the same time they try to avoid traffic

congestion to occur. In order to do so, the authors of [63], make use of genetic algorithms and

specifically NSGA II [71]. The major differences between EDAE’s mathematical formulation and the one

presented in [63] are the following.

1) EDAE includes in its problem two additional objectives, jitter and security.

2) EDAE formulates the problem as a Multi Objective problem with constraints, while the

aforementioned work is not constrained.

3) EDAE thresholds the optimal solution per objective, whenever the objective is over-achieved

by a factor of 20% as shown in 6.3.2.2.2.

4) The final difference is that EDAEs uses a dynamic and relativistic representation with repair of

the chromosomes while in the work of [63] the representation is absolute. The differences

between the relativistic representation and the absolute are described in 6.3.2.2.2.

7.2 Results over the evaluation framework
This section presents the results for both EDAEs modelling and the one used in [63]. The aspects that

are covered through the experiments are the computational time of each approach, the success ratio

of the objectives and the capability to manage the available resources. The structure of the section is

the following. Subsection 7.2.1 describes the evaluation details. Subsections 7.2.2 presents the results

that cover the aspect of the computational time, while subsection 7.2.3 covers the results regarding

the success ratio of the objectives and the resource management.

7.2.1 Evaluation details

For each topology, ORB and TRB, the values of width (𝑚) and height (ℎ) range from 4 to 10 which

results in 49 combinations per topology structure. For each pair of (𝑚,ℎ) the experiment repeated 50

times. For each number of iteration and (𝑚, ℎ) pair a unique seed was created in order to ensure that

both algorithms are tested on topologies with the exact same network status. The results regarding

the execution time were concentrated and presented aggregated using mean, standard deviation, min

and max values. The results regarding the QoS objectives are shown as box plots. Three box plots are

produces for each topology configuration, the FAIL, DEV and Over.Alloc. For both the modelling

approaches the same genetic algorithm with relativistic chromosome representation was utilized. Fail

box plot shows the percentage of the applications for which the specific requirement is not met. The

DEV box plot shows the percentage of the deviation from the specific requirement. Finally, Over.Alloc

box plot shows the percentage that each specific requirement is covered. The values of over alloc that

8 The jitter is computed by dividing the delay metric with the integer that was sampled.

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 108
Public document

are closer to threshold of the objectives, which was set as 20%, are better since the paths do not over

allocate resources to applications that don’t demand it.

7.2.2 Computational time
This section presents statistics regaring the computational time required to construct a path for each

given topology for both modelling approaches.

As it can be seen the performance for both the modelling approaches is almost identical. The modelling

approach of [63] has slightly lower execution time, which is expected since the number of objectives

is 3 without constraints, while EDAE’s objectives are 5 with constraints and also because the filtering

of the Pareto front solutions is not performed for the modelling approach of [63]. It can be seen that

the average execution time and the standard deviation, increases linear with a slope near to 0.5, since

for a topology with two times more nodes the increase in average and standard deviation of execution

time is slightly less that two times more. As far as concerns the maximum values it can be seen that

also the increase of executional time is linear with respect to the number of nodes but with a slope

close to 3. Some spikes, and deviations from the linear increasing pattern are observed and are subject

to the stochastic nature of the genetics algorithms. Finally, the aforementioned comments apply for

both topologies.

ORB Topology:

Figure 45: Execution time to find a path for a pair of hosts for a specific topology for EDAE (ORB)

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 109
Public document

Figure 46: Execution time to find a path for a pair of hosts for a specific topology for [63] (ORB)

TRB Topology

Figure 47: Execution time to find a path for a pair of hosts for a specific topology for EDAE (TRB)

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 110
Public document

Figure 48: Execution time to find a path for a pair of hosts for a specific topology for [63] (TRB)

7.2.3 Objective success ratio and resource management
This section presents boxplots for each objective for each topology. The results are depicted in sections

7.2.3.1, 7.2.3.2, 7.2.3.3, 7.2.3.4 and 7.2.3.5 for delay, jitter, bandwidth, packet loss and security

objectives respectively.

The percentage of the applications that EDAE’s approach failed to find a path that meets the delay

requirements is between is 2 to 4 times, depending on the (m,h) configuration , less than [63]. The

deviation from the requirement expressed as percentages are 2 to 10 times less that [63]. Finally, in

almost all cases EDAE was able to find paths that utilize less resources than [63].

The results regarding Jitter, as shown in 7.2.3.2, are identical for both the algorithms and none of the

m produces paths that violate the jitter constraints. Even though EDAE has smaller values in most cases

regarding the over allocation of jitter, those values are negligible. With respect to the given evaluation

framework, Jitter seems to be easily covered, since [63] does not take into account jitter objective and

stills does not violate this constraint.

It can be clearly shown that EDAE outperforms [63] in all cases for both topologies by means of

bandwidth and packet loss percentage. Specifically, for TRB topology EDAE is able to produce paths

with the required demand on bandwidth on the total number of the cases.

Finally, as it was expected, EDAE outperforms [63] in security requirements, since [63] does not take

into account those objectives. Nevertheless, the diagrams are included to showcase EDAE’s

performance and to validate that indeed that security is optimized.

Conclusions

Inducing constraints in the mathematical modelling regarding the optimization of QoS requirements

results in superior results. Additionaly, modelling the re-routing problem as a Multi Objective with

constraints allows someone to increase the number of objectives and still have better results than a

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 111
Public document

Multi Objective problem with less objectives and not constraints. Finally, the thresholding that was

introduced in the definition of the objective functions and the filtering of the Pareto front solutions

are capable to produce solutions that exploits the network resources more optimal while the QoS

requirements are still preserved.

7.2.3.1 Delay objective

ORB topology

Figure 49: Statistics for delay objective for each topology [EDAE - (ORB)]

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 112
Public document

Figure 50: Statistics for delay objective for each topology [[63] - (ORB)]

TRB Topology

Figure 51: Statistics for delay objective for each topology [EDAE - (TRB)])

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 113
Public document

Figure 52: Statistics for delay objective for each topology [[63] - (TRB)])

7.2.3.2 Jitter objective

ORB Topology

Figure 53: Statistics for jitter objective for each topology [EDAE - (ORB)])

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 114
Public document

Figure 54: Statistics for jitter objective for each topology [[63] - (ORB)])

TRB Topology

Figure 55: Statistics for jitter objective for each topology [EDAE - (TRB)])

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 115
Public document

Figure 56: Statistics for jitter objective for each topology [[63] - (TRB)])

7.2.3.3 Bandwidth objective

ORB Topology

Figure 57: Statistics for banwidth objective for each topology [EDAE - (ORB)])

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 116
Public document

Figure 58: Statistics for banwidth objective for each topology [[63] - (ORB)])

TRB Topology

Figure 59: Statistics for banwidth objective for each topology [EDAE - (TRB)])

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 117
Public document

Figure 60: Statistics for banwidth objective for each topology [[63] - (TRB)])

7.2.3.4 Packet loss objective

ORB Topology

Figure 61: Statistics for packet loss objective for each topology [EDAE - (ORB)])

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 118
Public document

Figure 62: Statistics for packet loss objective for each topology [[63] - (ORB)])

TRB Topology

Figure 63: Statistics for packet loss objective for each topology [EDAE - (TRB)])

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 119
Public document

Figure 64: Statistics for packet loss objective for each topology [[63] - (TRB)])

7.2.3.5 Security objective

ORB Topology

Figure 65: Statistics for security objective for each topology [EDAE - (ORB)])

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 120
Public document

Figure 66: Statistics for security objective for each topology [[63] - (ORB)])

TRB Topology

Figure 67: Statistics for security objective for each topology [EDAE - (ORB)])

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 121
Public document

Figure 68: Statistics for security objective for each topology [[63] - (TRB)])

7.3 Evaluation framework for the maximization of the EPES observability
This section presents the comparative tests between our two proposed MILP algorithms and the MILP

algorithm proposed in [59]. Qu et al. in [59] proposed a MILP formulation which is based on

neighbouring PMUs. In details, their solution assigns one PMU from each neighbourhood to a PDC,

when a PDC is compromised. The objective of their formulation is to select the minimum pairs of PDC

and PMU.

Two differences exist between our two MILP algorithms and the proposed one in [59]. First, both in

our two MILPs our objective function is to select the PMU and PDC pairs that minimize the latency of

the network. Second, we reassign all the PMUs to the leftover PDCs if a PDC is compromised. Structure

of the MILP evaluation topology

For the evaluation of the algorithms, we used the modelled IEEE 30 Bus system as in [59]. The topology

consists of 30 PMUs and 10 PDCs. Each PDC is connected to a router.

Assumptions

The following assumptions apply in the evaluation framework:

1. Each PDC can connect up to 20 PMUs

2. Each PMU offers a traffic load of 10000 Mbps

3. The latency between each PMU-PDC path is set from 0.5ms up to 4ms as it is presented in

Table 25 in section 7.1.4.

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 122
Public document

The evaluation of the three optimization models is done in terms of the MILP’s computation time and

the average latency of the network after the matchmaking. For the experiments, we disconnect 3 to 8

PDCs of the total 10. For each number of disconnected PDCs we run 50 experiments since the latency

of the network varies. For each experiment, we randomly chose the compromised PDCs. Table 25

depicts the results:

Table 27: Evaluation results of MILP formulations

 Number of disconnected PDCs 3 5 6 7 8

Qu et al. MILP [59]

Avg. Computational Time (s)
0.051

0.053

0.032

0.030

0.029

Avg. Latency (ms) 21.80 22.00 22.16 21.90 21.10

Bandwidth
constrained MILP

Avg. Computational Time (s)
0.032

0.029

0.027

0.022

0.024

Avg. Latency (ms) 8.82 10.46 11.71 12.998 16.10

PMU constrained
MILP

Avg. Computational Time (s)
0.034

0.036

0.026

0.024

0.022

Avg. Latency (ms) 8.84 10.31 11.65 13.28 16.04

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 123
Public document

8 Assets inventory database design and implementation
Before the adoption of any Self-healing solution, EPES already count on its proper databases to

manages the own functionality related to some aspect of the asset management and operation. The

asset inventory database that it addressed in this paragraph, is a cross component which not only

supplies information to the Application/Management Plane and the Control / Management Plane

layers but also interacts with EPES in order to obtain information about those same Grid assets. This

last interaction is depicted (see “Update Grid Info (via API)”) in the following scenario diagram already

included in the D2.3 document [43]. In the SDN-microSENSE Self-healing project, this interaction will

be manually done for each use case, at the beginning of the use case life time. In future solution

adoptions, this will be the way to synchronize the real Grid assets from the EPES with the AIDB and it

in turn shared with the SDN-microSENSE architecture.

Figure 69: AIDB - Asset Inventory update

For the SDN asset inventorying, it is designed a mechanism which allows us to inventory all SDN assets

automatically, without human intervention by the mean of the AIDB daemon. This in turn will queries

to the SDN Controller through the Northbound interface all SDN Switches and Host connected to the

SDN network. These information flows are depicted above using the name “Request Network

Information” and “Updated Network Information”.

These components access to the AIDB is via API, notwithstanding a web application interface is also

available to allow the Self-Healing User to query assets details. In the following diagram, internal AIDB

component have been depicted:

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 124
Public document

Figure 70: AIBD internal components

8.1 Interface model
AIDB keeps interfaces with SDN-C, EDAE, EDAE Dashboard, and S-RAF. The next figure contains all

interfaces where the AIDB is involved, as well as the identification of both input and output

information.

These interfaces are been addressed previously. Architecture and detailed design, in the following

tables:

• Table 5: AIDB-1

• Table 6: AIDB-2

• Table 8: AIDB-1 interface for S-RAF

• Table 10: AIDB-3 interface

• Table 7: AIDB-1

LDAP
(OpenLDAP)

• Asset identification
• Geographic location
• Hierarchical relationships

• Grid-network topology
• SDN topology

• Self-healing solutions
• SDN topology

• Data cache to general purposes
• Dashboard visualization

performance improvements
• Last measure value

• API User credentials
• Web User credentials
• SDN controller endpoint and

credentialsAIDB User
interface

AIDB daemon

• SDN asset detection

• SDN asset inventorying

Control/Mngmnt.
Plane Interfaces

Northbound

AIDB

Network topology
summary

EDAE SDN-C AIDB Updating Interface

EDAE
Network topology

changes

Advanced SDN Topology
information

EDAE-
Dashboard

Get all the SDN asset
information

S-RAF S-RAF Risk asset summary

Figure 71: Interfaces with AIDB

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 125
Public document

8.2 AIDB Information
According to the ISO 27001 definition, an asset is something that has value to the organization. An

asset extends beyond physical goods or hardware, and includes software, information, people, and

reputation. More concretely, the AIDB information encompasses both ICT network and grid assets. In

the microSENSE Self-healing project the ICT network is based on SDN architecture. Figure 72 depicts

an insightful summary of the information managed by the AIDB.

Figure 72: AIDB - Information areas

• SDN assets. These entities stored are SDN Switches, Hosts and SDN Controllers.

• SDN topology. The AIDB has to store relationships among switch-switch and switch-host

assets. Additionally, the relationship between host-SDN Controller is also stored aims to

register what SDN Controllers are connected to each subnetwork.

• Grid assets. These entities are defined according to the CIM standard.

• Grid model. The Islanding and Energy balance mechanisms, that are included in the Self-

healing features, are needed additional information which are not actually grid assets. In fact,

this information models electric abstractions, things such as Impedances, External grids…

• Grid topology. The electric topology is a part of the grid model information.

• SDN – Grid topology. These relationships are among host-grid assets. In these relationships

the host side models the edge computing (RTU, PLC, Smart meters, gateways) which are

involved in telemetry processes, whereas the grid side is about the grid assets from which the

edge computer gets measures, or to which sends control orders. This information is

paramount to figure out the grid asset impacted by an ICT attack.

8.2.1 SDN asset modelling
In the microSENSE Self-healing architecture, the SDN Control layer supplies a first-hand information

about the current status of SDN assets and the relationships among it. Having this into account it brings

up following questions: Why is it really needed an SDN asset storage into a database? What difference

does it make? …As result of the microSENSE Self-healing project, we have convened the SDN asset

database to cover following features the most partners have considered as paramount:

ICT network assets Electrical Grid assets

RTU (Edge device)

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 126
Public document

• SDN asset history. The AIDB allows us to know SDN change logs. This information cannot be

provided by the Northbound interface owing to the subjacent SDN protocol, Openflow, does

not manages historic information. In fact, the SDN protocol can provide information about

what new host or switch has been detected, notwithstanding this eventual information is not

internally saved.

• Hosts with several Ethernet connections. In the SDN protocols, there are not difference

between a host and an Ethernet card. In fact, if we have a host with two Ethernet cards the

SDN layer will not manage information about that host and will consider only two hosts that

actually are Ethernet cards. For companies where this information is relevant, the AIDB can

help to model this situation nesting a host within another host. The host-leaf will be the

Ethernet card and the parent will actually be the host.

• Additional information. The AIDB is the selected place to storage additional information which

is not provided by neither the subjacent SDN protocol, OpenFlow, nor the Northbound

interface. Information related to maintenance and operator users of the SDN infrastructure

cloud be stored in the AIDB. For instance, physic location, operator comments, last revision

date, last incidents, pending work orders…

• Multi SDN subnetwork Management. The SDN information is enclosed in an SDN scope. This

scope is actually made up of switches and hosts. All of these are managed by an only SDN

Controller. It gets paramount the multi subnetwork management due to a medium-high ICT

infrastructure counts on several subnetworks. The AIDB allows to share SDN subnetworks

information providing a centralized management.

• SDN Controller location. The SDN Controller is indeed a service which is running in a host

connected to a switch of the SDN network. The host where the SDN controller is running is a

relevant information to figure out the SDN subnetworks. The AIDB stores all SDN controller

locations and even the Northbound endpoint and credentials. Notice the Northbound

credentials will be stored in a centralized LDAP used by all AIDB components.

• Vulnerability information. The vulnerability information which is managed by the eVul tool, is

actually stored in the AIDB. The vulnerability API queries are addressed in this document.

On the right, an example of SDN network has been

depicted (Figure 73). It can see, five switches, three

hosts and the location of an SDN Controller. Blue

lines depict topologic relationships, those

relationships are bidirectional and indicate a direct

communication (wired or not) between two SDN

Assets. Yellow lines indicate a “belong to”

relationship. Basing on the picture, we can say that

SDN Controller manages a subnetwork made up of

five switches and 3 hosts. Remember only an SDN

Controller is needed to manage all the SDN

subnetworks.

Figure 73: AIDB - SDN asset inventory example

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 127
Public document

Database description considerations

Next paragraphs contain the SDN asset data model. For a better understanding, it is relevant having

into account following considerations:

• Asset generalization. The AIDB implementation is based on an open model definition where

each asset regardless its type inherits a set of generic properties which are addressed in the

generic asset paragraph. This way is often used by asset inventory databases.

• Mandatory/optional fields. Mandatory/optional fields do not have to be considered as

mandatory in other AIDB implementations.

• Fix values. Some fields contain a fix value. These fields are included due to the open asset

definition which allows software developers to implement features in unified way.

• SDN asset identifiers. For future microSENSE Self-healing implementations, the SDN asset IDs

ought to be the MAC address returned by the own Northbound interface, this in turn is

returned as Datapath Id by SDN Controller, and this in turn by SDN switches. This is the best

way to guarantee switches and host identifications, with oneness and immutable value.

Nonetheless, aims to easy the identification by human during the implementation of

microSENSE use cases, we have decided employing the IP address rather than the MAC address

as SDN asset identifier. Hence, in use case implementations, IP address must be fix values.

• Relational and graph databases. Switches, hosts and SDN Controller information is stored into

a relational database, PostgreSQL, whereas SDN topology is stored in a graph database. The

microSENSE Self-healing project does not intend to establish the best storage way. This design

should be considered as a possible implementation option.

• ExternalId/InternalId. The ExternalId is an identifier which is environment independent

whereas the InternalId depends on the environment. In the descriptions, the InternalId has

been hidden. This mechanism allows the software promotion along different development

environments (development, integrated tests, preproduction and production…)

• Credential information. All credential managed by the AIDB will be stored in a centralized

LDAP database. Hence, all databases: PostgreSQL, Mongo, Neo4J, Redis will not contain

information such as user id, password.

8.2.1.1 Switch

This entity models switches devices belonging to the ICT infrastructure. Though the microSENSE

project is based on the SDN assets, the switch definition is also valid for no-SDN switches.

Table 28: AIDB – Switch table definition

Field Req. FieldId Type Description

ExternalId Yes InvExternalId String See SDN asset identifiers consideration.

Asset type Yes InvAssetType String Fix value 'SDN_SWITCH'

Net level Yes InvNetLevel String Fix value 'SWITCH_LAYER'

Scope Yes InvScope String It indicates the use case, i.e. ‘UC1’…’UC6’ (*)

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 128
Public document

Name No InvName String Human readable description of the switch

datapath.

Description No InvDescription String Any human comment

MAC Yes sdnMAC String Mac address it matches the Datapath ID up.

IP Yes sdnIP String IP address

Manufacturer No sdnManufacturer String This value is automatically obtained through

the Northbound interface

Hardware

description

No sdnHwDesc String This value is automatically obtained through

the Northbound interface

Software

description

No sdnSwDesc String This value is automatically obtained through

the Northbound interface

serial_num No serial_num String Serial number

(*) Notice, though there is a field to indicate the use case more than one subnetwork can be defined

within a scope.

8.2.1.2 Host

In the AIDB, the host entity can refer to either a physical host or an Ethernet card. As already

mentioned, an SDN switch is not able to distinguish between an Ethernet card and the physic host. If

this detail is relevant for the SDN operators, the AIDB might model this situation with two hosts: a host

for the physic host and other hosts for each Ethernet card belonging to.

Regarding physical hosts, there is not a field devoted to the type of host (PC, Server, PLC, smart

meters…). This kind of information is not mandatory to a minimal solution for the microSENSE Self-

healing. Nevertheless, the AIDB User can register it in the Name or Description fields somehow. On the

contrary, knowing if a host actually is an Edge-Computer like a RTU, PLC, Smart meter…, is a valuable

information to the SDN-microSENSE Self-healing project. In fact, these edge computers are responsible

for the data acquisition in field. The AIDB does not store any especial flag to indicate this, however it

counts on mechanisms to find out what host plays the edge computer role in the SDN network. This

mechanism is addressed in the paragraph SDN and Grid asset relationships. Table 29 gathers the Host

table definition.

Table 29: AIDB – Host table definition

Field Req. FieldId Type Description

ExternalId Yes InvExternalId String See SDN asset identifiers consideration.

Asset type Yes InvAssetType String Fix value 'SDN_HOST'

Net level Yes InvNetLevel String Fix value 'HOST_LAYER'

Scope Yes InvScope String It indicates the use case, i.e. ‘UC1’…’UC6’

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 129
Public document

Name No InvName String Human readable description of the host.

Description No InvDescription String Any human comment. Here, the user can include any

comment, even can contain any text that could indicate the

host usage things such as ‘PLC’, ‘RTU’, ‘PMU’, ‘SCADA’,

‘SMARTMETER’.

MAC Yes sdnMAC String Mac address it matches the Datapath ID up.

IP Yes sdnIP String IP address

ParentHost No InvFather String This field is used in two cases, with different meanings:

• Edge computer. If the Host is a Smart meter, PLC, or

RTU, this field might contain the ExternalId

corresponding to the SCADA or other high level

component to which the information is sent, or

control operations are received.

• Ethernet card. When the host is actually an Ethernet

card within a physic host, this field might contain the

ExternalId corresponding to the physic host.

8.2.1.3 SDN Controller

The SDN Controller is a software service which is bound to a host. That is the SDN network hub. This

definition is used by the AIDB daemon to find out SDN assets. The AIDB daemon queries all SDN

controllers registered in the database and makes a polling to get SDN information.

Table 30: AIDB – SDN Controller table definition

Field Mandatory FieldId Description

ExternalId Yes InvExternalId SDN Controller identifier

Asset type Yes InvAssetType Fix value 'SDN_CONTROLLER'

Description No InvDescription Any human comment

sdnDriver Yes sdnDriver This can be ‘Northbound’ | ‘Ryu’ | ‘floodlight’.

‘Northbound’ by default.

LDAP

Endpoint

Yes sdnEndpoint This reference to a LDAP entry which define the

credentials to access to Thirds party (url, user, pass)

8.2.2 SDN Topology

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 130
Public document

The SDN Topology managed by the AIDB is focussed on the connectivity among switch-switch and

switch-host. AIDB employs a database based on graphs, Neo4J, to store these relationships. This

database is arranged in nodes and arcs. Nodes can be both Switches and Hosts, whereas relationships

model the connectivity between a Switch/Host with other Switch. Relationships between Host-Host

are banned.

8.2.2.1 SDN Topology Asset node

The Node definition at least has to contain the SDN asset ExternalId to refer to the complete SDN asset

information stored in the relational database. Nevertheless, the node definition gathers some

information already stored in the relational database. This redundancy has been appraised by data

architects and it supplies some advantages. The approach is exploiting this information by software

components devoted to the graphic visualization of the SDN architecture and involving the relational

database only when needed, to consult asset details.

Table 31: AIDB – SDN topology asset node table definition

Field Req. FieldId Type Description

ExternalId Yes InvExternalId String See SDN asset identifiers consideration.

Asset type Yes InvAssetType String Fix value 'SDN_HOST'

Scope Yes InvScope String It indicates the use case, i.e. ‘UC1’…’UC6’

Name No InvName String Human readable description of the switch datapath.

MAC Yes sdnMAC String Mac address it matches the Datapath ID up.

IP Yes sdnIP String IP address

8.2.2.2 SDN Topology Relationship

Internally, the relationships have been modelled as directional way, i.e. there are one register for the

relationship NodeA-NodeB, and other for the NodeB-NodeA. This way allows us to add more detailed

information to each direction.

Table 32: AIDB – SDN Controller table definition

Field Req. FieldId Type Description

ExternalIdA Yes InvExternalIdA String ExternalId of the asset in the side A of the relationship.

ExternalIdB Yes InvExternalIdB String ExternalId of the asset in the side B of the relationship.

Enable No InvEnable Boolean It is a flag that indicates if the relationship is valid.

Weight No sdnWeight Number Weight of the relationship. This value will be used to the

path ranking.

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 131
Public document

MaxLatency No sdnMaxLatency Number Max communication latency (miliseconds) from the asset

identified by ExternalA towards the asset identified by

ExternalB.

Bandwidth No sdnBandWidth Number Communication bandwidth (in bps) from the asset

identified by ExternalA towards the asset identified by

ExternalB.

8.2.3 Grid asset modelling
The first approach about Grid asset modelling was focussed on the CIM protocol, IEC 61968 as the best

way to model Grid assets. A later deep dive into the informational requirements of the Self-healing

algorithm brought up that the CIM model was not enough. Basically, this gap is owing to the Electrical

models which are used by the OPF, Islanding and Energy Balance algorithms require information that

are not in CIM. In fact, these algorithms employ following entities which do not entirely exist in the

CIM model:

• External grid. The CIM’s entities “Equivalent Network”, “Equivalent load” and

“Equivalent Source” do not contain the data required by the Grid model such as:

o Voltage - voltage at the slack node in per unit.

o Voltage degree - voltage angle at the slack node in degrees

• Impedance. The impedance is a property which is present in several grid assets. However, it is

not actually an asset. In this sense, the entity Impedance managed by grid model is useful to

electric abstract a section of the grid. This could be modelled using a fictitious “AC line

segment” in CIM but this compels the AIDB we have a mix of real and fictitious assets in CIM.

• Ward. A ward equivalent is a combination of an impedance load and a PQ load. In the same

way, this entity is an electric abstraction of part of the grid.

o Active power of the PQ load

o Reactive power of the PQ load

o Active power of the impedance load in kW at 1.pu voltage

o Reactive power of the impedance load in kVAr at 1.pu voltage

• Extended ward. A ward equivalent is a combination of an impedance load, a PQ load and as

voltage source with an internal impedance. Newly, this entity is an abstraction of part of the

electrical grid.

• Storage systems. CIM standard is updating to add this entity in the model and others related

to the distributed generation through DERs.

Essentially, the problem is due to the Self-healing algorithms requires an electrical model of the

Grid for electrical analysis whereas the CIM protocol offers a model more suitable for the asset

management. The electrical model is deep-in addressed in the EDAE tool description. Here,

software design is focussed on searching the closet standard format to the desired grid model and

the software base chosen to store it. As result of this research, in the state of art we have found

the electric model pandaPower. It is not only a suitable model for our purposes but also provides

a compatible software library that supplies several algorithms such Status Estimation, OPF and

Short-circuit, as well as geographic location and representation of the Grid. Next, the pandaPower

entities have been enumerated:

This project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement No 833955

• Bus

• Line

• Switch

• External grid

• Transformer

• Three winding transformer

• Generator

• Shunt

• Impedance

• Ward

• Extended ward

• DC Line

• Measurement

• Storage

The pandaPower model format can be gathered in an only JSON file. The file structure is very

similar to the panda dataframe definition where basic entities (already mentioned) are defined like

datasets. The entities count also on catalogue definition with model specifications which in turn

have got preconfigured values for an entity type. This configuration is referenced by a name which

might be used in the electric entity.

8.2.4 Grid topology
The grid topology is partially covered by the CIM due to the electric abstractions are not considered.

Fortunately, the pandaPower includes too the electric topology model suitable for Self-Healing

algorithms. The pandapower provides a function to translate pandapower networks into network

graphs. Once the electric network is translated into an abstract network graph following features and

more are available:

• Find the shortest path between two nodes.

• Calculate the shortest distance between a source bus and all buses connected to it.

• Find all buses that are connected to a certain bus.

• Cluster all buses graph that are connected to each other.

• Find if there are cycles in a network.

• Find buses that are not connected to an external grid.

AIDB does not store electric topology information in the Graph-oriented database. In contrast, entire

information about Grid

8.2.5 SDN and Grid asset relationships
The AIDB manages relationships among an SDN host and a set of Grid assets. In the SDN side, the

relationship involves an edge device (as well as edge computer device) such as an RTU, PLC or smart

meter, even an inverter, whereas in the Grid side, any grid asset can be related. This relationship

models two reality aspects:

• Monitoring. The edge device can get physic measures or status about a grid asset.

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 133
Public document

• Control. The edge device can receive orders which itself in turn can make comply against a grid
asset. For instance, open/close orders against a grid switch, transformer tap position.

The AIDB distinguishes between these two realities, understanding that if a relation exists from Grid

Asset towards an SDN Host then the Grid monitoring operation will be able. By contrast, if the

relationship is from an SDN Host towards a Grid Asset then a Grid control operation will be able.

Internally, the relationships have been modelled as directional way, i.e. there are one register for the

relationship NodeA-NodeB, and other for the NodeB-NodeA. This design aspect is motived for

unification purposes, allowing to employ the same graph searching algorithm in the SDN-SDN, and the

SDN-GRID topology queries.

Table 33: AIDB – SDN – Grid relationship table definition

Field Req. FieldId Type Description

ExternalIdA Yes InvExternalIdA String ExternalId of the SDN/Grid asset in the side A of the

relationship.

ExternalIdB Yes InvExternalIdB String ExternalId of the Grid/SDN asset in the side B of the

relationship.

Enable No InvEnable Boolean It is a flag that indicates if the relationship is valid.

8.2.6 Vulnerability information
The AIDB contains information about the asset vulnerabilities. Although, vulnerabilities are detected

and managed by the eVul tool which though belongs to the WP3, the risk levels related to an asset is

stored into the AIDB. An asset can have a few open vulnerabilities each one of them in a different

state. The Figure 74 depicts the relationship a Host and a Vulnerability.

Figure 74: Vulnerability info

All of SDN Self-Healing vulnerabilities follows the Common Vulnerabilities and Exposures codification,

CVE-ID which are gathered in the Open Source Vulnerability Database (OSVDB). Each vulnerability is

bound to a metric known as Common Vulnerability Scoring System, CVSS. Table 34 contains CVSS

ranges and his severity or risk level.

Table 34: Vulnerability risk level ranges

CVSS Severity

VULNERABILITY

- CVE_ID

- CVSS

- Port

- RiskLevel

- Status

HOST

- IP

- MAC

HOST

- IP

- MAC

HOST

- IP

- MAC

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 134
Public document

0 Informative

(0, 4) Low

[4,7) Medium

[7,9) High
[9,10] Critical

Nonetheless, the vulnerability manager, eVul, might intentionally change the risk level having into

account concrete hosts. Below the vulnerability table definition is included:

Table 35: AIDB – vulnerability information table definition

Field Req. FieldId Type Description

ExternalIdA Yes InvExternalId String ExternalId of the SDN Host in which a vulnerability has been

detected.

IP No IP String Host IP

MAC No MAC String Ethernet MAC

CVE No CVE_ID String Common Vulnerabilities and Exposures identifier

CVSS Yes CVSS Number Common Vulnerability Scoring System

Risk Level Yes RiskLevel String It indicates the severity of the vulnerability according to the

Table 34: Vulnerability risk level ranges.

Port No Port Number Port number to which the vulnerability has been detected

Status No Status String It indicates the state according the vulnerability life cycle.

Vulnerability manager component creates a new instance workflow to follow up every detected

vulnerability. Below, the vulnerability life cycle is depicted by a state diagram. The Vulnerability API

will return only active vulnerabilities.

Figure 75: AIDB/Vulnerability manager - Vulnerability life cycle states

Active

New

Notified

Assumed

Rejected

Fixed

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 135
Public document

8.3 Asset inventory database Implementation

8.3.1 Architecture
The AIDB is based on open source components and additional microservices devised and implemented

in Java for the SDN Self-healing project purposes (Table 36). All those components can be deployed in

both local and cloud environments by the mean of Docker compose containers. Regarding the

cloudification, it deems the AIDB component as cloud agnostic software, free of dependences on

specific cloud platforms.

Table 36: List of components used for the AIDB

Base software component Version

Java OpenJDK 14
PostgreSQL v9.4.8

Mongo DB v4.0.16

Neo4J v3.5.17

REDIS v4.0.5

LDAP LDAP

8.3.2 LDAP
The main security consideration in AIDB is avoiding the storage of credential information in the own

AIDB database. For this, a devoted database will be used to store credential information for following

purposes:

• AIDB Web application User credentials. This will be used to authentication of Web Users.

• AIDB API services User credentials. This will be used to authentication of API Users.

• Thirds party credentials. This will be used to gather the endpoint, the user, and password of
external APIs which are employed by the AIDB. This need brought up to SDN Controller API.

A side effect of the LDAP usage is the User responsible for the security maintenance will be able to

admin the credentials regardless the AIDB Web application and any AIDB logic.

8.4 Asset inventory API
AIBD allows other tools to access the functionality using a few API services. The functionality offers a

lot of usage possibilities which have been drawn up below:

• Asset query operations. This functionality allows to know SDN assets stored in the database
including its relationships SDN-SDN assets and SDN-Grid assets.

o Lookup every SDN assets. This is the best way to get the entire ICT infrastructure
o Lookup every SDN assets belonging to a certain type SDN Switch, Hosts or SDN

controller.
o Lookup every Grid assets. To get grid asset information, the grid model query is

recommended. This functionality is the way to get the relationships among Grid assets
and SDN Hosts.

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 136
Public document

• Asset update operations.
o Create an SDN Switch, an SDN Host or an SDN Controller, including relationships with

other assets
o Update properties of a specified SDN Asset
o Update properties of a specified Grid Asset. This functionality is not recommended

due to grid asset will be managed through the grid model operations.

• Topology query operations.
o Lookup all immediate connected assets. Given an asset, this operation gets only that

assets to which are directly connected.
o Lookup all connected assets, starting from a given asset. In ICT terms, this functionality

returns the transitive closure of a given asset and answers the question whether and
asset is achievable from other. For instance, this operation allows to know from what
grid assets a RTU is able to get measures.

o Lookup all connected network assets. The topology manages two networks, SDN and
Grid. This operation is equal to the previous one, except only assets belonging to the
same network to the given asset will be returned. For instance, if the given asset is a
host then all achievable switches and host from it will be returned, and Grid assets
connected to some RTU or PLC will not be included.

• Grid model query operation. This service provides a complete grid model definition in json
format according to the pandapower library specifications. Grid asset properties, electric
abstraction properties, the electric topology, and geographic location are included in the same
json message.

• Grid model update operation. This service allows to store a complete grid model definition in
json format according to the pandapower library specifications. Grid asset properties, electric
abstraction properties, the electric topology, and geographic location are included in the same
json message.

• Open Vulnerability query. The AIDB stores asset vulnerabilities which have been detected by
the vulnerability tool, eVul. This information in offered by the AIDB for general purposes,
especially by the components belonging to the S-RAF.

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 137
Public document

8.4.1 Code lists
Table 37: AIDB - Asset type code list

Asset type Asset
Class

Asset Level

GRD_AC_LINE_SEGMENT Installation GRID_MODEL

GRD_BUSBAR_SECTION Installation GRID_MODEL

GRD_BUSBAR_SECTION Installation GRID_MODEL

GRD_DC_LINE_SEGMENT Element GRID_MODEL

GRD_EXTERNAL_GRID Installation GRID_MODEL

GRD_GENERATION_UNIT Element GRID_MODEL

GRD_GENERATION_UNIT Element GRID_MODEL

GRD_IMPEDANCE Element GRID_MODEL

GRD_LOAD Installation GRID_MODEL

GRD_SHUNT_COMPENSATOR Element GRID_MODEL

GRD_SWITCH Element GRID_MODEL

GRD_TRANSFORMER Element GRID_MODEL

GRD_TRANSFORMER Element GRID_MODEL

GRD_WARD Element GRID_MODEL

GRD_XWARD Element GRID_MODEL

INV_BATTERY Element GRID_MODEL

INV_SMARTMETER Element GRID_MODEL

SDN_CONTROLLER Element SDN_CONTROLLER_LAYER

SDN_HOST Element SDN_HOST_LAYER

SDN_SWITCH Element SDN_SWITCH_LAYER

Table 38: AIDB - Asset level code list

Asset Level

GRID_MODEL

SDN_CONTROLLER_LAYER

SDN_HOST_LAYER

SDN_SWITCH_LAYER

Table 39: AIDB - Asset status code list

Asset State Description

CONN_E Connected

DISCONN_E Disconnected

UNINST_E Uninstalled

WAREH_E Warehouse

Table 40: AIDB - Asset Attribute code list

Asset type Attribute codes
Any InvExternalId

InvAssetType

InvClass

InvName

InvDescription

InvState

InvScope

InvFather

SDN_SWITCH sdnManufacturer

sdnHwDesc

sdnSwDesc

SDN_HOST sdnIP

sdnMAC

SDN_CONTROLLER sdnEndpoint

sdnDriver

Notice, Grid asset attributes have been hidden in the code list due to entire grid asset definition will

be contained in the Grid model json format.

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 138
Public document

8.4.2 Data partitions
The AIDB is partitioned in 6 use cases, and counts on mechanisms that avoid the access to data

belonging to different use cases. For this, these partitions require the ExternalId independence, owing

to different asset belonging to different use cases might have got the same ExternalId. In fact, this is

likely to happen to emulated SDN environments by Mininet. In these cases, Mininet spawns the same

IP, MAC, and DIPD for hosts and switches for each new emulation. Thanks to the AIDB partitions those

identifiers will not get hindered among them and assets which have been created within a use case

cannot be seen from other use cases.

The API User setup stablishes a use case, except the administrator User who has a complete access.

Follow API return or manage information about all assets belonging to the use case to which the API

User belongs to.

8.4.3 AssetQuery()
This API returns asset information which match up several search criteria. These criteria compel the

AND logic, forcing all criteria have to be true to be included in the answer.

Table 41: AIDB – Asset query method

Field Type Req. Description

Request

invExternalId String No If filled, the query will return information about that asset whose
invExternalId matches with the given one.
Otherwise, every asset will be returned.

invName String No If filled, the query will return information about that asset whose
name matches with the given one.

installation YES/NO Yes Once Yes, and invExternalId is not informed, all installation assets
will be included in the answer.

element YES/NO Yes Once Yes, and invExternalId is not informed, all element assets will
be included in the answer.

topology YES/NO No If YES, the immediate relationships of each asset will be included in
the answer.

assetType String No When filled, the search is constrained to assets whose type contains
the assetType string. See Table 37

Level String No When filled, the search is constrained to assets whose level contains
the Level string.

Response

invExternalId String Yes Already mentioned

invClass String Yes INSTALLATION or ELEMENT. See Table 37

invAssetType String Yes See Table AIDB - Asset type code list.

invNetLevel String Yes Table AIDB - Asset level code list.

invFather String Yes This field is only for SDN_Controller type. In this case, this field
contains the externalId of the Host where the SDN controller is
running.

attributes: Array

Attribute String See Table 37

Value String Attribute string value
relationships: Array

relationshipId String Yes This is the internal id generated by the graph database.

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 139
Public document

externalIdA String Yes Identification of the asset which plays the source role in the
relationship.

externalIdB String Yes Identification of the asset which plays the target role in the
relationship.

sdnWeight Number No This field appears in relationships between both Switch-Switch and
Switch-Host.

sdnMaxLatency Number No Max communication latency (miliseconds) from the asset identified
by ExternalA towards the asset identified by ExternalB.

sdnBandWidth Number No Communication bandwidth (in bps) from the asset identified by
ExternalA towards the asset identified by ExternalB.

Example:

GET: https://apidemo.gridpilot.tech:8085/assetInventory/search?invExternalId=&installations=NO

&downstream=NO&topology=YES&assetType=SDN_HOST&invName=&elements=YES&level=SDN

8.4.4 Asset Create/Update/Delete()
This operation has got an interface quite similar to the response of the previous API. To deal with

different operations following considerations have to be taken into account:

• Creation. The creation operation is be made in two way depending on if the ExternalId is
informed or not.

o ExternalId is informed but not exist into the AIDB. In this case, the AIBD API will create
an asset using the given ExternalId.

o ExternalId is not informed. In this case, the AIDB will automatically generate a new
ExternalId. This option will linger on disable.

• Update. All provided attribute values will be updated for the asset whose ExternalId matches
up the given ExternalId.

• Delete. No physical deleting is possible in the AIDB. This operation is actually an update
operation where the attribute invState is set to the most suitable value. See the Table 39: AIDB
- Asset status code list.

Regarding the topology, following instruction have to be considered:

• Creation. To create a new relationship, the field relationshipId must be null and both
externalIdA and externalIdB must be informed pointing at valid assets.

• Update. In this case, the relationshipId must be informed and the rest of field values will be
updated into the graph database. It is possible a momentary disabling assignation a weight 0.

• Delete. In this case, the relationshipId must be informed and any of externalIdA or externalIdB
must be null. This will provoke the relationship is removed from the graph database and
certainly related assets will not be affected.

Table 42: AIDB - Create/Update/Delete asset operation methods

Field Type Req. Description

Request

invExternalId String Yes Already mentioned

invAssetType String Yes See Table 37: AIDB - Asset type code list

attributes: Array

https://apidemo.gridpilot.tech:8085/assetInventory/search?invExternalId=&installations=NO&downstream=NO&topology=YES&assetType=SDN_HOST&invName=&elements=YES&level=SDN
https://apidemo.gridpilot.tech:8085/assetInventory/search?invExternalId=&installations=NO&downstream=NO&topology=YES&assetType=SDN_HOST&invName=&elements=YES&level=SDN

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 140
Public document

Attribute String Yes See Table 40: AIDB - Asset Attribute code list
Value String No Attribute string value

relationships: Array

relationshipId String Yes This is the internal id generated by the graph database.

externalIdA String Yes Identification of the asset which plays the source role in the
relationship.

externalIdB String Yes Identification of the asset which plays the target role in the
relationship.

Enable YES/NO No Yes by default

sdnWeight Number No This field appears in relationships between both Switch-Switch and
Switch-Host.

sdnMaxLatency Number No Max communication latency (miliseconds) from the asset identified by
ExternalA towards the asset identified by ExternalB.

sdnBandWidth Number No Communication bandwidth (in bps) from the asset identified by
ExternalA towards the asset identified by ExternalB.

PUT: http://apidemo.gridpilot.tech:8085/assetInventory/update

8.4.5 TopologicQuery()
Table 43: AIDB – Topologic Query method

Field Type Req. Description
Request

invExternalId String No If filled, the topology search will start from that asset.
Otherwise, complete topology will be returned.

invExternalIdTarget String No If informed, the query will try to find out a path between the asset
identified by invExternalId and invExternalIdTarget. If that is not
exist the answer will be empty. If not informed, a broadcast search
will be returned, starting by the asset’s invExternalId.

installation YES/NO Yes Once Yes, relationships with installations will be included in the
answer.

element YES/NO Yes Once Yes, relationships with element will be included in the
answer.

downstream YES/NO No This field applies whether invExternalId is informed. If YES, the
query will make a deep-in search. Otherwise, only immediate
relationships will be returned.

border YES/NO No If YES, only relationships between SDN and Grid assets will be
included.

Response

The answer is the same to the AIDB – Asset query API response

GET: https://apidemo.gridpilot.tech:8085/assetInventory/search?invExternalId=0000000000000004

&invExternalIdTarget=&installations=NO&elements=YES&downstream=YES&topology=YES

http://apidemo.gridpilot.tech:8085/assetInventory/update
https://apidemo.gridpilot.tech:8085/assetInventory/search?invExternalId=0000000000000004&invExternalIdTarget=&installations=NO&elements=YES&downstream=YES&topology=YES
https://apidemo.gridpilot.tech:8085/assetInventory/search?invExternalId=0000000000000004&invExternalIdTarget=&installations=NO&elements=YES&downstream=YES&topology=YES

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 141
Public document

8.4.6 GridModelQuery()
This service will return a json message according to the pandapower specifications corresponding to

the use case to which the API User belongs.

Invocation example:

GET: https://apidemo.gridpilot.tech:8085/assetInventory/search?

8.4.7 GridModelUpdate()
This service allows to store into the AIDB the json file which contains the grid model. It will only

update the grid model of the use case to which the API User belongs.

Invocation example

PUT: http://apidemo.gridpilot.tech:8085/assetInventory/update

8.4.8 AssetRiskQuery()
This service allows to know the list of active vulnerabilities of hosts belonging to the infrastructure.

Notice, only active vulnerabilities with the max Risk Level by host will be returned. Hence, if a host

has several vulnerabilities only that one with max Risk Level will be returned.

Table 44: AIDB – Asset risk query method

Field Type Req. Description

Request

No input information is need for the query.

Response

invExternalId String No It is the ExternalId of the Asset.

invName String No It is the Name of the Asset.

invDescription String No Asset comments

sdnIP String Yes IP address of the Host
sdnMAC String No MAC address of the Host

cve_id String Yes Common Vulnerabilities and Exposures identifier

cvss_score Number Yes Common Vulnerability Scoring System

sdnPort Number No Port number to which the vulnerability has been detected

Invocation example:

GET: https://apidemo.gridpilot.tech:8085/assetInventory/asset_risk_level

[
 {
 "invExternalId":"10.0.0.1",
 "sdnIP":"10.0.0.1",
 "sdnMAC":"00:00:00:00:00:01",
 "vulnerability": [
 {

 "cve_id": "CVE-2013-7518"
 "cvss_score": 5.45
 "sdnPort": null
 },
 {
 "cve_id": "CVE-2014-1234"
 "cvss_score": 9.45

http://apidemo.gridpilot.tech:8085/assetInventory/update
https://apidemo.gridpilot.tech:8085/assetInventory/asset_risk_level

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 142
Public document

 "sdnPort": null
 }
]
 },
 {
 "invExternalId":"10.0.0.2",
 "sdnIP":"10.0.0.2",
 "sdnMAC":"00:00:00:00:00:02",
 "vulnerability": [
 {
 "cve_id": "CVE-2013-7518"

 "cvss_score": 5.45
 "sdnPort": null
 },
 {
 "cve_id": "CVE-2014-1234"
 "cvss_score": 9.45
 "sdnPort": null
 }
]
 }
]

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 143
Public document

9 Unit Testing
In this section it is detailed unit tests designed for each component. It is noted that EDAE component
is divided in two sections. The first one regarding the EDAE core which aims to test the MILP algorithm
once all the inputs are gathered in the proper format. On the other side the EDAE workflow aims to
test the process of gathering all the inputs from different components to EDAE core and manage the
outputs for the other components, in this section the orquestrator of the component it is tested before
the intregration phase arrives.

9.1 Northbound Interface unit tests

9.1.1 Technical environment

Figure 76: Testing environment of the NBI

The testing environment utilised to test the Northbound Interface replicates a realistic SDN-enabled

pre-pilot environment and is depicted in Figure 76. The environment is comprised of two sites, namely

the laboratories of TRSC/PPC (Athens, Greece) as well as the pilot environment of Use Case 3, located

in the PPC power plant of Lavrio, Greece. Each site utilises one SDN switch (Aruba 2930F JL261A),

where smart meters, sensors (TRSC) as well as PLCs and HMIs (Lavrio) are connected to. The two sites

are interconnected via two virtualised pfSense gateways that form a site-to-site OpenVPN tunnel and

remote access to the software tester is provided by the central pfSense gateway located in TRSC.

The SDN-Cs that integrate the NBI are hosted as Docker containers in a virtualised Docker host in TRSC,

as depicted in the figure. The two SDN switches are connected to all SDN-Cs and each SDN-C

communicates with SCS (Zookeeper) to determine its role. The details of the connection with SCS and

the election process are covered by D4.1.

The testing procedure is initialised by deploying the SDN-Cs and initialising the OpenFlow tables of

each switch. The SDN-Cs run a Ryu application that imitates the switch logic of a conventional switch,

thus filling accordingly the flow tables and enable instant communication in both locations, thus

enabling the generation of realistic traffic as well as realistic responses for the under-testing NBI.

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 144
Public document

9.1.2 Unit tests
Table 45: NBI_01 unit test description

Test Case ID NBI_01 Component SDN-C

Description Test the retrieval of network statistics via the REST API

Spec ID SPEC-F6, XL-EPDS_NBI-2 Priority High

Prepared by UOWM, PPC Tested by UOWM, PPC

Pre-condition(s) • At least one SDN-C has been deployed

• SCS has been deployed and is reachable by SDN-C(s)

• At least one SDN Switch is connected to at least one SDN-C

• The role of SDN-C is MASTER or EQUAL

Test steps

1 The tester opens a web browser

2 The tester provides the URL: https://192.168.86.240:10443/stats/port/35628848924874

3 The tester provides any credentials, if requested

4 The response is appeared in the browser in JSON format, depicting statistics from each port of the

switch specified.

Input data https://192.168.86.240:10443/stats/portdesc/35628848924874

Result {"2876467493531616": [{"rx_packets": 14580008, "tx_packets": 32909058, "rx_bytes":

4467889637, "tx_bytes": 2376423503, "rx_dropped": 0, "tx_dropped": 0, "rx_errors": 0,

"tx_errors": 0, "rx_frame_err": 0, "rx_over_err": 0, "rx_crc_err": 0, "collisions": 0,

"duration_sec": 1822004867, "duration_nsec": 2851118606, "port_no": 2},

{"rx_packets": 5205440, "tx_packets": 9731181, "rx_bytes": 342023577, "tx_bytes":

819547595, "rx_dropped": 0, "tx_dropped": 0, "rx_errors": 0, "tx_errors": 0,

"rx_frame_err": 0, "rx_over_err": 0, "rx_crc_err": 0, "collisions": 0, "duration_sec":

1822004867, "duration_nsec": 3701710606, "port_no": 5}, {"rx_packets": 9803,

"tx_packets": 3850080, "rx_bytes": 765830, "tx_bytes": 429961448, "rx_dropped": 0,

"tx_dropped": 0, "rx_errors": 0, "tx_errors": 0, "rx_frame_err": 0, "rx_over_err": 0,

"rx_crc_err": 0, "collisions": 0, "duration_sec": 1822004867, "duration_nsec":

1130012686, "port_no": 15}, {"rx_packets": 18773, "tx_packets": 4567898, "rx_bytes":

2126672, "tx_bytes": 474766906, "rx_dropped": 0, "tx_dropped": 0, "rx_errors": 0,

"tx_errors": 0, "rx_frame_err": 0, "rx_over_err": 0, "rx_crc_err": 0, "collisions": 0,

"duration_sec": 1822004867, "duration_nsec": 1124770062, "port_no": 7},

{"rx_packets": 58290579, "tx_packets": 32981632, "rx_bytes": 3907631191, "tx_bytes":

9358752714, "rx_dropped": 0, "tx_dropped": 0, "rx_errors": 0, "tx_errors": 0,

"rx_frame_err": 0, "rx_over_err": 0, "rx_crc_err": 0, "collisions": 0, "duration_sec":

1822004867, "duration_nsec": 1136304398, "port_no": 1}, {"rx_packets": 14581391,

"tx_packets": 32913091, "rx_bytes": 4468340219, "tx_bytes": 2376694962,

"rx_dropped": 0, "tx_dropped": 0, "rx_errors": 0, "tx_errors": 0, "rx_frame_err": 0,

"rx_over_err": 0, "rx_crc_err": 0, "collisions": 0, "duration_sec": 1822004867,

"duration_nsec": 1986896398, "port_no": 4}, {"rx_packets": 997042, "tx_packets":

2771912, "rx_bytes": 88495675, "tx_bytes": 334643169, "rx_dropped": 0, "tx_dropped":

0, "rx_errors": 0, "tx_errors": 0, "rx_frame_err": 0, "rx_over_err": 0, "rx_crc_err": 0,

"collisions": 0, "duration_sec": 1822004867, "duration_nsec": 2837488398, "port_no":

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 145
Public document

3}, {"rx_packets": 9739, "tx_packets": 3850048, "rx_bytes": 755491, "tx_bytes":

429953898, "rx_dropped": 0, "tx_dropped": 0, "rx_errors": 0, "tx_errors": 0,

"rx_frame_err": 0, "rx_over_err": 0, "rx_crc_err": 0, "collisions": 0, "duration_sec":

1822004867, "duration_nsec": 1993188110, "port_no": 16}, {"rx_packets": 6937526,

"tx_packets": 7852196, "rx_bytes": 482244410, "tx_bytes": 668709662, "rx_dropped": 0,

"tx_dropped": 0, "rx_errors": 0, "tx_errors": 0, "rx_frame_err": 0, "rx_over_err": 0,

"rx_crc_err": 0, "collisions": 0, "duration_sec": 1822004867, "duration_nsec":

2843780110, "port_no": 6}, {"rx_packets": 0, "tx_packets": 0, "rx_bytes": 0, "tx_bytes":

0, "rx_dropped": 0, "tx_dropped": 0, "rx_errors": 0, "tx_errors": 0, "rx_frame_err": 0,

"rx_over_err": 0, "rx_crc_err": 0, "collisions": 0, "duration_sec": 1822004867,

"duration_nsec": 1983751438, "port_no": 14}, {"rx_packets": 123835, "tx_packets":

3714472, "rx_bytes": 29627390, "tx_bytes": 397983823, "rx_dropped": 0, "tx_dropped":

0, "rx_errors": 9, "tx_errors": 0, "rx_frame_err": 0, "rx_over_err": 0, "rx_crc_err": 9,

"collisions": 0, "duration_sec": 1822004867, "duration_nsec": 284665102, "port_no":

10}, {"rx_packets": 123874, "tx_packets": 4435003, "rx_bytes": 29636808, "tx_bytes":

442432671, "rx_dropped": 0, "tx_dropped": 0, "rx_errors": 0, "tx_errors": 0,

"rx_frame_err": 0, "rx_over_err": 0, "rx_crc_err": 0, "collisions": 0, "duration_sec":

1822004867, "duration_nsec": 3702760974, "port_no": 9}, {"rx_packets": 0,

"tx_packets": 0, "rx_bytes": 0, "tx_bytes": 0, "rx_dropped": 0, "tx_dropped": 0,

"rx_errors": 0, "tx_errors": 0, "rx_frame_err": 0, "rx_over_err": 0, "rx_crc_err": 0,

"collisions": 0, "duration_sec": 1822004867, "duration_nsec": 1137354254, "port_no":

"LOCAL"}]}

Test Case Result Achieved

Table 46: NBI_02 unit test description

Test Case ID NBI_02 Component SDN-C

Description Test the retrieval of the network topology via the REST API

Spec ID SPEC-F6, XL-EPDS_NBI-1, AIDB-3 Priority High

Prepared by UOWM, PPC Tested by UOWM, PPC

Pre-condition(s) • At least one SDN-C has been deployed

• SCS has been deployed and is reachable by SDN-C(s)

• At least one SDN Switch is connected to at least one SDN-C

• The role of SDN-C is MASTER or EQUAL

Test steps

1 The tester opens a web browser

2 The tester provides the URL: https://192.168.86.240:30443/v1.0/topology/switches

3 The tester provides any credentials, if requested

4 The response is appeared in the browser in JSON format, which includes all switches

5 The tester provides the URL: https://192.168.86.240:30443/v1.0/topology/hosts

6 The tester provides any credentials, if requested

7 The response is appeared in the browser in JSON format, including all hosts

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 146
Public document

8 The tester provides the URL: https://192.168.86.240:30443/v1.0/topology/links

9 The response is appeared in the browser in JSON format, which includes all links between switches

Input data https://192.168.86.240:30443/v1.0/topology/switches

https://192.168.86.240:30443/v1.0/topology/hosts

https://192.168.86.240:30443/v1.0/topology/links

Result [{"dpid": "2876467493531616", "ports": [{"dpid": "2876467493531616", "port_no": "2",

"hw_addr": "38:21:c7:28:ef:fe", "name": "2"}, {"dpid": "2876467493531616", "port_no":

"5", "hw_addr": "38:21:c7:28:ef:fb", "name": "5"}, {"dpid": "2876467493531616",

"port_no": "15", "hw_addr": "38:21:c7:28:ef:f1", "name": "15"}, {"dpid":

"2876467493531616", "port_no": "7", "hw_addr": "38:21:c7:28:ef:f9", "name": "7"},

{"dpid": "2876467493531616", "port_no": "1", "hw_addr": "38:21:c7:28:ef:ff", "name":

"1"}, {"dpid": "2876467493531616", "port_no": "4", "hw_addr": "38:21:c7:28:ef:fc",

"name": "4"}, {"dpid": "2876467493531616", "port_no": "3", "hw_addr":

"38:21:c7:28:ef:fd", "name": "3"}, {"dpid": "2876467493531616", "port_no": "16",

"hw_addr": "38:21:c7:28:ef:f0", "name": "16"}, {"dpid": "2876467493531616",

"port_no": "6", "hw_addr": "38:21:c7:28:ef:fa", "name": "6"}, {"dpid":

"2876467493531616", "port_no": "14", "hw_addr": "38:21:c7:28:ef:f2", "name": "14"},

{"dpid": "2876467493531616", "port_no": "10", "hw_addr": "38:21:c7:28:ef:f6",

"name": "10"}, {"dpid": "2876467493531616", "port_no": "9", "hw_addr":

"38:21:c7:28:ef:f7", "name": "9"}]}, {"dpid": "2876467493016320", "ports": [{"dpid":

"2876467493016320", "port_no": "2", "hw_addr": "38:21:c7:21:13:1e", "name": "2"},

{"dpid": "2876467493016320", "port_no": "5", "hw_addr": "38:21:c7:21:13:1b", "name":

"5"}, {"dpid": "2876467493016320", "port_no": "16", "hw_addr": "38:21:c7:21:13:10",

"name": "16"}, {"dpid": "2876467493016320", "port_no": "9", "hw_addr":

"38:21:c7:21:13:17", "name": "9"}, {"dpid": "2876467493016320", "port_no": "1",

"hw_addr": "38:21:c7:21:13:1f", "name": "1"}, {"dpid": "2876467493016320",

"port_no": "4", "hw_addr": "38:21:c7:21:13:1c", "name": "4"}, {"dpid":

"2876467493016320", "port_no": "3", "hw_addr": "38:21:c7:21:13:1d", "name": "3"},

{"dpid": "2876467493016320", "port_no": "6", "hw_addr": "38:21:c7:21:13:1a", "name":

"6"}, {"dpid": "2876467493016320", "port_no": "15", "hw_addr": "38:21:c7:21:13:11",

"name": "15"}, {"dpid": "2876467493016320", "port_no": "14", "hw_addr":

"38:21:c7:21:13:12", "name": "14"}, {"dpid": "2876467493016320", "port_no": "10",

"hw_addr": "38:21:c7:21:13:16", "name": "10"}]}]

[{"mac": "00:0d:22:22:84:94", "ipv4": ["192.168.20.251"], "ipv6": [], "port": {"dpid":

"2876467493531616", "port_no": "5", "hw_addr": "38:21:c7:28:ef:fb", "name": "5"}},

{"mac": "20:67:7c:e2:48:ca", "ipv4": [], "ipv6": [], "port": {"dpid": "2876467493531616",

"port_no": "6", "hw_addr": "38:21:c7:28:ef:fa", "name": "6"}}, {"mac":

"20:67:7c:e2:48:c9", "ipv4": [], "ipv6": [], "port": {"dpid": "2876467493531616",

"port_no": "3", "hw_addr": "38:21:c7:28:ef:fd", "name": "3"}}, {"mac":

"28:80:23:ac:99:7e", "ipv4": [], "ipv6": [], "port": {"dpid": "2876467493531616",

"port_no": "10", "hw_addr": "38:21:c7:28:ef:f6", "name": "10"}}, {"mac":

"28:80:23:ac:99:7d", "ipv4": [], "ipv6": [], "port": {"dpid": "2876467493531616",

"port_no": "9", "hw_addr": "38:21:c7:28:ef:f7", "name": "9"}}, {"mac":

"00:19:ee:10:a3:2e", "ipv4": ["192.168.10.15"], "ipv6": [], "port": {"dpid":

"2876467493531616", "port_no": "4", "hw_addr": "38:21:c7:28:ef:fc", "name": "4"}},

{"mac": "00:19:ee:10:94:94", "ipv4": ["192.168.10.10"], "ipv6": [], "port": {"dpid":

"2876467493531616", "port_no": "2", "hw_addr": "38:21:c7:28:ef:fe", "name": "2"}},

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 147
Public document

{"mac": "dc:a6:32:70:14:29", "ipv4": [], "ipv6": [], "port": {"dpid": "2876467493531616",

"port_no": "16", "hw_addr": "38:21:c7:28:ef:f0", "name": "16"}}]

Test Case Result Achieved

Table 47: NBI_03 unit test description

Test Case ID NBI_03 Component SDN-C

Description Test that TLS has been properly configured on the NBI

Spec ID S-RAF_NBI-1, CONS-T1,

CONS-L1

Priority High

Prepared by UOWM, PPC Tested by UOWM, PPC

Pre-

condition(s)

• At least one SDN-C has been deployed

• SCS has been deployed and is reachable by SDN-C(s)

• At least one SDN Switch is connected to at least one SDN-C

• The role of SDN-C is MASTER or EQUAL

Test steps

1 The tester opens a web browser

2 The tester starts a packet capture using Wireshark

3 The tester provides a REST API command, e.g. https://192.168.86.240:30443/v1.0/topology/hosts

4 The tester verifies that the session with SDN-C is encrypted by checking the relevant indication of the

web browser

5 The tester stops the Wireshark capture and notices that the session is encrypted using TLS 1.2

Input data None

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 148
Public document

Result By investigating the TLS negotiation depicted bellow, is concluded that the TLS session is

secured since TLS 1.2 is used as well as the TLS_ECDHE_RSA_WITH_AES_ 256_GCM_SHA384

cipher. Although, the certificate used by the SDN-C is signed by a self-signed Certificate

Authority (CA) deployed in TRSC/PPC premises. This results to the error “Certificate

Unknown” generated by the browser, which is latter ignored. However, this error is not

considered significant, since the user is able to overcome this error by adding the CA into to

Trusted Root Certificate Authorities, hence trusting the CA.

Test Case

Result

Achieved, to be tested in Pilot

Table 48: NBI_04 test unit description

Test Case ID NBI_04 Component SDN-C

Description Test that authorisation is required for accessing the northbound interface

Spec ID S-RAF_NBI-1, CONS-T2 Priority High

Prepared by UOWM, PPC Tested by UOWM, PPC

Pre-condition(s) • At least one SDN-C has been deployed

• SCS has been deployed and is reachable by SDN-C(s)

• At least one SDN Switch is connected to at least one SDN-C

• The role of SDN-C is MASTER or EQUAL

Test steps

1 The tester opens a web browser

Figure 77: TLS traffic of NBI - Unit tests

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 149
Public document

2 The tester provides a REST API command, e.g. https://192.168.86.240:30443/v1.0/topology/hosts

3 The web browser prompts for Authentication

4 The tester provides false credentials

Input data None

Result The HTTP Error 401 – Unauthorized is displayed

Test Case Result Achieved, to be tested in Pilot

Table 49: NBI_05 test unit description

Test Case ID NBI_05 Component SDN-C

Description A network flow is successfully added via the REST API

Spec ID SPEC-F6, S-RAF_NBI-1, XL-EPDS_NBI-1 Priority High

Prepared by UOWM, PPC Tested by UOWM, PPC

Pre-condition(s) • At least one SDN-C has been deployed

• SCS has been deployed and is reachable by SDN-C(s)

• At least one SDN Switch is connected to at least one SDN-C

• The role of SDN-C is MASTER or EQUAL

Test steps

1 The tester opens a terminal and issues the following command:

curl --location --request POST 'https://192.168.86.240:30443/stats/flowentry/add' -u 'user:secret' --

data-raw

'{"dpid":2876467493531616,"priority":15,"cookie":0,"idle_timeout":0,"hard_timeout":0,"actions":[{"typ

e":"WRITE_ACTIONS","actions":[{"type":"OUTPUT","port":2}]}],"match":{"in_port":1,"ipv4_src":"192.16

8.10.1","ipv4_dst":"192.168.10.2","ip_proto": 6,"tcp_dst": 8800,"eth_type": 2048},"table_id": 2}' --

insecure

2 The tester accesses the URL: https://192.168.86.240:10443/stats/flow/2876467493531616 to retrieve

the flow table, noticing that the specified flow entry has been added

Input data A POST request with the appropriate body request, as defined in step 1

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 150
Public document

Result The flow table, including the new flow:

{ "2876467493531616": [{"priority": 1, "cookie": 0, "idle_timeout": 0, "hard_timeout": 0,

"byte_count": 0, "duration_sec": 18154, "duration_nsec": 631000000, "packet_count": 0,

"length": 80, "flags": 0, "actions": ["GOTO_TABLE:1"], "match": {"eth_dst":

"ff:ff:ff:ff:ff:ff", "eth_type": 34984}, "table_id": 0}, {"priority": 1, "cookie": 0,

"idle_timeout": 0, "hard_timeout": 0, "byte_count": 0, "duration_sec": 18154,

"duration_nsec": 631000000, "packet_count": 0, "length": 80, "flags": 0, "actions":

["GOTO_TABLE:1"], "match": {"eth_dst": "ff:ff:ff:ff:ff:ff", "eth_type": 33024}, "table_id":

0}, {"priority": 1, "cookie": 0, "idle_timeout": 0, "hard_timeout": 0, "byte_count": 739200,

"duration_sec": 18154, "duration_nsec": 631000000, "packet_count": 12320, "length":

80, "flags": 0, "actions": ["GOTO_TABLE:1"], "match": {"eth_dst": "ff:ff:ff:ff:ff:ff",

"eth_type": 2054}, "table_id": 0}, {"priority": 65535, "cookie": 0, "idle_timeout": 0,

"hard_timeout": 0, "byte_count": 7558172, "duration_sec": 18154, "duration_nsec":

631000000, "packet_count": 54231, "length": 96, "flags": 0, "actions":

[{"WRITE_ACTIONS": ["OUTPUT:CONTROLLER"]}], "match": {"eth_dst":

"01:80:c2:00:00:0e", "eth_type": 35020}, "table_id": 0}, {"priority": 1, "cookie": 0,

"idle_timeout": 0, "hard_timeout": 0, "byte_count": 244213, "duration_sec": 18154,

"duration_nsec": 631000000, "packet_count": 1120, "length": 80, "flags": 0, "actions":

["GOTO_TABLE:1"], "match": {"eth_dst": "ff:ff:ff:ff:ff:ff", "eth_type": 2048}, "table_id":

0}, {"priority": 0, "cookie": 0, "idle_timeout": 0, "hard_timeout": 0, "byte_count":

4949779237, "duration_sec": 18154, "duration_nsec": 631000000, "packet_count":

32553918, "length": 64, "flags": 0, "actions": ["GOTO_TABLE:2"], "match": {}, "table_id":

0}, {"priority": 0, "cookie": 0, "idle_timeout": 0, "hard_timeout": 0, "byte_count": 983413,

"duration_sec": 18154, "duration_nsec": 631000000, "packet_count": 13440, "length":

64, "flags": 0, "actions": ["GOTO_TABLE:2"], "match": {}, "table_id": 1}, {"priority": 15,

"cookie": 0, "idle_timeout": 0, "hard_timeout": 0, "byte_count": 0, "duration_sec": 206,

"duration_nsec": 766000000, "packet_count": 0, "length": 120, "flags": 0, "actions":

[{"WRITE_ACTIONS": ["OUTPUT:2"]}], "match": {"in_port": 1, "eth_type": 2048,

"ipv4_src": "192.168.10.1", "ipv4_dst": "192.168.10.2", "ip_proto": 6, "tcp_dst": 8800},

"table_id": 2}, {"priority": 0, "cookie": 0, "idle_timeout": 0, "hard_timeout": 0,

"byte_count": 4950762650, "duration_sec": 18154, "duration_nsec": 631000000,

"packet_count": 32567358, "length": 64, "flags": 0, "actions": ["GOTO_TABLE:3"],

"match": {}, "table_id": 2}, {"priority": 1, "cookie": 0, "idle_timeout": 0, "hard_timeout":

0, "byte_count": 0, "duration_sec": 18154, "duration_nsec": 631000000, "packet_count":

0, "length": 104, "flags": 0, "actions": ["OUTPUT:3"], "match": {"in_port": 6, "eth_dst":

"46:79:fd:32:b5:17", "eth_src": "7e:51:7c:23:91:3e"}, "table_id": 3}]

Test Case Result Achieved

Table 50: NBI-06 test unit description

Test Case ID NBI_06 Component SDN-C

Description A network flow is successfully deleted via the REST API

Spec ID SPEC-F6, S-RAF_NBI-1, XL-EPDS_NBI-1 Priority High

Prepared by UOWM, PPC Tested by UOWM, PPC

Pre-

condition(s)

• At least one SDN-C has been deployed

• SCS has been deployed and is reachable by SDN-C(s)

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 151
Public document

• At least one SDN Switch is connected to at least one SDN-C

• The role of SDN-C is MASTER or EQUAL

Test steps

1 The tester opens a terminal and issues the following command

curl --location --request POST --user user:secret

'https://192.168.86.240:10443/stats/flowentry/delete_strict' --data-raw

'{{"dpid":2876467493531616,"cookie":0,"cookie_mask":0,"table_id":2,"match":{"in_port":1}}}'

4 The tester opens a browser and provides the URL:

https://192.168.86.240:10443/stats/flow/2876467493531616 to retrieve the flow table, noticing that

the specified flow does not exist anymore

Input data A POST request with the appropriate body request, as defined in step 1

Result The flow table does not include the deleted flow:

{ "2876467493531616": [{"priority": 1, "cookie": 0, "idle_timeout": 0, "hard_timeout": 0,

"byte_count": 0, "duration_sec": 18154, "duration_nsec": 631000000, "packet_count": 0,

"length": 80, "flags": 0, "actions": ["GOTO_TABLE:1"], "match": {"eth_dst": "ff:ff:ff:ff:ff:ff",

"eth_type": 34984}, "table_id": 0}, {"priority": 1, "cookie": 0, "idle_timeout": 0,

"hard_timeout": 0, "byte_count": 0, "duration_sec": 18154, "duration_nsec": 631000000,

"packet_count": 0, "length": 80, "flags": 0, "actions": ["GOTO_TABLE:1"], "match":

{"eth_dst": "ff:ff:ff:ff:ff:ff", "eth_type": 33024}, "table_id": 0}, {"priority": 1, "cookie": 0,

"idle_timeout": 0, "hard_timeout": 0, "byte_count": 739200, "duration_sec": 18154,

"duration_nsec": 631000000, "packet_count": 12320, "length": 80, "flags": 0, "actions":

["GOTO_TABLE:1"], "match": {"eth_dst": "ff:ff:ff:ff:ff:ff", "eth_type": 2054}, "table_id": 0},

{"priority": 65535, "cookie": 0, "idle_timeout": 0, "hard_timeout": 0, "byte_count":

7558172, "duration_sec": 18154, "duration_nsec": 631000000, "packet_count": 54231,

"length": 96, "flags": 0, "actions": [{"WRITE_ACTIONS": ["OUTPUT:CONTROLLER"]}],

"match": {"eth_dst": "01:80:c2:00:00:0e", "eth_type": 35020}, "table_id": 0}, {"priority": 1,

"cookie": 0, "idle_timeout": 0, "hard_timeout": 0, "byte_count": 244213, "duration_sec":

18154, "duration_nsec": 631000000, "packet_count": 1120, "length": 80, "flags": 0,

"actions": ["GOTO_TABLE:1"], "match": {"eth_dst": "ff:ff:ff:ff:ff:ff", "eth_type": 2048},

"table_id": 0}, {"priority": 0, "cookie": 0, "idle_timeout": 0, "hard_timeout": 0, "byte_count":

4949779237, "duration_sec": 18154, "duration_nsec": 631000000, "packet_count":

32553918, "length": 64, "flags": 0, "actions": ["GOTO_TABLE:2"], "match": {}, "table_id": 0},

{"priority": 0, "cookie": 0, "idle_timeout": 0, "hard_timeout": 0, "byte_count": 983413,

"duration_sec": 18154, "duration_nsec": 631000000, "packet_count": 13440, "length": 64,

"flags": 0, "actions": ["GOTO_TABLE:2"], "match": {}, "table_id": 1}, {"priority": 0, "cookie":

0, "idle_timeout": 0, "hard_timeout": 0, "byte_count": 4950762650, "duration_sec": 18154,

"duration_nsec": 631000000, "packet_count": 32567358, "length": 64, "flags": 0, "actions":

["GOTO_TABLE:3"], "match": {}, "table_id": 2}, {"priority": 1, "cookie": 0, "idle_timeout": 0,

"hard_timeout": 0, "byte_count": 0, "duration_sec": 18154, "duration_nsec": 631000000,

"packet_count": 0, "length": 104, "flags": 0, "actions": ["OUTPUT:3"], "match": {"in_port": 6,

"eth_dst": "46:79:fd:32:b5:17", "eth_src": "7e:51:7c:23:91:3e"}, "table_id": 3}]

Test Case

Result

Achieved

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 152
Public document

Table 51: NBI_07 test unit description

Test Case ID NBI_07 Component SDN-C

Description Retrieval of network flows in compatible format.

Spec ID SPEC-F6 Priority High

Prepared by UOWM, PPC Tested by UOWM, PPC

Pre-condition(s) • At least one SDN-C has been deployed

• SCS has been deployed and is reachable by SDN-C(s)

• At least one SDN Switch is connected to at least one SDN-C

• The role of SDN-C is MASTER or EQUAL

Test steps

1 The tester opens a web browser

2 The tester provides the URL: https://192.168.86.240:10443/stats/flow/2876467493531616

3 The tester provides any credentials, if requested

4 The response is appeared in the browser in JSON format, including all flow entries of the switch

specified. Additionally, the dl_st and dl_src have been replaced by eth_dst and eth_src, thus

achieving compliance with OpenFlow 1.3.

Input data https://192.168.86.240:10443/stats/flow/2876467493531616

Result { "2876467493531616": [{"priority": 1, "cookie": 0, "idle_timeout": 0, "hard_timeout": 0,

"byte_count": 0, "duration_sec": 18154, "duration_nsec": 631000000, "packet_count":

0, "length": 80, "flags": 0, "actions": ["GOTO_TABLE:1"], "match": {"eth_dst":

"ff:ff:ff:ff:ff:ff", "eth_type": 34984}, "table_id": 0}, {"priority": 1, "cookie": 0,

"idle_timeout": 0, "hard_timeout": 0, "byte_count": 0, "duration_sec": 18154,

"duration_nsec": 631000000, "packet_count": 0, "length": 80, "flags": 0, "actions":

["GOTO_TABLE:1"], "match": {"eth_dst": "ff:ff:ff:ff:ff:ff", "eth_type": 33024}, "table_id":

0}, {"priority": 1, "cookie": 0, "idle_timeout": 0, "hard_timeout": 0, "byte_count":

739200, "duration_sec": 18154, "duration_nsec": 631000000, "packet_count": 12320,

"length": 80, "flags": 0, "actions": ["GOTO_TABLE:1"], "match": {"eth_dst":

"ff:ff:ff:ff:ff:ff", "eth_type": 2054}, "table_id": 0}, {"priority": 65535, "cookie": 0,

"idle_timeout": 0, "hard_timeout": 0, "byte_count": 7558172, "duration_sec": 18154,

"duration_nsec": 631000000, "packet_count": 54231, "length": 96, "flags": 0, "actions":

[{"WRITE_ACTIONS": ["OUTPUT:CONTROLLER"]}], "match": {"eth_dst":

"01:80:c2:00:00:0e", "eth_type": 35020}, "table_id": 0}, {"priority": 1, "cookie": 0,

"idle_timeout": 0, "hard_timeout": 0, "byte_count": 244213, "duration_sec": 18154,

"duration_nsec": 631000000, "packet_count": 1120, "length": 80, "flags": 0, "actions":

["GOTO_TABLE:1"], "match": {"eth_dst": "ff:ff:ff:ff:ff:ff", "eth_type": 2048}, "table_id":

0}, {"priority": 0, "cookie": 0, "idle_timeout": 0, "hard_timeout": 0, "byte_count":

4949779237, "duration_sec": 18154, "duration_nsec": 631000000, "packet_count":

32553918, "length": 64, "flags": 0, "actions": ["GOTO_TABLE:2"], "match": {}, "table_id":

0}, {"priority": 0, "cookie": 0, "idle_timeout": 0, "hard_timeout": 0, "byte_count":

983413, "duration_sec": 18154, "duration_nsec": 631000000, "packet_count": 13440,

"length": 64, "flags": 0, "actions": ["GOTO_TABLE:2"], "match": {}, "table_id": 1},

{"priority": 0, "cookie": 0, "idle_timeout": 0, "hard_timeout": 0, "byte_count":

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 153
Public document

4950762650, "duration_sec": 18154, "duration_nsec": 631000000, "packet_count":

32567358, "length": 64, "flags": 0, "actions": ["GOTO_TABLE:3"], "match": {}, "table_id":

2}, {"priority": 1, "cookie": 0, "idle_timeout": 0, "hard_timeout": 0, "byte_count": 0,

"duration_sec": 18154, "duration_nsec": 631000000, "packet_count": 0, "length": 104,

"flags": 0, "actions": ["OUTPUT:3"], "match": {"in_port": 6, "eth_dst":

"46:79:fd:32:b5:17", "eth_src": "7e:51:7c:23:91:3e"}, "table_id": 3}]

Test Case Result Achieved

Table 52: NBI_08 test unit description

Test Case ID NBI_08 Component SDN-C

Description Retrieval of switch information

Spec ID SPEC-F6, XL-EPDS_NBI-1, AIDB-3 Priority High

Prepared by UOWM, PPC Tested by UOWM, PPC

Pre-condition(s) • At least one SDN-C has been deployed

• SCS has been deployed and is reachable by SDN-C(s)

• At least one SDN Switch is connected to at least one SDN-C

• The role of SDN-C is MASTER or EQUAL

Test steps

1 The tester opens a web browser

2 The tester provides the URL: https://192.168.86.240:10443/stats/desc/2876467493016320

3 The tester provides any credentials, if requested

4 The response is appeared in the browser in JSON format, depicting general information of the switch

specified

Input data https://192.168.86.240:10443/stats/desc/2876467493016320

Result Note that the results bellow have been filtered to remove sensitive information (device

serial number):

{"2876467493016320": {"mfr_desc": "Aruba", "hw_desc": "2930F-24G-PoE+-4SFP

Switch", "sw_desc": "WC.16.05.0007", "serial_num": "****", "dp_desc": "1"}}

Test Case Result Achieved

9.2 SDN Dashboard

9.2.1 Technical environment
The testing environment utilised to conduct the unit testing of the SDN dashboard is depicted in Figure

78. The underlying infrastructure is the same as described in the Northbound Interface unit testing

section. The additional component of this unit testing section, the SDN dashboard, is hosted in the

tester’s premises by running the Django server in development mode using the PyCharm IDE.

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 154
Public document

Figure 78: Testing environment of the SDN dashboard

9.2.2 Unit tests
Table 53: SDNGUI_01 unit test description

Test Case ID SDNGUI_01 Component SDN dashboard

Description All SDN switches are accessible from the SDN Dashboard by using the corresponding

master controller

Spec ID SPEC-F6, SPEC-OP1 Priority High

Prepared by UOWM, PPC Tested by UOWM, PPC

Pre-

condition(s)

At least one SDN-C is deployed and connected to at least one SDN switch

Test steps

1 The tester starts Zookeeper Watcher to initialise the database containing the SDN switches, the SDN-

Cs, and the relationships amongst them.

2 The tester uses the PyCharm IDE to launch the Django server hosting the SDN dashboard

3 The tester visits the SDN dashboard at http://127.0.0.1

4 The tester provides the necessary login credentials to access the system

5 The tester is redirected to the SDN dashboard homepage

6 The tester notices in the homepage that port and table statistics are illustrated for each switch

7 The tester visits the Flow page and views the flow entries of each switch

Input data

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 155
Public document

Result The statistics for each switch are depicted in the homepage

The flows are illustrated in the Flows page

Test Case

Result

Achieved, to be tested in Pilot

Table 54: SDNGUI_02 unit test description

Test Case ID SDNGUI_02 Component SDN dashboard

Description The SDN dashboard home page changes asynchronously if the role of an SDN-C changes or

a new SDN-C is connected to an SDN switch

Spec ID SPEC-F6 Priority Medium

Prepared by UOWM, PPC Tested by UOWM, PPC

Pre-

condition(s)

At least one SDN-C is deployed and connected to at least one SDN switch

Test steps

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 156
Public document

1 The tester starts Zookeeper Watcher to initialise the database containing the SDN switches, the SDN-

Cs, and the relationships amongst them.

2 The tester uses the PyCharm IDE to launch the Django server hosting the SDN dashboard

3 The tester visits the SDN dashboard at http://127.0.0.1

4 The tester identifies the master SDN-C through the SDN dashboard

5 Since the SDN-C is deployed as Docker container, the tester connects to the corresponding Docker

host and shuts down the identified SDN-C

6 The tester notices that the master SDN-C is changed in the dashboard without needing to refresh the

home page

Input data

Result The SDN Controllers status before the manual disruption

The SDN Controllers after the manual disruption

Test Case

Result

Achieved, to be tested in Pilot

Table 55: SDNGUI_03 unit test description

Test Case ID SDNGUI_03 Component SDN dashboard

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 157
Public document

Description The SDN dashboard permits only authorised access to the system.

Spec ID Priority Medium

Prepared by UOWM, PPC Tested by UOWM, PPC

Pre-

condition(s)

At least one SDN-C is deployed and connected to at least one SDN switch

Test steps

1 The tester starts Zookeeper Watcher to initialise the database containing the SDN switches, the SDN-

Cs, and the relationships amongst them.

2 The tester uses the PyCharm IDE to launch the Django server hosting the SDN dashboard

3 The tester visits a random page in the SDN dashboard: http://127.0.0.1/flows

4 The remote web server redirects the tester to the login page

5 The steps 1-3 are repeated for each URL endpoint specified by the SDN dashboard

Input data

Result For all URL endpoints, the SDN dashboard redirects the unauthenticated user to the login

page.

Test Case

Result

Achieved

Table 56: SDNGUI_04 unit test description

Test Case ID SDNGUI_04 Component SDN dashboard

Description The SDN dashboard limits access to users depending on their role

Req ID Priority Medium

Prepared by UOWM, PPC Tested by UOWM, PPC

Pre-

condition(s)

At least one SDN-C is deployed and connected to at least one SDN switch

Test steps

1 The tester starts Zookeeper Watcher to initialise the database containing the SDN switches, the SDN-

Cs, and the relationships amongst them.

2 The tester uses the PyCharm IDE to launch the Django server hosting the SDN dashboard

3 The tester logins in the SDN dashboard using the credentials of a simple user

4 The tester tries to access the page, e.g., http://127.0.0.1:8000/flows/edit and a 403 error page is

displayed.

5 The tester logs out and logs in by using the credentials of a user holding the Security Administrator

role

6 The tester successfully gains access to the page http://127.0.0.1:8000/flows/edit

http://127.0.0.1/flows

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 158
Public document

7 The tester tries to access the User Management System: http://127.0.0.1:8000/users, but a 403-error

page is displayed

8 The tester logs out and logs in by using the credentials of a user holding the superuser role

9 The tester successfully gains access to the page http://127.0.0.1:8000/users

Input data Attempt to access a page that requires elevated privileges.

Result For the restricted pages, the SDN dashboard renders a HTTP 403 error (Forbidden) page,

indicating that the logged-in user does not have the appropriate privileges for accessing the

page.

Test Case

Result

Achieved

Table 57: SDNGUI_05 unit test description

Test Case ID SDNGUI_05 Component SDN dashboard

Description The SDN dashboard allows the insertion and deletion of network flows

Spec ID SPEC-F6 Priority Medium

Prepared by UOWM, PPC Tested by UOWM, PPC

Pre-

condition(s)

At least one SDN-C is deployed and connected to at least one SDN switch

Test steps

1 The tester starts Zookeeper Watcher to initialise the database containing the SDN switches, the SDN-

Cs, and the relationships amongst them.

2 The tester uses the PyCharm IDE to launch the Django server hosting the SDN dashboard

3 The tester logins in the SDN dashboard using the credentials of a Security Administrator

4 The tester records the existing network flows in Table 100 of the switch 2876467493531616

5 The tester visits the Flow Control page and fills the form accordingly and clicks Submit

http://127.0.0.1:8000/users

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 159
Public document

6 By visiting the Flows page, the new flow has been added successfully

7 The tester clicks on the Delete icon placed near the new flow entry

8 After user confirmation, the corresponding flow entry has been removed

Input data A new flow via the Flow Control page.

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 160
Public document

Result The tester was able to add and remove a network flow.

Test Case

Result

Achieved

Table 58: SDNGUI_06 unit test description

Test Case ID SDNGUI_06 Component SDN dashboard

Description The statistics depicted in the homepage of the SDN dashboard are automatically refreshed

on a custom interval, configured by the logged-in user.

Spec ID SPEC-F6 Priority Medium

Prepared by UOWM, PPC Tested by UOWM, PPC

Pre-

condition(s)

At least one SDN-C is deployed and connected to at least one SDN switch

Test steps

1 The tester starts Zookeeper Watcher to initialise the database containing the SDN switches, the SDN-

Cs, and the relationships amongst them.

2 The tester uses the PyCharm IDE to launch the Django server hosting the SDN dashboard

3 The tester logins in the SDN dashboard using the credentials of a simple user

4 The tester visits the Settings menu and configures a custom refresh rate

5 The tester visits the homepage and notices that the port and table statistics are automatically

refreshed at the defined interval

6 The tester visits the Flows page

7 The tester launches a second web browser window and visits the Flow Control page

8 The tester adds a new network flow via the Flow Control page

9 The tester notices that the new flow is rendered in the Flows page without manually refreshing the

page

Input data New values for “Auto refresh” and “Refresh rate” preferences

Result The port and table statistics as well as the flow tables are refreshed automatically, according

to the configured refresh interval

Test Case

Result

Achieved

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 161
Public document

9.3 EDAE core

9.3.1 Technical environment
The EDAE core engine has been developed under python 3.7, while the simulation environment that

was used to assist the development is Mininet. Mininet is built inside an Ubuntu 18.04 LTS virtual

machine of the host machine that executes EDAE, which operates on Ubuntu 20.04 LTS. Additionally,

Ryu manager is used to execute the controller’s software, ryu_ofctl API and flow manager. Table 59

details the required packages to run EDAE:

Table 59: List of software and version used for EDAE unit testing

Package Name Version

networkx v2.5
pandas v1.1.2

pygmo v2.16.0

absl-py v0.10.0

requests v2.24.0

pulp v2.3.1

9.3.2 Unit Tests
Table 60 to Error! Reference source not found. describe 5 unit tests for EDAE core.

Table 60: EDAE_GENETIC_01 unit test description

Test Case ID EDAE_GENETIC_01 Component EDAE

Description In this unit test, the S-RAF component informs EDAE for a security risk. EDAE consumes the

event, identifies a risk violation to a communication path and invokes genetic algorithm to

construct alternative path. This unit test is linked with scenario 3 described in 2.6.2.3

Req ID FR-UR-03, FR-UR-04, FR-UR-05, FR-UR-

06, FR-UR-07, FR-UR-08, FR-UR-09, FR-

UR-10, FR-UR-11, FR-UR-12, FR-UR-13,

FR-UR-14, FR-UR-15, FR-UC3-01, FR-

GR-14

Priority High

Prepared by CERTH Tested by CERTH

Pre-

condition(s)

Predefined communication paths has been constructed through the EDAE – Controller

interface.

The statistics of the switches have been manually selected in order to know in advance the

correct solution.

The incident affects the communication path of [00:00:00:00:00:01 -> 00:00:00:00:00:03]

such that a sensitivity constraint of host 00:00:00:00:00:01 is violated.

Test steps

1 Created a custom topology in Mininet with 4 hosts, 9 switches and one SDN-C with predefined

security risk levels.

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 162
Public document

2 Created the network graph through using the restful API of the controller

3 Augmented the network graph with host metadata and switch link metadata by reading the

constraints of the hosts from and the port statistics of the switches by json files.

4 Generated S-RAF event through postman API.

5 Re-calculated the security risk of the communication paths.

6 Sensitivity constraint violated for host 00:00:00:00:00:01 and genetic algorithm invoked in order to

find an alternative path.

7 Genetic algorithm correctly produced the correct path that meets the sensitivity constraint of host

00:00:00:00:00:01 and does not violate bandwidth constraint of host 00:00:00:00:00:04

Input data

Figure 79: Initial communication paths

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 163
Public document

Figure 80: Resultant communication paths after security event

Result EDAE chooses the path, which meets all the constraints and minimizes the security risk.

Test Case

Result

Partially Achieved, to be tested with more data

Table 61: EDAE_GENETIC_02 unit test description

Test Case ID EDAE_GENETIC_02 Component EDAE

Description In this unit test, EDAE monitors the QoS constraints and latency constraint violation is

identified. EDAE invokes genetic algorithm to compute an optimal path. This unit test is related

with Scenario 1 described in 6.3.2.3

Req ID FR-UC3-01, FR-GR-14 Priority Medium

Prepared by CERTH Tested by CERTH

Pre-

condition(s)

Predefined communication paths has been constructed through the EDAE – Controller

interface.

The statistics of the switches have been manually selected in order to know in advance the

correct solution.

The incident affects the communication path of [00:00:00:00:00:01 -> 00:00:00:00:00:03]

such that bandwidth constraint of host 00:00:00:00:00:01 is violated by 30 mbps.

Test steps

1 Created a custom topology in Mininet with 4 hosts, 9 switches and one SDN-C with predefined

security risk levels.

2 Created the network graph through using the restful API of the controller

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 164
Public document

3 Augmented the network graph with host metadata and switch link metadata by reading the

constraints of the hosts from and the port statistics of the switches by json files.

4 Changed the latency of the switches of the json file while EDAE was monitoring for constraint

violations.

5 When EDAE identified that latency constraint of host, 00:00:00:00:00:01 is violated for more than 2

minutes it invoked genetic algorithm in order to find a new path.

6 Genetic algorithm correctly produced the correct path that meets the latency constraints of host

00:00:00:00:00:01 and does not violate bandwidth constraints of host 00:00:00:00:00:04

Input data

Figure 81: Initial communication paths

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 165
Public document

Figure 82: Resultant communication paths

Result EDAE chooses the path, which minimizes the constraint violation and minimizes the

bandwidth.

Test Case

Result

Partially Achieved, to be tested with more data

Table 62: EDAE_GENETIC_3 unit test description

Test Case ID EDAE_GENETIC_3 Component EDAE

Description Compares the execution time of the genetic algorithm for different number of generations

with respect to the greed search algorithm.

Req ID FR-UR-03, FR-UR-04, FR-UR-05,

FR-UR-06, FR-UR-07, FR-UR-08,

FR-UR-09, FR-UR-10, FR-UR-11,

FR-UR-12, FR-UR-13, FR-UR-14,

FR-UR-15

Priority Medium

Prepared by CERTH Tested by CERTH

Pre-

condition(s)

 None

Test steps

1 Create a topology with 11 switches and eight hosts

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 166
Public document

2 Run the genetic algorithm ten times for various number of generations

50 generations to 1000 with a step of ten

3 For each configuration average the results

Input data

Figure 83: Topology

Result

Figure 84: Execution results

Test Case

Result

Partially achieved, to be tested with more data

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 167
Public document

Table 63: EDAE_receiver_transmitter_1 unit test

Test Case ID EDAE_receiver_transmitter_1 Component EDAE

Description Optimal receiver-transmitter allocation by minimizing the latency of the network with EDAE’s

Bandwidth constrained MILP

Req ID FR-GR-6 Priority Medium

Prepared by CERTH Tested by CERTH

Pre-

condition(s)

 Receivers (PDCs) and transmitters (PMUs) can be connected through the SDN network.

Test steps

1 Optimal available PDCs-PMUs allocation by minimizing the latency of the network

2 Run the MILP algorithm with the objective to minimize the latency of the network

3 Obtain a list with the new PDC and PMU connections

Input data The list of the PDCs, PMUs, their maximum bandwidth and their data transfer rate at the

moment PDC(s) is disconnected from the SDN-network

PMU PMU-1 PMU-2 PMU-3 PMU-4

Bandwidth Capacity 40000 40000 40000 40000

Data 1000 3000 10000 10000

PDCs A B A B A B A B

Latency 4.56 3.45 3.45 2.65 9.24 5.01 2.95 7.33

PDC PDC-A PDC-B

Bandwidth Capacity 40000 40000

Result Network before the attack:

Result of the genetic algorithm:

Χ

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 168
Public document

As it can be seen from the status parameter of the pulp package, the solution of the CBC

solver is the optimal

Network after the attack:

Test Case

Result

Achieved, to be tested in pilots

Table 64: EDAE_receiver_transmitter_2 unit test

Test Case ID EDAE_receiver_transmitter_2 Component EDAE

Description Compare the execution time of the bandwidth constrained algorithm for different

size of receiver - transmitter of sets

Req ID FR-GR-6 Priority High

Prepared by CERTH Tested by CERTH

Pre-condition(s) Receivers (PDCs) and transmitters (PMUs) can be connected through the SDN

network.

Test steps

1 Obtain the list of the PDCs, PMUs, their maximum bandwidth and their data transfer rate at the

moment PDC(s) is disconnected from the SDN-network

2 Run the MILP algorithm with the objective to minimize the latency of the network

3 Obtain a list with the new PDC and PMU connections and the execution time

Input data The list of the PDCs, PMUs, their maximum bandwidth and their data transfer at the

moment PDC(s) is disconnected from the SDN-network for different sets of PMUs

and PDCs

Result Input sets (PMUs) Execution Time of MILP (seconds)

5 0.011109

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 169
Public document

8 0.014834

10 0.019557

15 0.020854

18 0.022619

20 0.025427

25 0.028288

Number of PDCs Execution Time of MILP (seconds)

4 0.020854

6 0.027695

8 0.028079

10 0.039315

12 0.040966

14 0.046971

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 170
Public document

Test Case Result Partially achieved, to be tested with more data

Table 65: EDAE_receiver_transmitter_3 unit test

Test Case ID EDAE_receiver_transmitter_3 Component EDAE

Description Optimal receiver-transmitter allocation by minimizing the latency of the network with EDAE’s

transmitter constrained MILP

Req ID FR-GR-6 Priority Medium

Prepared by CERTH Tested by CERTH

Pre-

condition(s)

 Receivers (PDCs) and transmitters (PMUs) can be connected through the SDN network.

Test steps

1 Optimal available PDCs-PMUs allocation by minimizing the latency of the network

2 Run the MILP algorithm with the objective to minimize the latency of the network

3 Obtain a list with the new PDC and PMU connections

Input data The list of the PDCs, PMUs at the moment PDC(s) is disconnected from the SDN-network

PMU PMU-1 PMU-2 PMU-3 PMU-4

PDCs A B A B A B A B

Latency 4.56 3.45 3.45 2.65 9.24 5.01 2.95 7.33

PDC PDC-A PDC-B

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 171
Public document

PMU Capacity 20 20

Result Network before the attack:

Result of the transmitter constrained MILP algorithm:

As it can be seen from the status parameter of the pulp package, the solution of the CBC

solver is the optimal

Network after the attack:

Test Case

Result

Partially Achieved, to be tested with more data

Table 66: EDAE_receiver_transmitter_4

Test Case ID EDAE_receiver_transmitter_4 Component EDAE

Description Compare the execution time of the transmitter constrained algorithm for different

size of transmitter - receiver of sets

Req ID FR-GR-6 Priority Medium

Prepared by CERTH Tested by CERTH

Pre-condition(s) Receivers (PDCs) and transmitters (PMUs) can be connected through the SDN

network.

Χ

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 172
Public document

Test steps

1 Obtain the list of the PDCs, PMUs at the moment PDC(s) is disconnected from the SDN-network

2 Run the MILP algorithm with the objective to minimize the latency of the network

3 Obtain a list with the new PDC and PMU connections and the execution time

Input data The list of the PDCs, PMUs at the moment PDC(s) is disconnected from the SDN-

network for different sets of PMUs and PDCs

Result Input sets (PMUs) Execution Time of MILP (seconds)

5 0.007932

8 0.009495

10 0.010889

15 0.011641

18 0.012874

20 0.015206

25 0.01486

Number of PDCs Execution Time of MILP (seconds)

4 0.011855

6 0.013151

8 0.020657

10 0.023597

12 0.02451

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 173
Public document

14 0.024193

Test Case Result Partially achieved, to be tested with more data

9.4 EDAE workflow

9.4.1 Technical environment
Following the previous examples Table 67 details the list of software and versions used for EDAE

workflow implementation and testing.

Table 67: List of software and version used for EDAE workflow implementation and testing

Base software Version

Python 3.7

Docker Any

Apache Airflow 1.10.9

PostgreSQL 11

RabbitMQ 3.7.28

9.4.2 Unit tests
Table 68 to Table 72 describe 5 unit tests for EDAE workflow.

Table 68: EDAE_workflow1 unit test description

Test Case ID EDAE_workflow1 Component EDAE_workflow

Description Test the data management from interfaces in order to give it to EDAE engine in the required
format.

Req ID

Priority

Prepared by IREC Tested by IREC

Pre-condition(s) S-RAF sends an incident

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 174
Public document

Test steps

1 The workflow is raised manually simulating the reception of an S-RAF incident.

2 The workflow gets data (an example of output) from S-RAF interface.

3 The workflow gets data (an example of output) from AIDB interface.

4 The workflow gets data (an example of output) from SDN-C interface.

5 From AIDB data the workflow will extract PMUs and PDCs

6 The workflow will group all the information in one json to be send to EDAE Rest API in a post request.

Input data http://172.20.0.7:8000/EDAE/aidb/gridmodel/testcase

http://172.20.0.6:8000/sdncontroller/testcase

http://172.20.0.5:8000/sraf/incident/testcase
See json details in annex 13.413.4.1

Result As a summary:

See json details in annex 13.4

Test Case Result Achieved in local environments. To be tested in pilot.

Table 69: EDAE_workflow2 unit test description

Test Case ID EDAE_workflow2 Component EDAE_workflow

Description Test the data management from EDAE engine to EDAE-Dashboard.

Req ID

Priority

Prepared by IREC Tested by IREC

Pre-condition(s) EDAE engine gives a proposal that requires to be approved by the EDAE-Dashboard.

Test steps

1 The workflow gets the EDAE engine result.

2 The workflow generates a proposal ID to identify this information to be evaluated.

3 The workflow notify EDAE-Dashboard the information by publishing in a RabbitMQ this information
grouped in one json

Input data The result of EDAE engine. As a summary:

See json details in annex 13.4

Result As a summary (the peak corresponds to the message sent):

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 175
Public document

Output summary:

See json details in annex 13.4

Test Case Result Achieved in local environments. To be tested in pilot.

Table 70: EDAE_workflow3 unit test description

Test Case ID EDAE_workflow3 Component EDAE

Description Test the data management from EDAE engine to implementation.

Req ID

Priority

Prepared by IREC Tested by IREC

Pre-condition(s) EDAE engine gives a result that DOES NOT requires to be approved.

Test steps

1 The workflow gets the EDAE engine result.

2 The workflow generates a proposal ID to identify this information to be evaluated. It’s been marked as
“implemented”.

3 The workflow call SDN Controller interface to send the changes proposed by EDAE engine.

Input data The result of EDAE engine. As a summary:

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 176
Public document

See json details in annex 13.4

Result The result is a call to the SDN Controller API in order to apply the changes proposed by the
EDAE engine.

Test Case Result To be tested in pilot.

Table 71: EDAE_workflow4 unit test description

Test Case ID EDAE_workflow4 Component EDAE_workflow

Description Test the data management from EDAE-Dashboard to implementation.

Req ID

Priority

Prepared by IREC Tested by IREC

Pre-condition(s) EDAE-Dashboard sends information regarding the proposal with a result “approved”.

Test steps

1 The workflow gets from RabbitMQ the information from EDAE-Dashboard where we know that the
proposal was approved.

2 The workflow updates the proposal stored in the database with the result of the approval process.

3 The workflow call SDN Controller interface to send the changes contained in the proposal.

Input data The result of EDA-Dashboard approval process.

Result The result is a call to the SDN Controller API in order to apply the changes proposed by the

EDAE engine.

Test Case Result To be tested in pilot.

Table 72: EDAE_workflow5 unit test description

Test Case ID EDAE_workflow5 Component EDAE_workflow

Description Test the data management from EDAE-Dashboard.

Req ID

Priority

Prepared by IREC Tested by IREC

Pre-condition(s) EDAE-Dashboard sends information regarding the proposal with the result “rejected”.

Test steps

1 The workflow gets from RabbitMQ the information from EDAE-Dashboard where we know that the
proposal was rejected.

2 The workflow updates the proposal stored in the database with the result of the approval process.

Input data The result of EDAE-Dashboard approval process.

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 177
Public document

Result Nothing external. Just the database update.

Test Case Result Achieved in local environments. To be tested in pilot.

9.5 EDAE-Dashboard

9.5.1 Technical environment
To develop and test the EDAE dashboard, a real SDN network is replicated. For that end, a network

simulator is employed, Mininet, to emulate the real behaviour of a SDN network. A custom SDN

network is emulated to test the EDAE dashboard. Additionally, RYU is used as SDN controller. The

topological information is obtained from the AIDB, through the AIDB API. The SDN-network

information is collected from the SDN-C, in this case RYU. The generated information, in terms of

statistics and network performance metrics, is stored in two different databases, RedisDB and

MongoDB. The network simulator, Mininet, and the SDN-C, RYU, run on Ubuntu 16.04.6 LTS operating

system while the databases run on Windows operating system.

Table 73: List of software used for implementation and testing

Base software Version
Mininet 2.2.2

Ryu OpenFlow 1.3

Mongo DB 4.2
REDIS 6.0.6

Python 3.7

In the followings, the description of the unit tests carried out to validate the EDAE-Dashboard

performance is presented, together will the obtained results.

9.5.2 Unit tests
The unit tests are devoted to validating the EDAE-Dashboard implementation. In Table 74 a summary

of the unit tests that have been carried out is presented.

Table 74: EDAE-Dashboard Unit tests summary

Unit test ID Description
EDAE_DASH_001 Current SDN-network state representation

EDAE_DASH_002 EDAE proposal representation

Table 75: EDAE_DASH_001 - Current SDN network state representation

Test Case ID EDAE_DASH_001 Component EDAE Dashboard

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 178
Public document

Description Representation of the current state of the SDN network in terms of host, switches

and links. Besides, the network performance metrics for the switches and links

weights are represented.

Req ID Priority

Prepared by AYESA Tested by AYESA

Pre-condition(s) • AIDB API provides the topological information.

• A simple SDN-network is deployed in Mininet and a RYU controller and

its REST API are also deployed.

• Redis and Mongo databases are deployed and accessible.

Test steps

1 The tester accesses the EDAE-Dashboard user interface.

2 The tester can see the representation of the actual SDN-network status in terms of host, switches,

and links. The links between nodes are different depending on the nodes type:

Switch – switch: blue

Switch – host: yellow

3 The tester accesses the network performance metrics of each switch through a pop-up when cursor

is placed over a switch.

4 The tester accesses the network performance metrics of each host through a pop-up when cursor is

placed over a host.

Input data

Result Switch information

Host information

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 179
Public document

Test Case Result Achieved, to be tested in Pilot.

Table 76: EDAE_DASH_002 – EDAE proposal representation

Test Case ID EDAE_DASH_002 Component EDAE Dashboard

Description Representation of the EDAE proposals in terms of topological and routing routes

changes.

Req ID Priority

Prepared by AYESA Tested by AYESA

Pre-condition(s) • AIDB API provides the topological information.

• A simple SDN-network is deployed in Mininet and a RYU controller and

its REST API are also deployed.

• Redis and Mongo databases are deployed and accessible.

• EDAE- tool provides the network proposal.

Test steps

1 The tester accesses the EDAE-Dashboard user interface.

2 The tester can see the representation of the EDAE proposals over the SDN-network topology.

3 The tester accesses the path between two hosts when clicking over the hosts. The proposed path is

highlighted in green and the rest of the paths, between other hosts, are painted in grey.

Input data

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 180
Public document

Result

In this test, it is represented the path between host5 and host3

Test Case Result Achieved, to be tested in Pilot.

9.6 Assets inventory database

9.6.1 Technical environment
The unit test readiness has required the deployment of the different databases as well as the

microservices in a developing environment. Unit tests have been focused on API invocations.

Table 77: Base software and version used for AIDB unit testing

Base software Version

Java OpenJDK 14

PostgreSQL v9.4.8

Mongo DB v4.0.16

Neo4J v3.5.17

REDIS v4.0.5

LDAP LDAP

AIDB microservice AIDB microservice
Postman as API client

9.6.2 Unit tests
The unit tests are devoted to check out the AIDB implementation. Additionally, these tests are a way

to a better understanding and appraisal of the AIDB functionality and, in the API cases, easy the

integration develop of other components. A unit test can involve more than one API method and

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 181
Public document

even other unit test, therewith we manage a good test coverage thank to for example an asset

creation is validated using a query method which has to return the expected values.

Table 78: AIDB Unit test summary

Unit test ID Methods

AIDB_001 SDN Asset creation
Asset Create ()
AssetQuery ()

AIDB_002 SDN Asset update
AssetUpdate ()
AssetQuery ()

AIDB_003 SDN topology attribute update
AssetUpdate ()
AssetQuery ()

AIDB_004 SDN topology update
TopologyQuery()
AssetUpdate ()
AssetQuery ()

AIDB_005 Grid definition registration

AIDB_006 SDN-Grid relationship creation
TopologyQuery()
AssetUpdate ()
AssetQuery ()

Table 79: AIDB_001 SDN Asset creation - Unit Test

Test Case ID AIDB_001 Component AIDB

Description A complete SDN architecture made up of SDN Switches, Hosts, and an SDN

controller, and their relationships are registered into the database.

Req ID Priority

Prepared by Tested by

Pre-condition(s) • The API User has to be registered in the LDAP with valid credentials.

• The API User has to be bound to a Use case, i.e., UC0.

• The database partition devoted to the chosen Use Case has to be

clean.

Test steps

1 Invoke the AIDB Create API using the Use case definition depicted in the Figure 73: AIDB - SDN asset

inventory example.

2 Invoke the AIDB Query API to get the entire asset information

Input data

Result

Test Case Result {Not achieved, Achieved, To be tested in Pilot}

Table 80: AIDB_002 SDN Asset update - Unit Test

Test Case ID AIDB_002 Component AIDB

Description A part of the asset information is updated without topology impact.

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 182
Public document

Req ID Priority

Prepared by Tested by

Pre-condition(s) • Having launched the AIDB_001 SDN Asset creation

Test steps

1 Invoke the AIDB Update API indicating a modification in the description field of some assets.

2 Invoke the AIDB Query API to get the asset information.

Input data

Result

Test Case Result {Not achieved, Achieved, To be tested in Pilot}

Table 81: AIDB_003 SDN topology attribute update - Unit Test

Test Case ID AIDB_003 Component AIDB

Description A part of the information associated to the SDN topology is updated.

Req ID Priority

Prepared by Tested by

Pre-condition(s) • Launch after having tested the AIDB_001 SDN Asset creation.

Test steps

1 Invoke the AIDB Update API indicating a modification in the description field of some assets.

2 Invoke the AIDB Query API to get the entire asset information.

Input data

Result

Test Case Result {Not achieved, Achieved, To be tested in Pilot}

Table 82: AIDB_004 SDN topology update - Unit Test

Test Case ID AIDB_004 Component AIDB

Description A part of SDN topology is updated with a new relationship and deleting another.

Req ID Priority

Prepared by Tested by

Pre-condition(s) • Launch after having tested the AIDB_001 SDN Asset creation.

• Select a target host and his related SDN switch to foresee what

relationship will be deleted.

Test steps

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 183
Public document

1 Invoke the AIDB Topology query, from a source host towards the target host (selected for test case).

After the invocation the query will indicate a path from source to the target host.

2 Invoke the AIDB Update API deleting the current relationship between the target host and its

immediate SDN switch, as well, adding a new relationship that binds the target host to other SDN

Switch.

3 Invoke the AIDB Query API to get the entire asset information. The query result should not contain

the deleted relationship, and the new relationship has to appear.

4 Repeat the invocation of the first step. Now, the obtained path has to reflex the new topology,

achieving the target host through the other SDN switch.

Input data

Result

Test Case Result {Not achieved, Achieved, To be tested in Pilot}

Table 83: AIDB_005 Grid definition registration - Unit Test

Test Case ID AIDB_005 Component AIDB

Description The AIDB registers Grid Asset references regarding a given Grid definition in

pandapower format. Grid Assets are created into the AIDB with his correct asset

type. Next, the same Grid definition file can be retrieved lately.

Req ID Priority

Prepared by Tested by

Pre-condition(s) The API User has to be registered in the LDAP with valid credentials.

The API User has to be bound to a Use case, i.e., UC0.

Test steps

1 Invoke the GridModelUpdate using the pandapower file corresponding to the Grid model example

included in the Annexes.

2 Invoke the AIDB Query API to get the entire asset information. The query result should contain all of

Grid Assets included in the input Grid definition file.

3 Invoke the GridModelQuery(). The AIDB will return the same definition file used in the first step.

Input data

Result

Test Case Result {Not achieved, Achieved, To be tested in Pilot}

Table 84: AIDB_006 SDN-Grid relationship creation - Unit Test

Test Case ID AIDB_006 Component AIDB

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 184
Public document

Description The AIDB registers Grid Asset references regarding a given Grid definition in

pandapower format. Grid Assets are created into the AIDB with his correct asset

type. Next, the same Grid definition file can be retrieved lately.

Req ID Priority

Prepared by Tested by

Pre-condition(s) • Having launched the test AIDB_001 and AIDB_005.

Test steps

1 Invoke the AIDB Update API creating three relationships, the first one between the “Host 1” and the

“Diesel generator 1” (Diesel generator 1 monitoring is able), the second between the “Diesel

generator 1” and the “Host 1” (This way allows the control operations for the Diesel generator 1),

finally between and the “Diesel generator 2” and “Host 2” (Diesel generator 2 only is able to

monitoring.

2 Invoke the AIDB Query API to get the entire asset information. The query result should contain the

relationships have just been created.

3 Invoke the AIDB Topology query, indicating the Switch 1 as source asset, and selecting border flag.

4 Invoke the AIDB Topology query, indicating the Host 1 as source asset, and selecting border flag.

 Repeat steps 3 and 4 with downstream ‘No’

5 Repeat steps 3 and 4 with Switch 2 and Host 2

Input data

Result

Test Case Result {Not achieved, Achieved, To be tested in Pilot}

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 185
Public document

10 Innovation Summary
An innovative method for self-healing applied to smart grids is presented. This method is taking

advantage on the reconfiguration of information flows that offers the SDN-technology. A specific

application called EDAE was developed for that purpose. It increases the resilience on smart grids by

covering the following points:

• Restoring power system observability and controllability by reconfiguring the communication

network as quickly as possible, also considering the latency and the bandwidth on the

communication links.

• Maximizing the system observability and controllability by recovering as many communication

endpoints as possible (e.g., all disconnected PMUs).

• Disconnecting and isolating from the network the assets that are under attack or

malfunctioning and could compromise the behaviour of the other assets.

• Automating the network self-healing actions based on the results from a risk assessment

[D3.5] that evaluates the network assets together with the power system elements.

EDAE is using a multi-objective genetic algorithm and of the MILP algorithm. The genetic algorithm

manages the network path reconstruction and is activated when a security constrain is violated. The

MILP calculates the optimal connection of PMU to a PDC, when a PDC is disconnected (packet loss

percentage above certain threshold).

EDAE results are drawn in an independent dashboard called EDAE-Dashboard, which monitor the

current state of the SDN-Network, graphically represents the EDAE outputs, allows the user interaction

to validate the changes on the network and presents some statistics from all the represented nodes.

An interesting feature is that the operator can accept or reject the proposed changes totally or

partially, which means that the operator could accept only part of the EDAE proposal.

A customized SDN-Controller is developed using Ryu framework, and specifically some improvements

to the original implementation were introduced:

• The API REST commands that retrieve and update the configuration of SND-switch using open

Flow protocol (Ofctl_rest) had been upgraded to use OpenFlow version 1.3.

• The API REST commands to retrieve the network topology (rest_topology) had been improved

to support inputs and outputs in decimal format (datapath IDs and port numbers) and to

achieve compliance between rest_topology and ofctl_rest.

• The API REST commands to retrieve the network topology (rest_topology) integrate

information regarding the delay monitoring expansion.

• Security features:

o TLS secured by a nginx proxy server in each SDN-C

o Basic http authentication to authorize each client to access NBI

The SDN-C is complemented with a SDN-Dashboard developed to provide a user-friendly interface to

monitor and manage the network. As a novelty this interface is decoupled form the SDN-C and allows

the connection of multiple SDN-Cs using REST-based NBI which in turn provides a fault-tolerant

capability of the SDN-Control layer.

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 186
Public document

Finally, a cross component is designed to store ICT network and grid assets. This is AIDB, which relates

grid assets towards the SDN Hosts. This component is crucial for the whole SDN-microSENSE

framework as it is usable not only for SDN-SELF but also S-RAF and XL-SIEM.

Although the technical achievements, there is room for improvement and some of the features that

should be considered in future tools versions are:

• Synchronization of EPES real grid assets with AIDB. In order to collect the real-time data form

devices.

• Inventory all SDN assets automatically, without human intervention by the mean an AIDB

daemon.

• EDAE is connected with one SDN-C, include the possibility to make decisions in a coordinated

way through more than one SDN-C in the same network.

• Explore other algorithms, as machine learning, for EDAE to learn from the decisions taken by

the user.

A publication is produced due to the content of this deliverable:

• Toni Cantero-Gubert, Alba Colet, Pol Paradell, and J. L. Domínguez-García. 2020. “Building a
testing environment for SDN networks analysis for electrical grid applications”. In Proceedings
of the 15th International Conference on Availability, Reliability and Security (ARES '20).
Association for Computing Machinery, New York, NY, USA, Article 112, 1–6.
DOI:https://doi.org/10.1145/3407023.3409230

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 187
Public document

11 Conclusions
This deliverable explained in detail the components involved in the network management process in

case of a failure or a cyber-attack in the EPES.

EDAE component is the brain of the process and it has been designed to maximize the observability

and the QoS of the communication network. EDAE is not only rearranging logical connection in the

communication network but also deciding the data paths based on the risks of the assets that are

present in the electrical grid and information of the network switches.

As seen in section 2, neither traditional self-healing mechanisms nor those strategies used in smart

grids does not offer such a complete reaction as the combination of EDAE and SDN technology is able

to provide. The innovations of this network management process is highlighted in section 9.

Functional and non-functional requirements listed in section 3 has been addressed through the

description of the component and the unit testing.

The reader will be able to allocate the components described in this document in the overall

architecture of SDN-microSENSE project and to see the interdependencies and integration of those

components: AIDB, S-RAF, EDAE and SDN-C. Special mention is done to the user graphic interface of

EDAE and SDN-C: EDAE-Dashboard and SDN-Dashboard.

Even though the actual interfaces and integration points could be updated in the context of WP7, they

are explained in detail in section 5 to 7 in this deliverable.

From the requirements, following the design and implementation, the last part of this document is the

unit testing proposed for all components and its processes. It demonstrates the success of the

implementation and pointed out the limitations of the design.

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 188
Public document

12 References

[1] M. H. Rehmani, A. Davy, B. Jennings and C. Assi, “Software defined networks-based smart grid

communication: A comprehensive survey,” IEEE Communications Surveys & Tutorials, vol. 21,

no. 3, pp. 2637-2670, 2019.

[2] E. A. Leal and J. F. Botero, “Software defined power substations: An architecture for network

communications and its control plane,” in 2016 8th IEEE Latin-American Conference on

Communications (LATINCOM), 2016.

[3] A. Cahn, J. Hoyos, M. Hulse and E. Keller, “Software-defined energy communication networks:

From substation automation to future smart grids,” in 2013 IEEE International conference on

smart grid communications (SmartGridComm), 2013.

[4] A. Depari, A. Flammini, M. Lavarini and E. Sisinni, “Enhanced software defined meter for smart

utility networks,” Computer Standards & Interfaces, vol. 48, pp. 160-172, 2016.

[5] Z. Zhou, J. Gong, Y. He and Y. Zhang, “Software defined machine-tomachine communication for

smart energy management,” IEEE Communications Magazine, vol. 55, no. 10, pp. 52-60, 2017.

[6] Y. Xin, I. Baldine, J. Chase, T. Beyene, B. Parkhurst and A. Chakrabortty, “Virtual smart grid

architecture and control framework,” in 2011 IEEE International Conference on Smart Grid

Communications (SmartGridComm), 2011.

[7] P. Manso, J. Moura and C. Serrão, “SDN-Based Intrusion Detection System for Early Detection

and Mitigation of DDoS Attacks,” Information, vol. 10, no. 3, p. 106, 2019.

[8] P. Radoglou-Grammatikis, P. Sarigiannidis, G. Efstathopoulos, P.-A. Karypidis and A.

Sarigiannidis, “Diderot: An intrusion detection andprevention system for dnp3-based scada

systems,” in Proceedings of the 15th International Conference on Availability, Reliability and

Security, 2020.

[9] R. K. Das, F. H. Pohrmen, A. K. Maji and G. Saha, “FT-SDN: A Fault-Tolerant Distributed

Architecture for Software Defined Network,” WIRELESS PERSONAL COMMUNICATIONS, 2020.

[10] F. Botelho, A. Bessani, F. M. Ramos and P. Ferreira, “On the design of practical fault-tolerant

SDN controllers,” in 2014 third European workshop on software defined networks, Lisbon, IEEE,

2014, pp. 73-78.

[11] A. Bucchiarone, H. Muccini and P. Pelliccione, “Architecting Fault-tolerant component-based

systems: from requirements to testing,” Electronic Notes in Theoretical Computer Science, vol.

168, pp. 77-90, 2007.

[12] A. Rehman, R. L. Aguiar and J. P. Barraca, “Fault-Tolerance in the Scope of Software-Defined

Networking (SDN),” IEEE Access, vol. 7, pp. 124474-124490, 2019.

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 189
Public document

[13] J. Chen, J. Chen, F. Xu, M. Yin and W. Zhang, “When software defined networks meet fault

tolerance: A survey,” in International conference on algorithms and architectures for parallel

processing, 2015.

[14] A. Rehman, R. L. Aguiar and J. P. Barraca, “A proposal for faulttolerant and self-healing hybrid

sdn control network,” in Simpósio de Informática, Aveiro, Portugal, 2017.

[15] A. Modarresi, S. Gangadhar and J. P. Sterbenz, “A framework for improving network resilience

using SDN and fog nodes,” 9th International Workshop on Resilient Networks Design and

Modeling (RNDM), Alghero, vol. doi: 10.1109/RNDM.2017.8093036., pp. 1-7, 2017.

[16] X. Zhang, K. Wei, L. Guo, W. Hou and J. Wu, “SDN-based Resilience Solutions for Smart Grids,”

2016 International Conference on Software Networking (ICSN), vol. doi:

10.1109/ICSN.2016.7501931, pp. 1-5, 2016.

[17] C. C. Machado, L. Z. Granville and A. Schaeffer-Filho, “ANSwer: Combining NFV and SDN

features for network resilience strategies,” IEEE Symposium on Computers and Communication

(ISCC), vol. doi: 10.1109/ISCC.2016.7543771, pp. 391-396, 2016.

[18] M. Zadsar, M. R. Haghifam and S. M. M. Larimi, “Approach for self-healing resilient operation of

active distribution network with microgrid,” IET Generation, Transmission & Distribution, vol.

11, no. 18, pp. 4633-1643, 2017.

[19] C. Colson, M. Nehrir and R. Gunderson, “Distributed multi-agent microgrids: a decentralized

approach to resilient power system self-healing,” in 2011 4th International Symposium on

Resilient Control Systems, Boise, ID, USA, 2011.

[20] IEEE Std 1547.4-2011, “IEEE Guide for Design, Operation, and Integration of Distributed

Resource Island Systems with Electric Power Systems,” 2011 July 20. [Online]. Available:

https://ieeexplore.ieee.org/servlet/opac?punumber=5960749.

[21] Z. Wang and J. Wang, “Self-Healing Resilient Distribution Systems Based on Sectionalization Into

Microgrids,” IEEE Transactions on Power Systems, vol. 30, no. 6, pp. 3139-3149, 2015.

[22] ENTSO-E, “Operational Reserve Ad-hoc Team Report Final Version,” [Online]. Available:

https://eepublicdownloads.azureedge.net/clean-documents/pre2015/resources/LCFR/2012-06-

14_SOC-AhT-OR_Report_final_V9-3.pdf. [Accessed 23 September 2020].

[23] C. Speckamp, SOPTIM, 26 10 2016. [Online]. Available:

https://www.soptim.de/de/blog/detail/Software-von-SOPTIM-managt-zuverlaessig-Markt-fuer-

Minutenreserveleistung-13T/. [Accessed 17 09 2020].

[24] NREL, “Operating Reserves and Variable Generation,” 2011. [Online]. Available:

https://www.nrel.gov/docs/fy11osti/51978.pdf. [Accessed 20 November 2020].

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 190
Public document

[25] European Commission, “Commission Regulation (EU) 2017/2196 - Network Code on Electricity

Emergency and Restoration,” 24 November 2017. [Online]. Available: https://eur-

lex.europa.eu/eli/reg/2017/2196. [Accessed 20 November 2020].

[26] 50Hertz, Amprion, TenneT, TransnetBW, „Systemschutzplan der vier deutschen

Übertragungsnetzbetreiber,“ 14 December 2018. [Online]. Available:

https://www.netztransparenz.de/portals/1/Content/EU-Network-Codes/ER-

VErordnung/Systemschutzplan%20der%20%C3%9CNB%20-%20Hauptdokument.pdf. [Zugriff am

20 November 2020].

[27] VDE FNN, “VDE-AR-N4142 - Automatic remedial measures to prevent system breakdowns,”

2020.

[28] A. Gómez-Expósito, A. J. Conejo and C. Cañizares, Electric energy systems: analysis and

operation, CRC press, 2018.

[29] J. Machowski, Z. Lubosny, J. W. Bialek and J. R. Bumby, Power Systems Dynamics: Stability and

Control, John Wiley & Sons, 2020.

[30] European Commission, Smart Grid Mandate M/490 , [Online]. Available:

https://ec.europa.eu/growth/tools-

databases/mandates/index.cfm?fuseaction=search.detail&id=475#. [Accessed 2020 September

23].

[31] EPRI, “Common Functions for Smart Inverters: 4th Edition,” Palo Alto, CA, 3002008217, 2016.

[32] Belectric GmbH, “Solar PV-BatteryHybrid System – Test Report,” 2019. [Online]. Available:

https://www.nationalgrideso.com/document/140311/download. [Accessed 18 November

2020].

[33] K. Stein, M. Tun, M. Matsuura and R. Rocheleau, “Characterization of a Fast Battery Energy

StorageSystem for Primary Frequency Response,” Energies, 2018.

[34] S. Sproul, “Do you know the difference between Virtual Inertia and Fast Frequency Response?,”

pv magazine Australia, [Online]. Available: https://www.pv-magazine-

australia.com/2020/04/08/do-you-know-the-difference-between-virtual-inertia-and-fast-

frequency-response/. [Accessed 18 November 2020].

[35] WSW Wuppertaler Stadtwerke GmbH, „Demand Side Management vs. Demand Response,“

[Online]. Available: https://www.wsw-online.de/happy-power-hour/wissensbereich/demand-

side-management-vs-demand-response/. [Zugriff am 18 November 2020].

[36] NERC, “Demand Response Availability Data System (DADS): Phase I & II Final Report,” [Online].

Available:

https://www.nerc.com/pa/RAPA/dads/DADSPhaseII/DADS%20Phase%20I%20and%20II%20Rep

ort.pdf. [Accessed 18 November 2020].

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 191
Public document

[37] IEA, “Demand Response,” 2020. [Online]. Available: https://www.iea.org/reports/demand-

response. [Accessed 18 November 2020].

[38] A. Zangeneh and M. Moradzadeh, "Self-healing: Definition, Requirements, Challenges and

Methods.," in Microgrid Architectures, Control and Protection Methods, Springer, 2020.

[39] M. Roos, P. Nguyen, J. Morren and J. Slootweg, "Sectionalizing Distribution Networks Concept

and System Framework," Eindhoven, 2018.

[40] X. Gao and X. Ai, "The Application of Self-Healing Technology in Smart Grid," in 2011 Asia-Pacific

Power and Energy Engineering Conference, Wuhan, 2011.

[41] H. Lin, "Self-Healing Attack-Resilient PMU Network for Power System Operation," IEEE

Transactions on Smart Grid vol. 9 no. 3, pp. 1551-1565, May 2018.

[42] C. De Las Muñecas and A. Tirados, "Intrusion Detection Systems in SDN-based Self-Healing PMU

Networks," Department of Computer Science, Illinois Institute of Technology, Illinois, 2016.

[43] SDN-microSENSE consortium, “Deliverable D2.3: Platform Specifications and Architecture,”

European Comission, 2020.

[44] [Online]. Available: https://ryu.readthedocs.io/en/latest/app/ofctl_rest.html.

[45] [Online]. Available: https://github.com/faucetsdn/ryu/blob/master/ryu/app/rest_topology.py.

[46] J. Deacon, “Model-View-Controller (MVC) Architecture,” Computer Systems Development,

Consulting and Training, 2009.

[47] [Online]. Available: https://github.com/python-zk/kazoo.

[48] [Online]. Available: https://github.com/martimy/flowmanager.

[49] K. Papachristou, T.-I. Theodorou, S. Papadopoulos, A. Protogerou, A. Drosou and D. Tzovaras,

"Routing policy verification for enhanced energy quality of service and security monitoring in

IoT," in Proceedings of the 23rd Pan-Hellenic Conference on Informatics, Nicosia, Cyprus, 2019.

[50] T. A. Q. Pham, Y. Hadjadj-Aoul and A. Outtagarts, "Deep reinforcement learning based qos-

aware routing in knowledge-defined networking," in International Conference on

Heterogeneous Networking for Quality, Reliability, Security and Robustness, 2018.

[51] M. Rezaee and M. H. Y. Moghaddam, “SDN-based quality of service networking for wide area

measurement system,” IEEE Transactions on Industrial Informatics, vol. 16, no. 5, pp. 3018-

3028, 2019.

[52] J. B. Hong, S. Yoon, H. Lim and D. S. Kim, “Optimal network reconfiguration for software defined

networks using shuffle-based online MTD,” in 2017 IEEE 36th Symposium on Reliable

Distributed Systems (SRDS), 2017.

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 192
Public document

[53] M. Wang, J. Liu, J. Mao, H. Cheng, J. Chen and C. Qi, “RouteGuardian: Constructing secure

routing paths in software-defined networking,” Tsinghua Science and Technology, vol. 22, no. 4,

pp. 400-412, 2017.

[54] Y. Qu, X. Liu, D. Jin, Y. Hong and C. Chen, “Enabling a Resilient and Self-healing PMU

Infrastructure Using Centralized Network Control,” in Proceedings of the 2018 ACM

International Workshop on Security in Software Defined Networks & Network Function

Virtualization, 2018.

[55] T. P. Lillicrap, Continuous control with deep reinforcement learning, 2015: arXiv e-prints.

[56] A. Mambrini and D. Izzo, “Pade: A parallel algorithm based on the moea/d framework and the

island model,” in International Conference on Parallel Problem Solving from Nature, 2014.

[57] D. Izzo, M. Rucinski and F. Biscani, “The Generalized Island Model,” in Parallel Architectures and

Bioinspired Algorithms, Springer, 2012, pp. 151-169.

[58] P. T. A. Quang, J.-M. Sanner, C. Morin and Y. Hadjadj-Aoul, “Multi-objective multi-constrained

QoS Routing in large-scale networks: A genetic algorithm approach,” in International conference

on smart communications in network technologies (SaCoNeT), 2018.

[59] IEEE SA - The IEEE Standards Association, “60255-118-1-2018 - IEEE/IEC International Standard -

Measuring relays and protection equipment - Part 118-1: Synchrophasor for power systems -

Measurements,” [Online]. Available: https://standards.ieee.org/standard/60255-118-1-

2018.html. [Accessed 29 September 2020].

[60] IEEE SA - The IEEE Standards Association, “C37.118.2-2011 - IEEE Standard for Synchrophasor

Data Transfer for Power Systems,” [Online]. Available:

https://standards.ieee.org/standard/C37_118_2-2011.html. [Accessed 29 September 2020].

[61] IEEE SA - The IEEE Standards Association, “C37.247-2019 - IEEE Standard for Phasor Data

Concentrators for Power Systems,” [Online]. Available:

https://standards.ieee.org/standard/C37_247-2019.html. [Accessed 29 September 2020].

[62] J. W. Guck, A. Van Bemten, M. Reisslein and W. Kellerer, “Unicast QoS routing algorithms for

SDN: A comprehensive survey and performance evaluation,” IEEE Communications Surveys &

Tutorials, vol. 20, no. 1, pp. 388-415, 2017.

[63] “Daoquan Li, Xue Wang, Yingnan Jin, & Haoxin Liu (2020). Research on QoS routing method

based on NSGAII in SDNJournal of Physics: Conference Series, 1656, 012027.”.

[64] S. Kumar, M. K. Soni and D. K. Jain, “Requirements and challenges of PMUs communication in

WAMS environment.,” Far East Journal of Electronics and Communications, vol. 13, no. 2, pp.

121-135, 2014.

[65] W. Tao, M. Ma, C. Fang, W. Xie, M. Ding, D. Xu and Y. Shi, “Design and Application of a

Distribution Network Phasor Data Concentrator,” Applied Sciences, vol. 10, no. 8, p. 2942, 2020.

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 193
Public document

[66] P. Kansal and A. Bose, “Bandwidth and Latency Requirements for Smart Transmission Grid

Applications,” IEEE Transactions on Smart Grid, vol. 3, no. 3, pp. 1344-1352, 2012.

[67] The Office of the General Counsel, [Online]. Available:

https://www.energy.gov/gc/downloads/communications-requirements-smart-grid-

technologies.

[68] https://www.spp.org/documents/55158/spp%20pmu%20communication%20handbook%20v1.

0.pdf. [Online].

[69] a. https://www.ciscopress.com/articles/article.asp?p=357102#:~:text=One-

way%20latency%20(mouth%20to. [Online].

[70] https://www.arubanetworks.com/assets/ds/DS_2530SwitchSeries.pdf. [Online].

[71] K. Deb, A. Pratap, S. Agarwal and T. Meyarivan, “A fast and elitist multiobjective genetic

algorithm: NSGA-II,” IEEE transactions on evolutionary computation, vol. 6, no. 2, pp. 182-197,

2002.

[72] C. Hewicker, O. Werner and H. Ziegler, "Qualitative Analysis of Cross-Border Exchange of

Balancing Energy and Operational Reserves between Netherlands and Belgium," KEMA

Consulting GmbH, Bonn, 2013.

[73] [Online]. Available: https://www.iana.org/assignments/ieee-802-numbers/ieee-802-

numbers.xhtml.

[74] [Online]. Available: https://www.iana.org/assignments/protocol-numbers/protocol-

numbers.xhtml.

[75] [Online]. Available: https://www.iana.org/assignments/icmp-parameters/icmp-parameters.xml.

[76] [Online]. Available: https://www.iana.org/assignments/icmp-parameters/icmp-parameters.xml.

[77] [Online]. Available: https://www.iana.org/assignments/arp-parameters/arp-parameters.xhtml.

This project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement No 833955

13 Annexes

13.1 EDAE Interface details
Example of a preliminary version of the output S-

RAF generates:

{
 "ASSETS":[
 {
 "name":"SDN-Switch",
 "type":"h",
 "category":"NetworkComponent/Switch",
 "gdpr":false,
 "assetId":1,
 "riskassessmentId":1714,
 "businesspartnerId":1,
 "risklevel":"M",
 "threats":[
 {
 "threat":"DEFAULT-1",
 "name":"DEFAULT",
 "level":"VH",
 "vulnerabilities":[
 {
 "vulnerability":"CVE-2019-1890",
 "level":"L",
 "impact":"M",
 "risklevel":"M",
 "privacyfunctionalimpactscore":0,
 "privacyimpactscopescore":0,
 "privacydatatypes":[

],
 "privacydatatypescore":0,
 "privacyscore":0,
 "privavyriskscore":0,
 "cvssscore":3,
 "cvss":"L"
 }
],
 "result":"M"
 }
],
 "cumulativeRiskLevel":"M",
 "contributingirls":[
 "M"
],
 "controls":[

],
 "links":[
 {
 "type":"CONNECTED_TO",
 "assetId":3
 },
 {
 "type":"CONNECTED_TO",
 "assetId":5
 }
],
 "businessValue":"VH",
 "tags":{

 }
 },
 {
 "name":"SDN-enabled RTU",
 "category":"Business Service/Infrastructure
Service",
 "gdpr":false,
 "assetId":2,
 "riskassessmentId":1714,
 "businesspartnerId":1,
 "risklevel":"H",
 "threats":[
 {
 "threat":"DEFAULT-1",
 "name":"DEFAULT",
 "level":"VH",
 "vulnerabilities":[
 {
 "vulnerability":"CVE-2019-14931",
 "level":"VL",
 "impact":"VH",
 "risklevel":"H",
 "privacyfunctionalimpactscore":0,
 "privacyimpactscopescore":0,
 "privacydatatypes":[

],
 "privacydatatypescore":0,
 "privacyscore":0,
 "privavyriskscore":0,
 "cvssscore":6,
 "cvss":"H"
 }
],
 "result":"H"
 }
],
 "cumulativeRiskLevel":"H",
 "contributingirls":[
 "H"
],
 "controls":[

],
 "links":[
 {
 "type":"CONNECTED_TO",
 "assetId":1
 }
],
 "businessValue":"VH",
 "tags":{
 "attackpath":"source"
 }
 },
 {
 "name":"Programmable Logic Controller 1",
 "type":"h",
 "category":"Computer/Server",
 "gdpr":false,
 "assetId":3,
 "riskassessmentId":1714,

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 195
Public document

 "businesspartnerId":1,
 "risklevel":"H",
 "threats":[
 {
 "threat":"DEFAULT-1",
 "name":"DEFAULT",
 "level":"VH",
 "vulnerabilities":[
 {
 "vulnerability":"CVE-2017-6031",
 "level":"VH",
 "impact":"M",
 "risklevel":"H",
 "description":"A Header Injection
issue was discovered in Certec EDV GmbH atvise
scada prior to Version 3.0. An \"improper
neutralization of HTTP headers for scripting
syntax\" issue has been identified, which may allow
remote code execution.",
 "privacyfunctionalimpactscore":0,
 "privacyimpactscopescore":0,
 "privacydatatypes":[

],
 "privacydatatypescore":0,
 "privacyscore":0,
 "privavyriskscore":0,
 "cvssscore":6.8,
 "cvss":"H"
 },
 {
 "vulnerability":"CVE-2013-2780",
 "level":"VH",
 "impact":"L",
 "risklevel":"M",
 "privacyfunctionalimpactscore":0,
 "privacyimpactscopescore":0,
 "privacydatatypes":[

],
 "privacydatatypescore":0,
 "privacyscore":0,
 "privavyriskscore":0,
 "cvssscore":7.8,
 "cvss":"H"
 },
 {
 "vulnerability":"CVE-2017-6033",
 "level":"VH",
 "impact":"M",
 "risklevel":"H",
 "description":"A DLL Hijacking issue
was discovered in Schneider Electric Interactive
Graphical SCADA System (IGSS) Software, Version
12 and previous versions. The software will execute
a malicious file if it is named the same as a
legitimate file and placed in a location that is
earlier in the search path.",
 "privacyfunctionalimpactscore":0,

 "privacyimpactscopescore":0,
 "privacydatatypes":[

],
 "privacydatatypescore":0,
 "privacyscore":0,
 "privavyriskscore":0,
 "cvssscore":6.8,
 "cvss":"H"
 }
],
 "result":"H"
 }
],
 "cumulativeRiskLevel":"H",
 "contributingirls":[
 "H",
 "M"
],
 "controls":[

],
 "links":[
 {
 "type":"USED_BY",
 "assetId":4
 }
],
 "businessValue":"VH",
 "tags":{

 }
 },
 {
 "name":"Administrator",
 "category":"Organizational/Personnel",
 "gdpr":false,
 "assetId":4,
 "riskassessmentId":1714,
 "businesspartnerId":1,
 "risklevel":"",
 "threats":[

],
 "cumulativeRiskLevel":"",
 "contributingirls":[

],
 "controls":[

],
 "links":[

],
 "businessValue":"H",
 "tags":{
 "attackpath":"destination"
 }
 },

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 196
Public document

 {
 "name":"Programmable Logic Controller 2",
 "type":"h",
 "category":"Computer/Server",
 "gdpr":false,
 "assetId":5,
 "riskassessmentId":1714,
 "businesspartnerId":1,
 "risklevel":"H",
 "threats":[
 {
 "threat":"DEFAULT-1",
 "name":"DEFAULT",
 "level":"VH",
 "vulnerabilities":[
 {
 "vulnerability":"CVE-2013-2780",
 "level":"VH",
 "impact":"L",
 "risklevel":"M",
 "privacyfunctionalimpactscore":0,
 "privacyimpactscopescore":0,
 "privacydatatypes":[

],
 "privacydatatypescore":0,
 "privacyscore":0,
 "privavyriskscore":0,
 "cvssscore":7.8,
 "cvss":"H"
 },
 {
 "vulnerability":"CVE-2017-6033",
 "level":"VH",
 "impact":"M",
 "risklevel":"H",
 "description":"A DLL Hijacking issue
was discovered in Schneider Electric Interactive
Graphical SCADA System (IGSS) Software, Version
12 and previous versions. The software will execute
a malicious file if it is named the same as a
legitimate file and placed in a location that is
earlier in the search path.",
 "privacyfunctionalimpactscore":0,
 "privacyimpactscopescore":0,
 "privacydatatypes":[

],
 "privacydatatypescore":0,
 "privacyscore":0,
 "privavyriskscore":0,
 "cvssscore":6.8,
 "cvss":"H"
 },
 {
 "vulnerability":"CVE-2017-6031",
 "level":"VH",
 "impact":"M",
 "risklevel":"H",

 "description":"A Header Injection
issue was discovered in Certec EDV GmbH atvise
scada prior to Version 3.0. An \"improper
neutralization of HTTP headers for scripting
syntax\" issue has been identified, which may allow
remote code execution.",
 "privacyfunctionalimpactscore":0,
 "privacyimpactscopescore":0,
 "privacydatatypes":[

],
 "privacydatatypescore":0,
 "privacyscore":0,
 "privavyriskscore":0,
 "cvssscore":6.8,
 "cvss":"H"
 }
],
 "result":"H"
 }
],
 "cumulativeRiskLevel":"H",
 "contributingirls":[
 "H",
 "M"
],
 "controls":[

],
 "links":[
 {
 "type":"CONNECTED_TO",
 "assetId":6
 }
],
 "businessValue":"VH",
 "tags":{

 }
 },
 {
 "name":"SCADA 1",
 "type":"h",
 "category":"Computer/Server",
 "gdpr":false,
 "assetId":6,
 "riskassessmentId":1714,
 "businesspartnerId":1,
 "risklevel":"H",
 "threats":[
 {
 "threat":"DEFAULT-1",
 "name":"DEFAULT",
 "level":"VH",
 "vulnerabilities":[
 {
 "vulnerability":"CVE-2013-2780",
 "level":"VH",
 "impact":"L",

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 197
Public document

 "risklevel":"M",
 "privacyfunctionalimpactscore":0,
 "privacyimpactscopescore":0,
 "privacydatatypes":[

],
 "privacydatatypescore":0,
 "privacyscore":0,
 "privavyriskscore":0,
 "cvssscore":7.8,
 "cvss":"H"
 },
 {
 "vulnerability":"CVE-2017-6031",
 "level":"VH",
 "impact":"M",
 "risklevel":"H",
 "description":"A Header Injection
issue was discovered in Certec EDV GmbH atvise
scada prior to Version 3.0. An \"improper
neutralization of HTTP headers for scripting
syntax\" issue has been identified, which may allow
remote code execution.",
 "privacyfunctionalimpactscore":0,
 "privacyimpactscopescore":0,
 "privacydatatypes":[

],
 "privacydatatypescore":0,
 "privacyscore":0,
 "privavyriskscore":0,
 "cvssscore":6.8,
 "cvss":"H"
 },
 {
 "vulnerability":"CVE-2017-6033",
 "level":"VH",
 "impact":"M",
 "risklevel":"H",
 "description":"A DLL Hijacking issue
was discovered in Schneider Electric Interactive
Graphical SCADA System (IGSS) Software, Version
12 and previous versions. The software will execute
a malicious file if it is named the same as a
legitimate file and placed in a location that is
earlier in the search path.",
 "privacyfunctionalimpactscore":0,
 "privacyimpactscopescore":0,
 "privacydatatypes":[

],
 "privacydatatypescore":0,
 "privacyscore":0,
 "privavyriskscore":0,
 "cvssscore":6.8,
 "cvss":"H"
 }
],
 "result":"H"

 }
],
 "cumulativeRiskLevel":"H",
 "contributingirls":[
 "H",
 "M"
],
 "controls":[

],
 "links":[

],
 "businessValue":"VH",
 "tags":{
 "attackpath":"destination"
 }
 }
],
 "PATHS":[
 [
 {
 "id":"5f7ec5302af19b000193880f",
 "name":"SDN-enabled RTU",
 "category":"Business
Service/Infrastructure Service",
 "gdpr":false,
 "assetId":2,
 "riskassessmentId":1714,
 "businesspartnerId":1,
 "risklevel":"H",
 "threats":[
 {
 "threat":"DEFAULT-1",
 "name":"DEFAULT",
 "level":"VH",
 "vulnerabilities":[
 {
 "vulnerability":"CVE-2019-
14931",
 "level":"VL",
 "impact":"VH",
 "risklevel":"H",

"privacyfunctionalimpactscore":0,
 "privacyimpactscopescore":0,
 "privacydatatypes":[

],
 "privacydatatypescore":0,
 "privacyscore":0,
 "privavyriskscore":0,
 "cvssscore":6,
 "cvss":"H"
 }
],
 "result":"H"
 }
],

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 198
Public document

 "cumulativeRiskLevel":"H",
 "contributingirls":[
 "H"
],
 "controls":[

],
 "links":[
 {
 "type":"CONNECTED_TO",
 "assetId":1
 }
],
 "businessValue":"VH",
 "tags":{
 "attackpath":"source"
 }
 },
 {
 "id":"5f7ec5302af19b000193880e",
 "name":"SDN-Switch",
 "type":"h",
 "category":"NetworkComponent/Switch",
 "gdpr":false,
 "assetId":1,
 "riskassessmentId":1714,
 "businesspartnerId":1,
 "risklevel":"M",
 "threats":[
 {
 "threat":"DEFAULT-1",
 "name":"DEFAULT",
 "level":"VH",
 "vulnerabilities":[
 {
 "vulnerability":"CVE-2019-1890",
 "level":"L",
 "impact":"M",
 "risklevel":"M",

"privacyfunctionalimpactscore":0,
 "privacyimpactscopescore":0,
 "privacydatatypes":[

],
 "privacydatatypescore":0,
 "privacyscore":0,
 "privavyriskscore":0,
 "cvssscore":3,
 "cvss":"L"
 }
],
 "result":"M"
 }
],
 "cumulativeRiskLevel":"M",
 "contributingirls":[
 "M"
],

 "controls":[

],
 "links":[
 {
 "type":"CONNECTED_TO",
 "assetId":3
 },
 {
 "type":"CONNECTED_TO",
 "assetId":5
 }
],
 "businessValue":"VH",
 "tags":{

 }
 },
 {
 "id":"5f7ec5302af19b0001938810",
 "name":"Programmable Logic Controller
1",
 "type":"h",
 "category":"Computer/Server",
 "gdpr":false,
 "assetId":3,
 "riskassessmentId":1714,
 "businesspartnerId":1,
 "risklevel":"H",
 "threats":[
 {
 "threat":"DEFAULT-1",
 "name":"DEFAULT",
 "level":"VH",
 "vulnerabilities":[
 {
 "vulnerability":"CVE-2017-6031",
 "level":"VH",
 "impact":"M",
 "risklevel":"H",
 "description":"A Header Injection
issue was discovered in Certec EDV GmbH atvise
scada prior to Version 3.0. An \"improper
neutralization of HTTP headers for scripting
syntax\" issue has been identified, which may allow
remote code execution.",

"privacyfunctionalimpactscore":0,
 "privacyimpactscopescore":0,
 "privacydatatypes":[

],
 "privacydatatypescore":0,
 "privacyscore":0,
 "privavyriskscore":0,
 "cvssscore":6.8,
 "cvss":"H"
 },
 {

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 199
Public document

 "vulnerability":"CVE-2013-2780",
 "level":"VH",
 "impact":"L",
 "risklevel":"M",

"privacyfunctionalimpactscore":0,
 "privacyimpactscopescore":0,
 "privacydatatypes":[

],
 "privacydatatypescore":0,
 "privacyscore":0,
 "privavyriskscore":0,
 "cvssscore":7.8,
 "cvss":"H"
 },
 {
 "vulnerability":"CVE-2017-6033",
 "level":"VH",
 "impact":"M",
 "risklevel":"H",
 "description":"A DLL Hijacking
issue was discovered in Schneider Electric
Interactive Graphical SCADA System (IGSS)
Software, Version 12 and previous versions. The
software will execute a malicious file if it is named
the same as a legitimate file and placed in a
location that is earlier in the search path.",

"privacyfunctionalimpactscore":0,
 "privacyimpactscopescore":0,
 "privacydatatypes":[

],
 "privacydatatypescore":0,
 "privacyscore":0,
 "privavyriskscore":0,
 "cvssscore":6.8,
 "cvss":"H"
 }
],
 "result":"H"
 }
],
 "cumulativeRiskLevel":"H",
 "contributingirls":[
 "H",
 "M"
],
 "controls":[

],
 "links":[
 {
 "type":"USED_BY",
 "assetId":4
 }
],
 "businessValue":"VH",

 "tags":{

 }
 },
 {
 "id":"5f7ec5302af19b0001938811",
 "name":"Administrator",
 "category":"Organizational/Personnel",
 "gdpr":false,
 "assetId":4,
 "riskassessmentId":1714,
 "businesspartnerId":1,
 "risklevel":"",
 "threats":[

],
 "cumulativeRiskLevel":"",
 "contributingirls":[

],
 "controls":[

],
 "links":[

],
 "businessValue":"H",
 "tags":{
 "attackpath":"destination"
 }
 }
]
]
}

Figure 85: Example of a preliminary version of SRAF.json

The following table is an example of the .json file
it can be retrieved from the AIDB corresponding
in the previous figure:

[
 {
 "invExternalId":"SDN_CONTROLLER_UC0",
 "invExternalName":"SDN_CONTROLLER_UC0",
 "invClass":"ELEMENT",
 "invNetLevel":"SDN_CONTROLLER_LEVEL",
 "invAssetType":"SDN Controller",
 "invState":"CONN_E",
 "invFather":"10.0.0.3",
 "invAttributeValues":[
 {
 "attribute":"sdnDriver",
 "value":"Northbound"
 },
 {
 "attribute":"sdnEndpoint",
 "value":"sdnEndpoint1"
 }

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 200
Public document

],
 "relationships":null
 },
 {
 "invExternalId":"0000000000000001",
 "invExternalName":"0000000000000001",
 "invClass":"ELEMENT",
 "invNetLevel":"SDN_SWITCH_LEVEL",
 "invAssetType":"SDN_SWITCH",
 "invState":"CONN_E",
 "invFather":null,
 "invAttributeValues":[
 {
 "attribute":"InvDescription",
 "value":null
 },
 {
 "attribute":"sdnManufacturer",
 "value":"Nicira, Inc."
 },
 {
 "attribute":"sdnSwDesc",
 "value":"2.3.90"
 }
],
 "relationships":[
 {
 "relationshipId":"1",
 "externalIdA":"0000000000000001",
 "externalIdB":"0000000000000002",
 "enable":true,
 "weight":1.0,
 "capacity":1.0
 },
 {
 "relationshipId":"2",
 "externalIdA":"0000000000000002",
 "externalIdB":"0000000000000001",
 "enable":true,
 "weight":1.0,
 "capacity":1.0
 },
 {
 "relationshipId":"3",
 "externalIdA":"0000000000000001",
 "externalIdB":"0000000000000003",
 "enable":true,
 "weight":1.0,
 "capacity":1.0
 },
 {
 "relationshipId":"4",
 "externalIdA":"0000000000000003",
 "externalIdB":"0000000000000001",
 "enable":true,
 "weight":1.0,
 "capacity":1.0
 }
]
 },
 {
 "invExternalId":"0000000000000002",
 "invExternalName":"0000000000000002",
 "invClass":"ELEMENT",
 "invNetLevel":"SDN_SWITCH_LEVEL",
 "invAssetType":"SDN_SWITCH",
 "invState":"CONN_E",

 "invFather":null,
 "invAttributeValues":[
 {
 "attribute":"InvDescription",
 "value":null
 },
 {
 "attribute":"sdnManufacturer",
 "value":"Nicira, Inc."
 },
 {
 "attribute":"sdnSwDesc",
 "value":"2.3.90"
 }
],
 "relationships":[
 {
 "relationshipId":"1",
 "externalIdA":"0000000000000001",
 "externalIdB":"0000000000000002",
 "enable":true,
 "weight":1.0,
 "capacity":1.0
 },
 {
 "relationshipId":"2",
 "externalIdA":"0000000000000002",
 "externalIdB":"0000000000000001",
 "enable":true,
 "weight":1.0,
 "capacity":1.0
 },
 {
 "relationshipId":"5",
 "externalIdA":"0000000000000002",
 "externalIdB":"0000000000000003",
 "enable":true,
 "weight":1.0,
 "capacity":1.0
 },
 {
 "relationshipId":"6",
 "externalIdA":"0000000000000003",
 "externalIdB":"0000000000000002",
 "enable":true,
 "weight":1.0,
 "capacity":1.0
 }
]
 },
 {
 "invExternalId":"0000000000000003",
 "invExternalName":"0000000000000003",
 "invClass":"ELEMENT",
 "invNetLevel":"SDN_SWITCH_LEVEL",
 "invAssetType":"SDN_SWITCH",
 "invState":"CONN_E",
 "invFather":null,
 "invAttributeValues":[
 {
 "attribute":"InvDescription",
 "value":null
 },
 {
 "attribute":"sdnManufacturer",
 "value":"Nicira, Inc."
 },

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 201
Public document

 {
 "attribute":"sdnSwDesc",
 "value":"2.3.90"
 }
],
 "relationships":[
 {
 "relationshipId":"4",
 "externalIdA":"0000000000000003",
 "externalIdB":"0000000000000001",
 "enable":true,
 "weight":1.0,
 "capacity":1.0
 },
 {
 "relationshipId":"3",
 "externalIdA":"0000000000000001",
 "externalIdB":"0000000000000003",
 "enable":true,
 "weight":1.0,
 "capacity":1.0
 },
 {
 "relationshipId":"6",
 "externalIdA":"0000000000000003",
 "externalIdB":"0000000000000002",
 "enable":true,
 "weight":1.0,
 "capacity":1.0
 },
 {
 "relationshipId":"5",
 "externalIdA":"0000000000000002",
 "externalIdB":"0000000000000003",
 "enable":true,
 "weight":1.0,
 "capacity":1.0
 }
]
 },
 {
 "invExternalId":"10.0.0.1",
 "invExternalName":"PDC_1",
 "invClass":"ELEMENT",
 "invNetLevel":"SDN_HOST_LEVEL",
 "invAssetType":"PDC",
 "invState":"CONN_E",
 "invFather":null,
 "invAttributeValues":[
 {
 "attribute":"InvDescription",
 "value":null
 },
 {
 "attribute":"sdnIP",
 "value":"10.0.0.1"
 }
],
 "relationships":[
 {
 "relationshipId":"7",
 "externalIdA":"10.0.0.1",
 "externalIdB":"0000000000000001",
 "enable":true,
 "weight":1.0,
 "capacity":1.0
 },

 {
 "relationshipId":"8",
 "externalIdA":"0000000000000001",
 "externalIdB":"10.0.0.1",
 "enable":true,
 "weight":1.0,
 "capacity":1.0
 }
]
 },
 {
 "invExternalId":"10.0.0.2",
 "invExternalName":"PDC_2",
 "invClass":"ELEMENT",
 "invNetLevel":"SDN_HOST_LEVEL",
 "invAssetType":"PDC",
 "invState":"CONN_E",
 "invFather":null,
 "invAttributeValues":[
 {
 "attribute":"InvDescription",
 "value":null
 },
 {
 "attribute":"sdnIP",
 "value":"10.0.0.2"
 }
],
 "relationships":[
 {
 "relationshipId":"9",
 "externalIdA":"10.0.0.2",
 "externalIdB":"0000000000000001",
 "enable":true,
 "weight":1.0,
 "capacity":1.0
 },
 {
 "relationshipId":"10",
 "externalIdA":"0000000000000001",
 "externalIdB":"10.0.0.2",
 "enable":true,
 "weight":1.0,
 "capacity":1.0
 }
]
 },
 {
 "invExternalId":"10.0.0.11",
 "invExternalName":"PMU_1",
 "invClass":"ELEMENT",
 "invNetLevel":"SDN_HOST_LEVEL",
 "invAssetType":"PMU",
 "invState":"CONN_E",
 "invFather":"10.0.0.1",
 "invAttributeValues":[
 {
 "attribute":"InvDescription",
 "value":null
 },
 {
 "attribute":"sdnIP",
 "value":"10.0.0.11"
 }
],
 "relationships":[
 {

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 202
Public document

 "relationshipId":"11",
 "externalIdA":"10.0.0.11",
 "externalIdB":"0000000000000003",
 "enable":true,
 "weight":1.0,
 "capacity":1.0
 },
 {
 "relationshipId":"12",
 "externalIdA":"0000000000000003",
 "externalIdB":"10.0.0.11",
 "enable":true,
 "weight":1.0,
 "capacity":1.0
 }
]
 },
 {
 "invExternalId":"10.0.0.12",
 "invExternalName":"PMU_2",
 "invClass":"ELEMENT",
 "invNetLevel":"SDN_HOST_LEVEL",
 "invAssetType":"PMU",
 "invState":"CONN_E",
 "invFather":"10.0.0.1",
 "invAttributeValues":[
 {
 "attribute":"InvDescription",
 "value":null
 },
 {
 "attribute":"sdnIP",
 "value":"10.0.0.12"
 }
],
 "relationships":[
 {
 "relationshipId":"13",
 "externalIdA":"10.0.0.12",
 "externalIdB":"0000000000000003",
 "enable":true,
 "weight":1.0,
 "capacity":1.0
 },
 {
 "relationshipId":"14",
 "externalIdA":"0000000000000003",
 "externalIdB":"10.0.0.12",
 "enable":true,
 "weight":1.0,
 "capacity":1.0
 }
]
 },
 {
 "invExternalId":"10.0.0.13",
 "invExternalName":"PMU_3",
 "invClass":"ELEMENT",
 "invNetLevel":"SDN_HOST_LEVEL",
 "invAssetType":"PMU",
 "invState":"CONN_E",
 "invFather":"10.0.0.2",
 "invAttributeValues":[
 {
 "attribute":"InvDescription",
 "value":null
 },

 {
 "attribute":"sdnIP",
 "value":"10.0.0.13"
 }
],
 "relationships":[
 {
 "relationshipId":"15",
 "externalIdA":"10.0.0.13",
 "externalIdB":"0000000000000002",
 "enable":true,
 "weight":1.0,
 "capacity":1.0
 },
 {
 "relationshipId":"16",
 "externalIdA":"0000000000000002",
 "externalIdB":"10.0.0.13",
 "enable":true,
 "weight":1.0,
 "capacity":1.0
 }
]
 },
 {
 "invExternalId":"10.0.0.14",
 "invExternalName":"PMU_4",
 "invClass":"ELEMENT",
 "invNetLevel":"SDN_HOST_LEVEL",
 "invAssetType":"PMU",
 "invState":"CONN_E",
 "invFather":"10.0.0.2",
 "invAttributeValues":[
 {
 "attribute":"InvDescription",
 "value":null
 },
 {
 "attribute":"sdnIP",
 "value":"10.0.0.14"
 }
],
 "relationships":[
 {
 "relationshipId":"17",
 "externalIdA":"10.0.0.14",
 "externalIdB":"0000000000000002",
 "enable":true,
 "weight":1.0,
 "capacity":1.0
 },
 {
 "relationshipId":"18",
 "externalIdA":"0000000000000002",
 "externalIdB":"10.0.0.14",
 "enable":true,
 "weight":1.0,
 "capacity":1.0
 }
]
 },
 {
 "invExternalId":"10.0.0.3",
 "invExternalName":"SDN_Controller",
 "invClass":"ELEMENT",
 "invNetLevel":"SDN_HOST_LEVEL",
 "invAssetType":"SDN_Controller",

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 203
Public document

 "invState":"CONN_E",
 "invFather":null,
 "invAttributeValues":[
 {
 "attribute":"InvDescription",
 "value":null
 },
 {
 "attribute":"sdnIP",
 "value":"10.0.0.3"
 }
],
 "relationships":[
 {
 "relationshipId":"19",
 "externalIdA":"10.0.0.3",
 "externalIdB":"0000000000000001",
 "enable":true,
 "weight":1.0,
 "capacity":1.0
 },
 {
 "relationshipId":"20",
 "externalIdA":"0000000000000001",
 "externalIdB":"10.0.0.3",
 "enable":true,
 "weight":1.0,
 "capacity":1.0
 }
]
 }
]

This project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement No 833955

13.2 Grid model example A
Figure 86 contains the single line schema of a grid example. In this, 4 buses, 4 Loads, 2 diesel

generators, a PV generator, and several lines have been depicted. Below, their properties and

possible values have been included.

Figure 86: AIDB Grid model example (single line)

name vn_kv type zone in_service

Bus 0 20.0 b SimpleMV True
Bus 1 20.0 b SimpleMV True
Bus 2 20.0 b SimpleMV True
Bus 3 20.0 b SimpleMV True
Bus 4 20.0 b SimpleMV True

Figure 87: AIDB - Grid Bus model

n
am

e

st
d

_t
yp

e

h
v_

b
u

s

lv
_b

u
s

sn
_m

va

vn
_h

v_
kv

vn
_l

v_
kv

vk
_

p
er

ce
n

t
vk

r_
p

er
ce

n
t

p
fe

_
kw

i0
_p

er
ce

n
t sh

if
t_

d
eg

r
ee

ta

p
_s

id
e

ta
p

_n
eu

tr
al

ta

p
_m

in

ta
p

_m
ax

ta
p

_s
te

p
_

p
er

ce
n

t
ta

p
_s

te
p

_
d

eg
re

e

ta
p

_p
o

s

ta
p

_p
h

as
e_

sh
if

te
r

p
ar

al
le

l

d
f

in
_s

er
vi

ce

-
Figure 88: AIDB - Grid Trafo data model

Notice, the example does not have transformers.

N
am

e

st
d

_
ty

p
e

fr
o

m
_b

u
s

to
_b

u
s

le
n

gt
h

_
km

r_
o

h
m

_p
er

_k
m

x_
o

h
m

_p
er

_k
m

c_
n

f_
p

er
_k

m

g_
u

s_
p

er
_k

m

m
ax

_i
_k

a

d
f

p
ar

al
le

l

ty
p

e

in
_

se
rv

ic
e

Line 0-1 CABLE_CIGRE_MV 0 1 3.0 0.501 0.716 151.1749 0.0 0.145 1.0 1 cs True

Line 0-2 CABLE_CIGRE_MV 0 2 3.0 0.501 0.716 151.1749 0.0 0.145 1.0 1 cs True

Line 1-3 CABLE_CIGRE_MV 1 3 2.0 0.501 0.716 151.1749 0.0 0.145 1.0 1 cs True
Line 2-4 CABLE_CIGRE_MV 2 4 2.0 0.501 0.716 151.1749 0.0 0.145 1.0 1 cs True

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 205
Public document

Line 3-4 CABLE_CIGRE_MV 3 4 4.0 0.501 0.716 151.1749 0.0 0.145 1.0 1 cs True
Figure 89: AIDB - Grid Line data model

N
am

e

b
u

s

p
_

m
w

q
_

m
va

r

co
n

st
_z

_p
er

ce
n

t

co
n

st
_i

_p
er

ce
n

t

sn
_m

va

sc
al

in
g

in
_

se
rv

ic
e

ty
p

e

Load R1 1 0.4999962 0.1253108 0.0 0.0 0.51546 1.0 True None
Load R2 2 0.4999962 0.1253108 0.0 0.0 0.51546 1.0 True None
Load R3 3 0.4999962 0.1253108 0.0 0.0 0.51546 1.0 True None
Load R4 4 0.4999962 0.1253108 0.0 0.0 0.51546 1.0 True None

Figure 90: AIDB - Grid Load data model

N
am

e

b
u

s

vm
_p

u

va
_d

eg
re

e

in
_s

er
vi

ce

s_
sc

_m
ax

_m
va

s_
sc

_m
in

_m
va

rx
_m

in

rx
_m

ax

None 0 1.03 0.0 True 5000.0 5000.0 0.1 0.1
Figure 91: AIDB - Grid external grid data model

n
am

e

b
u

s

p
_m

w

vm
_p

u

sn
_m

va

m
in

_q
_m

va
r

m
ax

_q
_m

va
r

sc
al

in
g

sl
ac

k

in
_s

er
vi

ce

ty
p

e

m
in

_p
_m

w

m
ax

_p
_m

w

Diesel generator 1 3 0.5 1.0 nan -0.5 0.5 1.0 False True sync 0.0 0.5
Diesel generator 2 4 0.5 1.0 nan -0.5 0.5 1.0 False True sync 0.0 0.5

Figure 92: AIDB - Grid Generator data model

n
am

e

b
u

s

p
_m

w

q
_m

va
r

sn
_m

va

sc
al

in
g

in
_s

er
vi

ce

ty
p

e

cu
rr

en
t_

so
u

rc
e

m
in

_p
_m

w

m
ax

_p
_m

w

m
in

_q
_m

va
r

m
ax

_q
_m

va
r

co
n

tr
o

lla
b

le

PV 3 3 1.0 1.0 nan 1.0 True PV1 True 0.0 5.0 -5.0 5.0 True
PV 4 4 1.0 1.0 5.0 1.0 True PV2 True 0.0 5.0 -5.0 5.0 True

Figure 93: AIDB - Grid Sgenerator data model

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 206
Public document

13.3 AIDB unit test results

Due to the high detail level and the large amount of information, inputs and test results have been

included below:

AIDB_001 SDN Asset creation – Input data
[
 {
 "invExternalId": "SDN_CONTROLLER_UC0",
 "invExternalName": "SDN_CONTROLLER_UC0",
 "invClass": "ELEMENT",
 "invNetLevel": "CONTROLLER",
 "invAssetType": "SDN Controller",
 "invState": null,
 "invFather": null,
 "invAttributeValues": [
 {
 "attribute": "sdnDriver",
 "value": "Northbound"
 },
 {
 "attribute": "sdnEndpoint",
 "value": "sdnEndpoint"
 }
],
 "relationships": null
 },
 {
 "invExternalId": "0000000000000001",
 "invExternalName": "0000000000000001",
 "invClass": "ELEMENT",
 "invNetLevel": "SWITCH",
 "invAssetType": "Switch",
 "invState": null,
 "invFather": null,
 "invAttributeValues": [
 {
 "attribute": "InvDescription",
 "value": null
 },
 {
 "attribute": "sdnManufacturer",
 "value": "Nicira, Inc."
 },
 {
 "attribute": "sdnSwDesc",
 "value": "2.3.90"
 }
],
 "relationships": [
 {
 "externalIdA": "0000000000000001",
 "externalIdB": "0000000000000002",
 "enable": true,
 "weight": 1.0,
 "bandwith": 2.0,
 "maxLatency": 1.0
 },
 {
 "externalIdA": "0000000000000001",
 "externalIdB": "0000000000000003",
 "enable": true,
 "weight": 1.0,
 "bandwith": 2.0,

AIDB_001 SDN Asset creation – Input data
 "maxLatency": 1.0
 },
 {
 "externalIdA": "0000000000000001",
 "externalIdB": "0000000000000004",
 "enable": true,
 "weight": 1.0,
 "bandwith": 2.0,
 "maxLatency": 1.0
 },
 {
 "externalIdA": "0000000000000002",
 "externalIdB": "0000000000000001",
 "enable": true,
 "weight": 1.0,
 "bandwith": 2.0,
 "maxLatency": 1.0
 },
 {
 "externalIdA": "0000000000000003",
 "externalIdB": "0000000000000001",
 "enable": true,
 "weight": 1.0,
 "bandwith": 2.0,
 "maxLatency": 1.0
 },
 {
 "externalIdA": "0000000000000004",
 "externalIdB": "0000000000000001",
 "enable": true,
 "weight": 1.0,
 "bandwith": 2.0,
 "maxLatency": 1.0
 }
]
 },
 {
 "invExternalId": "0000000000000002",
 "invExternalName": "0000000000000002",
 "invClass": "ELEMENT",
 "invNetLevel": "SWITCH",
 "invAssetType": "Switch",
 "invState": null,
 "invFather": null,
 "invAttributeValues": [
 {
 "attribute": "InvDescription",
 "value": null
 },
 {
 "attribute": "sdnManufacturer",
 "value": "Nicira, Inc."
 },
 {
 "attribute": "sdnSwDesc",
 "value": "2.3.90"
 }
],

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 207
Public document

AIDB_001 SDN Asset creation – Input data
 "relationships": [
 {
 "externalIdA": "0000000000000002",
 "externalIdB": "0000000000000001",
 "enable": true,
 "weight": 1.0,
 "bandwith": 2.0,
 "maxLatency": 1.0
 },
 {
 "externalIdA": "0000000000000002",
 "externalIdB": "0000000000000004",
 "enable": true,
 "weight": 1.0,
 "bandwith": 2.0,
 "maxLatency": 1.0
 },
 {
 "externalIdA": "0000000000000002",
 "externalIdB": "0000000000000005",
 "enable": true,
 "weight": 1.0,
 "bandwith": 2.0,
 "maxLatency": 1.0
 },
 {
 "externalIdA": "0000000000000001",
 "externalIdB": "0000000000000002",
 "enable": true,
 "weight": 1.0,
 "bandwith": 2.0,
 "maxLatency": 1.0
 },
 {
 "externalIdA": "0000000000000004",
 "externalIdB": "0000000000000002",
 "enable": true,
 "weight": 1.0,
 "bandwith": 2.0,
 "maxLatency": 1.0
 },
 {
 "externalIdA": "0000000000000005",
 "externalIdB": "0000000000000002",
 "enable": true,
 "weight": 1.0,
 "bandwith": 2.0,
 "maxLatency": 1.0
 }
]
 },
 {
 "invExternalId": "0000000000000003",
 "invExternalName": "0000000000000003",
 "invClass": "ELEMENT",
 "invNetLevel": "SWITCH",
 "invAssetType": "Switch",
 "invState": null,
 "invFather": null,
 "invAttributeValues": [
 {
 "attribute": "InvDescription",
 "value": null
 },
 {
 "attribute": "sdnManufacturer",
 "value": "Nicira, Inc."
 },

AIDB_001 SDN Asset creation – Input data
 {
 "attribute": "sdnSwDesc",
 "value": "2.3.90"
 }
],
 "relationships": [
 {
 "externalIdA": "0000000000000003",
 "externalIdB": "0000000000000001",
 "enable": true,
 "weight": 1.0,
 "bandwith": 2.0,
 "maxLatency": 1.0
 },
 {
 "externalIdA": "0000000000000003",
 "externalIdB": "0000000000000004",
 "enable": true,
 "weight": 1.0,
 "bandwith": 2.0,
 "maxLatency": 1.0
 },
 {
 "externalIdA": "0000000000000003",
 "externalIdB": "10.0.0.1",
 "enable": true,
 "weight": 1.0,
 "bandwith": 2.0,
 "maxLatency": 1.0
 },
 {
 "externalIdA": "0000000000000003",
 "externalIdB": "10.0.0.3",
 "enable": true,
 "weight": 1.0,
 "bandwith": 2.0,
 "maxLatency": 1.0
 },
 {
 "externalIdA": "0000000000000001",
 "externalIdB": "0000000000000003",
 "enable": true,
 "weight": 1.0,
 "bandwith": 2.0,
 "maxLatency": 1.0
 },
 {
 "externalIdA": "0000000000000004",
 "externalIdB": "0000000000000003",
 "enable": true,
 "weight": 1.0,
 "bandwith": 2.0,
 "maxLatency": 1.0
 },
 {
 "externalIdA": "10.0.0.1",
 "externalIdB": "0000000000000003",
 "enable": true,
 "weight": 1.0,
 "bandwith": 2.0,
 "maxLatency": 1.0
 },
 {
 "externalIdA": "10.0.0.3",
 "externalIdB": "0000000000000003",
 "enable": true,
 "weight": 1.0,
 "bandwith": 2.0,

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 208
Public document

AIDB_001 SDN Asset creation – Input data
 "maxLatency": 1.0
 }
]
 },
 {
 "invExternalId": "0000000000000004",
 "invExternalName": "0000000000000004",
 "invClass": "ELEMENT",
 "invNetLevel": "SWITCH",
 "invAssetType": "Switch",
 "invState": null,
 "invFather": null,
 "invAttributeValues": [
 {
 "attribute": "InvDescription",
 "value": null
 },
 {
 "attribute": "sdnManufacturer",
 "value": "Nicira, Inc."
 },
 {
 "attribute": "sdnSwDesc",
 "value": "2.3.90"
 }
],
 "relationships": [
 {
 "externalIdA": "0000000000000004",
 "externalIdB": "0000000000000001",
 "enable": true,
 "weight": 1.0,
 "bandwith": 2.0,
 "maxLatency": 1.0
 },
 {
 "externalIdA": "0000000000000004",
 "externalIdB": "0000000000000002",
 "enable": true,
 "weight": 1.0,
 "bandwith": 2.0,
 "maxLatency": 1.0
 },
 {
 "externalIdA": "0000000000000004",
 "externalIdB": "0000000000000003",
 "enable": true,
 "weight": 1.0,
 "bandwith": 2.0,
 "maxLatency": 1.0
 },
 {
 "externalIdA": "0000000000000004",
 "externalIdB": "0000000000000005",
 "enable": true,
 "weight": 1.0,
 "bandwith": 2.0,
 "maxLatency": 1.0
 },
 {
 "externalIdA": "0000000000000004",
 "externalIdB": "10.0.0.2",
 "enable": true,
 "weight": 1.0,
 "bandwith": 2.0,
 "maxLatency": 1.0
 },
 {

AIDB_001 SDN Asset creation – Input data
 "externalIdA": "0000000000000001",
 "externalIdB": "0000000000000004",
 "enable": true,
 "weight": 1.0,
 "bandwith": 2.0,
 "maxLatency": 1.0
 },
 {
 "externalIdA": "0000000000000002",
 "externalIdB": "0000000000000004",
 "enable": true,
 "weight": 1.0,
 "bandwith": 2.0,
 "maxLatency": 1.0
 },
 {
 "externalIdA": "0000000000000003",
 "externalIdB": "0000000000000004",
 "enable": true,
 "weight": 1.0,
 "bandwith": 2.0,
 "maxLatency": 1.0
 },
 {
 "externalIdA": "0000000000000005",
 "externalIdB": "0000000000000004",
 "enable": true,
 "weight": 1.0,
 "bandwith": 2.0,
 "maxLatency": 1.0
 },
 {
 "externalIdA": "10.0.0.2",
 "externalIdB": "0000000000000004",
 "enable": true,
 "weight": 1.0,
 "bandwith": 2.0,
 "maxLatency": 1.0
 }
]
 },
 {
 "invExternalId": "0000000000000005",
 "invExternalName": "0000000000000005",
 "invClass": "ELEMENT",
 "invNetLevel": "SWITCH",
 "invAssetType": "Switch",
 "invState": null,
 "invFather": null,
 "invAttributeValues": [
 {
 "attribute": "InvDescription",
 "value": null
 },
 {
 "attribute": "sdnManufacturer",
 "value": "Nicira, Inc."
 },
 {
 "attribute": "sdnSwDesc",
 "value": "2.3.90"
 }
],
 "relationships": [
 {
 "externalIdA": "0000000000000005",
 "externalIdB": "0000000000000002",
 "enable": true,

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 209
Public document

AIDB_001 SDN Asset creation – Input data
 "weight": 1.0,
 "bandwith": 2.0,
 "maxLatency": 1.0
 },
 {
 "externalIdA": "0000000000000005",
 "externalIdB": "0000000000000004",
 "enable": true,
 "weight": 1.0,
 "bandwith": 2.0,
 "maxLatency": 1.0
 },
 {
 "externalIdA": "0000000000000002",
 "externalIdB": "0000000000000005",
 "enable": true,
 "weight": 1.0,
 "bandwith": 2.0,
 "maxLatency": 1.0
 },
 {
 "externalIdA": "0000000000000004",
 "externalIdB": "0000000000000005",
 "enable": true,
 "weight": 1.0,
 "bandwith": 2.0,
 "maxLatency": 1.0
 }
]
 },
 {
 "invExternalId": "10.0.0.1",
 "invExternalName": "10.0.0.1",
 "invClass": "ELEMENT",
 "invNetLevel": "HOST",
 "invAssetType": "Host",
 "invState": null,
 "invFather": null,
 "invAttributeValues": [
 {
 "attribute": "InvDescription",
 "value": null
 },
 {
 "attribute": "sdnIP",
 "value": null
 }
],
 "relationships": [
 {
 "externalIdA": "10.0.0.1",
 "externalIdB": "0000000000000003",
 "enable": true,
 "weight": 1.0,
 "bandwith": 2.0,
 "maxLatency": 1.0
 },
 {
 "externalIdA": "0000000000000003",
 "externalIdB": "10.0.0.1",
 "enable": true,
 "weight": 1.0,
 "bandwith": 2.0,
 "maxLatency": 1.0
 }
]
 },
 {

AIDB_001 SDN Asset creation – Input data
 "invExternalId": "10.0.0.2",
 "invExternalName": "10.0.0.2",
 "invClass": "ELEMENT",
 "invNetLevel": "HOST",
 "invAssetType": "Host",
 "invState": null,
 "invFather": null,
 "invAttributeValues": [
 {
 "attribute": "InvDescription",
 "value": null
 },
 {
 "attribute": "sdnIP",
 "value": null
 }
],
 "relationships": [
 {
 "externalIdA": "10.0.0.2",
 "externalIdB": "0000000000000004",
 "enable": true,
 "weight": 1.0,
 "bandwith": 2.0,
 "maxLatency": 1.0
 },
 {
 "externalIdA": "0000000000000004",
 "externalIdB": "10.0.0.2",
 "enable": true,
 "weight": 1.0,
 "bandwith": 2.0,
 "maxLatency": 1.0
 }
]
 },
 {
 "invExternalId": "10.0.0.3",
 "invExternalName": "10.0.0.3",
 "invClass": "ELEMENT",
 "invNetLevel": "HOST",
 "invAssetType": "Host",
 "invState": null,
 "invFather": null,
 "invAttributeValues": [
 {
 "attribute": "InvDescription",
 "value": null
 },
 {
 "attribute": "sdnIP",
 "value": null
 }
],
 "relationships": [
 {
 "externalIdA": "10.0.0.3",
 "externalIdB": "0000000000000003",
 "enable": true,
 "weight": 1.0,
 "bandwith": 2.0,
 "maxLatency": 1.0
 },
 {
 "externalIdA": "0000000000000003",
 "externalIdB": "10.0.0.3",
 "enable": true,
 "weight": 1.0,

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 210
Public document

AIDB_001 SDN Asset creation – Input data
 "bandwith": 2.0,
 "maxLatency": 1.0
 }
]
 }
]

AIDB_001 SDN Asset creation – Result
[
 {
 "invExternalId": "SDN_CONTROLLER_UC0",
 "invExternalName": "SDN_CONTROLLER_UC0",
 "invClass": "ELEMENT",
 "invNetLevel": "CONTROLLER",
 "invAssetType": "SDN Controller",
 "invState": null,
 "invFather": null,
 "invAttributeValues": [
 {
 "attribute": "sdnDriver",
 "value": "Northbound"
 },
 {
 "attribute": "sdnEndpoint",
 "value": "sdnEndpoint"
 }
],
 "relationships": null
 },
 {
 "invExternalId": "0000000000000001",
 "invExternalName": "0000000000000001",
 "invClass": "ELEMENT",
 "invNetLevel": "SWITCH",
 "invAssetType": "Switch",
 "invState": null,
 "invFather": null,
 "invAttributeValues": [
 {
 "attribute": "InvDescription",
 "value": null
 },
 {
 "attribute": "sdnManufacturer",
 "value": "Nicira, Inc."
 },
 {
 "attribute": "sdnSwDesc",
 "value": "2.3.90"
 }
],
 "relationships": [
 {

"relationshipId": "0000000000000001_00000000000
00002",
 "externalIdA": "0000000000000001",
 "externalIdB": "0000000000000002",
 "enable": true,
 "weight": 1.0,
 "bandwith": 2.0,
 "maxLatency": 1.0
 },
 {

AIDB_001 SDN Asset creation – Result

"relationshipId": "0000000000000001_00000000000
00003",
 "externalIdA": "0000000000000001",
 "externalIdB": "0000000000000003",
 "enable": true,
 "weight": 1.0,
 "bandwith": 2.0,
 "maxLatency": 1.0
 },
 {

"relationshipId": "0000000000000001_00000000000
00004",
 "externalIdA": "0000000000000001",
 "externalIdB": "0000000000000004",
 "enable": true,
 "weight": 1.0,
 "bandwith": 2.0,
 "maxLatency": 1.0
 },
 {

"relationshipId": "0000000000000002_00000000000
00001",
 "externalIdA": "0000000000000002",
 "externalIdB": "0000000000000001",
 "enable": true,
 "weight": 1.0,
 "bandwith": 2.0,
 "maxLatency": 1.0
 },
 {

"relationshipId": "0000000000000003_00000000000
00001",
 "externalIdA": "0000000000000003",
 "externalIdB": "0000000000000001",
 "enable": true,
 "weight": 1.0,
 "bandwith": 2.0,
 "maxLatency": 1.0
 },
 {

"relationshipId": "0000000000000004_00000000000
00001",
 "externalIdA": "0000000000000004",
 "externalIdB": "0000000000000001",
 "enable": true,
 "weight": 1.0,
 "bandwith": 2.0,
 "maxLatency": 1.0
 }
]
 },
 {
 "invExternalId": "0000000000000002",
 "invExternalName": "0000000000000002",
 "invClass": "ELEMENT",
 "invNetLevel": "SWITCH",
 "invAssetType": "Switch",
 "invState": null,
 "invFather": null,
 "invAttributeValues": [
 {
 "attribute": "InvDescription",
 "value": null

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 211
Public document

AIDB_001 SDN Asset creation – Result
 },
 {
 "attribute": "sdnManufacturer",
 "value": "Nicira, Inc."
 },
 {
 "attribute": "sdnSwDesc",
 "value": "2.3.90"
 }
],
 "relationships": [
 {

"relationshipId": "0000000000000002_00000000000
00001",
 "externalIdA": "0000000000000002",
 "externalIdB": "0000000000000001",
 "enable": true,
 "weight": 1.0,
 "bandwith": 2.0,
 "maxLatency": 1.0
 },
 {

"relationshipId": "0000000000000002_00000000000
00004",
 "externalIdA": "0000000000000002",
 "externalIdB": "0000000000000004",
 "enable": true,
 "weight": 1.0,
 "bandwith": 2.0,
 "maxLatency": 1.0
 },
 {

"relationshipId": "0000000000000002_00000000000
00005",
 "externalIdA": "0000000000000002",
 "externalIdB": "0000000000000005",
 "enable": true,
 "weight": 1.0,
 "bandwith": 2.0,
 "maxLatency": 1.0
 },
 {

"relationshipId": "0000000000000001_00000000000
00002",
 "externalIdA": "0000000000000001",
 "externalIdB": "0000000000000002",
 "enable": true,
 "weight": 1.0,
 "bandwith": 2.0,
 "maxLatency": 1.0
 },
 {

"relationshipId": "0000000000000004_00000000000
00002",
 "externalIdA": "0000000000000004",
 "externalIdB": "0000000000000002",
 "enable": true,
 "weight": 1.0,
 "bandwith": 2.0,
 "maxLatency": 1.0
 },
 {

AIDB_001 SDN Asset creation – Result

"relationshipId": "0000000000000005_00000000000
00002",
 "externalIdA": "0000000000000005",
 "externalIdB": "0000000000000002",
 "enable": true,
 "weight": 1.0,
 "bandwith": 2.0,
 "maxLatency": 1.0
 }
]
 },
 {
 "invExternalId": "0000000000000003",
 "invExternalName": "0000000000000003",
 "invClass": "ELEMENT",
 "invNetLevel": "SWITCH",
 "invAssetType": "Switch",
 "invState": null,
 "invFather": null,
 "invAttributeValues": [
 {
 "attribute": "InvDescription",
 "value": null
 },
 {
 "attribute": "sdnManufacturer",
 "value": "Nicira, Inc."
 },
 {
 "attribute": "sdnSwDesc",
 "value": "2.3.90"
 }
],
 "relationships": [
 {

"relationshipId": "0000000000000003_00000000000
00001",
 "externalIdA": "0000000000000003",
 "externalIdB": "0000000000000001",
 "enable": true,
 "weight": 1.0,
 "bandwith": 2.0,
 "maxLatency": 1.0
 },
 {

"relationshipId": "0000000000000003_00000000000
00004",
 "externalIdA": "0000000000000003",
 "externalIdB": "0000000000000004",
 "enable": true,
 "weight": 1.0,
 "bandwith": 2.0,
 "maxLatency": 1.0
 },
 {

"relationshipId": "0000000000000003_10.0.0.1",
 "externalIdA": "0000000000000003",
 "externalIdB": "10.0.0.1",
 "enable": true,
 "weight": 1.0,
 "bandwith": 2.0,
 "maxLatency": 1.0
 },
 {

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 212
Public document

AIDB_001 SDN Asset creation – Result

"relationshipId": "0000000000000003_10.0.0.3",
 "externalIdA": "0000000000000003",
 "externalIdB": "10.0.0.3",
 "enable": true,
 "weight": 1.0,
 "bandwith": 2.0,
 "maxLatency": 1.0
 },
 {

"relationshipId": "0000000000000001_00000000000
00003",
 "externalIdA": "0000000000000001",
 "externalIdB": "0000000000000003",
 "enable": true,
 "weight": 1.0,
 "bandwith": 2.0,
 "maxLatency": 1.0
 },
 {

"relationshipId": "0000000000000004_00000000000
00003",
 "externalIdA": "0000000000000004",
 "externalIdB": "0000000000000003",
 "enable": true,
 "weight": 1.0,
 "bandwith": 2.0,
 "maxLatency": 1.0
 },
 {

"relationshipId": "10.0.0.1_0000000000000003",
 "externalIdA": "10.0.0.1",
 "externalIdB": "0000000000000003",
 "enable": true,
 "weight": 1.0,
 "bandwith": 2.0,
 "maxLatency": 1.0
 },
 {

"relationshipId": "10.0.0.3_0000000000000003",
 "externalIdA": "10.0.0.3",
 "externalIdB": "0000000000000003",
 "enable": true,
 "weight": 1.0,
 "bandwith": 2.0,
 "maxLatency": 1.0
 }
]
 },
 {
 "invExternalId": "0000000000000004",
 "invExternalName": "0000000000000004",
 "invClass": "ELEMENT",
 "invNetLevel": "SWITCH",
 "invAssetType": "Switch",
 "invState": null,
 "invFather": null,
 "invAttributeValues": [
 {
 "attribute": "InvDescription",
 "value": null
 },
 {
 "attribute": "sdnManufacturer",

AIDB_001 SDN Asset creation – Result
 "value": "Nicira, Inc."
 },
 {
 "attribute": "sdnSwDesc",
 "value": "2.3.90"
 }
],
 "relationships": [
 {

"relationshipId": "0000000000000004_00000000000
00001",
 "externalIdA": "0000000000000004",
 "externalIdB": "0000000000000001",
 "enable": true,
 "weight": 1.0,
 "bandwith": 2.0,
 "maxLatency": 1.0
 },
 {

"relationshipId": "0000000000000004_00000000000
00002",
 "externalIdA": "0000000000000004",
 "externalIdB": "0000000000000002",
 "enable": true,
 "weight": 1.0,
 "bandwith": 2.0,
 "maxLatency": 1.0
 },
 {

"relationshipId": "0000000000000004_00000000000
00003",
 "externalIdA": "0000000000000004",
 "externalIdB": "0000000000000003",
 "enable": true,
 "weight": 1.0,
 "bandwith": 2.0,
 "maxLatency": 1.0
 },
 {

"relationshipId": "0000000000000004_00000000000
00005",
 "externalIdA": "0000000000000004",
 "externalIdB": "0000000000000005",
 "enable": true,
 "weight": 1.0,
 "bandwith": 2.0,
 "maxLatency": 1.0
 },
 {

"relationshipId": "0000000000000004_10.0.0.2",
 "externalIdA": "0000000000000004",
 "externalIdB": "10.0.0.2",
 "enable": true,
 "weight": 1.0,
 "bandwith": 2.0,
 "maxLatency": 1.0
 },
 {

"relationshipId": "0000000000000001_00000000000
00004",
 "externalIdA": "0000000000000001",
 "externalIdB": "0000000000000004",

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 213
Public document

AIDB_001 SDN Asset creation – Result
 "enable": true,
 "weight": 1.0,
 "bandwith": 2.0,
 "maxLatency": 1.0
 },
 {

"relationshipId": "0000000000000002_00000000000
00004",
 "externalIdA": "0000000000000002",
 "externalIdB": "0000000000000004",
 "enable": true,
 "weight": 1.0,
 "bandwith": 2.0,
 "maxLatency": 1.0
 },
 {

"relationshipId": "0000000000000003_00000000000
00004",
 "externalIdA": "0000000000000003",
 "externalIdB": "0000000000000004",
 "enable": true,
 "weight": 1.0,
 "bandwith": 2.0,
 "maxLatency": 1.0
 },
 {

"relationshipId": "0000000000000005_00000000000
00004",
 "externalIdA": "0000000000000005",
 "externalIdB": "0000000000000004",
 "enable": true,
 "weight": 1.0,
 "bandwith": 2.0,
 "maxLatency": 1.0
 },
 {

"relationshipId": "10.0.0.2_0000000000000004",
 "externalIdA": "10.0.0.2",
 "externalIdB": "0000000000000004",
 "enable": true,
 "weight": 1.0,
 "bandwith": 2.0,
 "maxLatency": 1.0
 }
]
 },
 {
 "invExternalId": "0000000000000005",
 "invExternalName": "0000000000000005",
 "invClass": "ELEMENT",
 "invNetLevel": "SWITCH",
 "invAssetType": "Switch",
 "invState": null,
 "invFather": null,
 "invAttributeValues": [
 {
 "attribute": "InvDescription",
 "value": null
 },
 {
 "attribute": "sdnManufacturer",
 "value": "Nicira, Inc."
 },
 {

AIDB_001 SDN Asset creation – Result
 "attribute": "sdnSwDesc",
 "value": "2.3.90"
 }
],
 "relationships": [
 {

"relationshipId": "0000000000000005_00000000000
00002",
 "externalIdA": "0000000000000005",
 "externalIdB": "0000000000000002",
 "enable": true,
 "weight": 1.0,
 "bandwith": 2.0,
 "maxLatency": 1.0
 },
 {

"relationshipId": "0000000000000005_00000000000
00004",
 "externalIdA": "0000000000000005",
 "externalIdB": "0000000000000004",
 "enable": true,
 "weight": 1.0,
 "bandwith": 2.0,
 "maxLatency": 1.0
 },
 {

"relationshipId": "0000000000000002_00000000000
00005",
 "externalIdA": "0000000000000002",
 "externalIdB": "0000000000000005",
 "enable": true,
 "weight": 1.0,
 "bandwith": 2.0,
 "maxLatency": 1.0
 },
 {

"relationshipId": "0000000000000004_00000000000
00005",
 "externalIdA": "0000000000000004",
 "externalIdB": "0000000000000005",
 "enable": true,
 "weight": 1.0,
 "bandwith": 2.0,
 "maxLatency": 1.0
 }
]
 },
 {
 "invExternalId": "10.0.0.1",
 "invExternalName": "10.0.0.1",
 "invClass": "ELEMENT",
 "invNetLevel": "HOST",
 "invAssetType": "Host",
 "invState": null,
 "invFather": null,
 "invAttributeValues": [
 {
 "attribute": "InvDescription",
 "value": null
 },
 {
 "attribute": "sdnIP",
 "value": "10.0.0.1"
 }

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 214
Public document

AIDB_001 SDN Asset creation – Result
],
 "relationships": [
 {

"relationshipId": "10.0.0.1_0000000000000003",
 "externalIdA": "10.0.0.1",
 "externalIdB": "0000000000000003",
 "enable": true,
 "weight": 1.0,
 "bandwith": 2.0,
 "maxLatency": 1.0
 },
 {

"relationshipId": "0000000000000003_10.0.0.1",
 "externalIdA": "0000000000000003",
 "externalIdB": "10.0.0.1",
 "enable": true,
 "weight": 1.0,
 "bandwith": 2.0,
 "maxLatency": 1.0
 }
]
 },
 {
 "invExternalId": "10.0.0.2",
 "invExternalName": "10.0.0.2",
 "invClass": "ELEMENT",
 "invNetLevel": "HOST",
 "invAssetType": "Host",
 "invState": null,
 "invFather": null,
 "invAttributeValues": [
 {
 "attribute": "InvDescription",
 "value": null
 },
 {
 "attribute": "sdnIP",
 "value": "10.0.0.2"
 }
],
 "relationships": [
 {

"relationshipId": "10.0.0.2_0000000000000004",
 "externalIdA": "10.0.0.2",
 "externalIdB": "0000000000000004",
 "enable": true,
 "weight": 1.0,
 "bandwith": 2.0,
 "maxLatency": 1.0
 },
 {

"relationshipId": "0000000000000004_10.0.0.2",
 "externalIdA": "0000000000000004",
 "externalIdB": "10.0.0.2",
 "enable": true,
 "weight": 1.0,
 "bandwith": 2.0,
 "maxLatency": 1.0
 }
]
 },
 {
 "invExternalId": "10.0.0.3",
 "invExternalName": "10.0.0.3",

AIDB_001 SDN Asset creation – Result
 "invClass": "ELEMENT",
 "invNetLevel": "HOST",
 "invAssetType": "Host",
 "invState": null,
 "invFather": null,
 "invAttributeValues": [
 {
 "attribute": "InvDescription",
 "value": null
 },
 {
 "attribute": "sdnIP",
 "value": "10.0.0.3"
 }
],
 "relationships": [
 {

"relationshipId": "10.0.0.3_0000000000000003",
 "externalIdA": "10.0.0.3",
 "externalIdB": "0000000000000003",
 "enable": true,
 "weight": 1.0,
 "bandwith": 2.0,
 "maxLatency": 1.0
 },
 {

"relationshipId": "0000000000000003_10.0.0.3",
 "externalIdA": "0000000000000003",
 "externalIdB": "10.0.0.3",
 "enable": true,
 "weight": 1.0,
 "bandwith": 2.0,
 "maxLatency": 1.0
 }
]
 }
]

AIDB_002 SDN Asset update – Input data
[
 {
 "invExternalId": "10.0.0.1",
 "invExternalName": "10.0.0.1",
 "invClass": "ELEMENT",
 "invNetLevel": "HOST",
 "invAssetType": "Host",
 "invState": "CONN_E",
 "invFather": null,
 "invAttributeValues": [
 {
 "attribute": "InvDescription",
 "value": "SCADA"
 }
]
 }
]

Notice both invState and InvDescription

attribute values have been indicated in the Input

and the result reflexes these updates.

AIDB_002 SDN Asset update – Result
[

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 215
Public document

AIDB_002 SDN Asset update – Result
 {
 "invExternalId": "10.0.0.1",
 "invExternalName": "10.0.0.1",
 "invClass": "ELEMENT",
 "invNetLevel": "HOST",
 "invAssetType": "Host",
 "invState": "CONN_E",
 "invFather": null,
 "invAttributeValues": [
 {
 "attribute": "InvDescription",
 "value": "SCADA"
 },
 {
 "attribute": "sdnIP",
 "value": "10.0.0.1"
 }
],
 "relationships": [
 {

"relationshipId": "10.0.0.1_0000000000000003",
 "externalIdA": "10.0.0.1",
 "externalIdB": "0000000000000003",
 "enable": true,
 "weight": 1.0,
 "bandwith": 2.0,
 "maxLatency": 1.0
 },
 {

"relationshipId": "0000000000000003_10.0.0.1",
 "externalIdA": "0000000000000003",
 "externalIdB": "10.0.0.1",
 "enable": true,
 "weight": 1.0,
 "bandwith": 2.0,
 "maxLatency": 1.0
 }
]
 }
]

AIDB_003 SDN topology attribute update –
Input data
[
 {
 "invExternalId": "10.0.0.1",
 "invExternalName": "10.0.0.1",
 "invClass": "ELEMENT",
 "invNetLevel": "HOST",
 "invAssetType": "Host",
 "invState": "CONN_E",
 "invFather": null,
 "relationships": [
 {

"relationshipId": "0000000000000003_10.0.0.1",
 "externalIdA": "0000000000000003",
 "externalIdB": "10.0.0.1",
 "enable": true,
 "weight": 7.0,
 "bandwith": 2.0,
 "maxLatency": 1.0
 }
]

AIDB_003 SDN topology attribute update –
Input data
 }
]

AIDB_003 SDN topology attribute update –
Result
[
 {
 "invExternalId": "10.0.0.1",
 "invExternalName": "10.0.0.1",
 "invClass": "ELEMENT",
 "invNetLevel": "HOST",
 "invAssetType": "Host",
 "invState": "CONN_E",
 "invFather": null,
 "invAttributeValues": [
 {
 "attribute": "InvDescription",
 "value": "SCADA"
 },
 {
 "attribute": "sdnIP",
 "value": "10.0.0.1"
 }
],
 "relationships": [
 {

"relationshipId": "10.0.0.1_0000000000000003",
 "externalIdA": "10.0.0.1",
 "externalIdB": "0000000000000003",
 "enable": true,
 "weight": 1.0,
 "bandwith": 2.0,
 "maxLatency": 1.0
 },
 {

"relationshipId": "0000000000000003_10.0.0.1",
 "externalIdA": "0000000000000003",
 "externalIdB": "10.0.0.1",
 "enable": true,
 "weight": 7.0,
 "bandwith": 2.0,
 "maxLatency": 1.0
 }
]
 }
]

AIDB_004 SDN topology update
– Input data
[
 {
 "invExternalId": "10.0.0.3",
 "invExternalName": "10.0.0.3",
 "invClass": "ELEMENT",
 "invNetLevel": "HOST",
 "invAssetType": "Host",
 "invState": null,
 "invFather": null,
 "invAttributeValues": [
 {

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 216
Public document

AIDB_004 SDN topology update
– Input data
 "attribute": "InvDescription",
 "value": null
 },
 {
 "attribute": "sdnIP",
 "value": "10.0.0.3"
 }
],
 "relationships": [
 {

"relationshipId": "10.0.0.3_0000000000000003",
 "externalIdA": null
 "externalIdB": null,
 },
 {

"relationshipId": "0000000000000003_10.0.0.3",
 "externalIdA": null,
 "externalIdB": null,
 },
 {
 "externalIdA": "10.0.0.3",
 "externalIdB": "0000000000000001",
 "enable": true,
 "weight": 1.0,
 "bandwith": 2.0,
 "maxLatency": 1.0
 },
 {
 "externalIdA": "0000000000000001",
 "externalIdB": "10.0.0.3",
 "enable": true,
 "weight": 1.0,
 "bandwith": 2.0,
 "maxLatency": 1.0
 }
]
 }
]

Notice how the 10.0.0.3 is unplugged from the

Switch3 and is plugged to the Switch1.

AIDB_004 SDN topology update
– Result
[
 {
 "invExternalId": "10.0.0.3",
 "invExternalName": "10.0.0.3",
 "invClass": "ELEMENT",
 "invNetLevel": "HOST",
 "invAssetType": "Host",
 "invState": null,
 "invFather": null,
 "invAttributeValues": [
 {
 "attribute": "InvDescription",
 "value": null
 },
 {
 "attribute": "sdnIP",

 "value": "10.0.0.3"
 }
],
 "relationships": [
 {

"relationshipId": "10.0.0.3_0000000000000001",
 "externalIdA": "10.0.0.3",
 "externalIdB": "0000000000000001",
 "enable": true,
 "weight": 1.0,
 "bandwith": 2.0,
 "maxLatency": 1.0
 },
 {

"relationshipId": "0000000000000001_10.0.0.3",
 "externalIdA": "0000000000000001",
 "externalIdB": "10.0.0.3",
 "enable": true,
 "weight": 1.0,
 "bandwith": 2.0,
 "maxLatency": 1.0
 }
]
 }
]

Due to the enormous length of input and results

the AIDB_005 Grid definition registration input

and results have been included in the document.

AIDB_006 SDN-Grid relationship creation -
Input
[
 {
 "invExternalId": "10.0.0.3",
 "invExternalName": "10.0.0.3",
 "invClass": "ELEMENT",
 "invNetLevel": "HOST",
 "invAssetType": "Host",
 "invState": null,
 "invFather": null,
 "relationships": [
 {
 "externalIdA": "10.0.0.3",
 "externalIdB": " Diesel generator 1",
 "enable": true,
 },
 {
 "externalIdA": "Diesel generator 1",
 "externalIdB": "10.0.0.3",
 "enable": true,
 }
]
 }
]

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 217
Public document

13.4 EDAE unit testing details

13.4.1 Inputs for the workflow

From AIDB to EDAE process

[
 {
 "invExternalId": "SDN_CONTROLLER_UC0",
 "invExternalName": "SDN_CONTROLLER_UC0",
 "invClass": "ELEMENT",
 "invNetLevel": "SDN_CONTROLLER_LEVEL",
 "invAssetType": "SDN Controller",
 "invState": "CONN_E",
 "invFather": "10.0.0.1",
 "invAttributeValues": [
 {
 "attribute": "sdnDriver",
 "value": "Northbound"
 },
 {
 "attribute": "sdnEndpoint",
 "value": "sdnEndpoint1"
 }
],
 "relationships": "None"
 },
 {
 "invExternalId": "0000000000000001",
 "invExternalName": "0000000000000001",

 "invClass": "ELEMENT",
 "invNetLevel": "SDN_SWITCH_LEVEL",
 "invAssetType": "SDN_SWITCH",
 "invState": "CONN_E",
 "invFather": "None",
 "invAttributeValues": [
 {
 "attribute": "InvDescription",
 "value": "None"
 },
 {
 "attribute": "sdnManufacturer",
 "value": "Nicira, Inc."
 },
 {
 "attribute": "sdnSwDesc",
 "value": "2.3.90"
 }
],
 "relationships": [
 {
 "relationshipId": "1",
 "externalIdA": "0000000000000001",
 "externalIdB": "0000000000000002",
 "enable": true,
 "weight": 1.0,
 "capacity": 1.0
 },
 {
 "relationshipId": "2",
 "externalIdA": "0000000000000002",
 "externalIdB": "0000000000000001",
 "enable": true,
 "weight": 1.0,
 "capacity": 1.0
 },
 {

 "relationshipId": "3",
 "externalIdA": "0000000000000001",
 "externalIdB": "0000000000000003",
 "enable": true,
 "weight": 1.0,
 "capacity": 1.0
 },
 {
 "relationshipId": "4",
 "externalIdA": "0000000000000003",
 "externalIdB": "0000000000000001",
 "enable": true,
 "weight": 1.0,
 "capacity": 1.0
 }
]
 },
 {
 "invExternalId": "0000000000000002",
 "invExternalName": "0000000000000002",
 "invClass": "ELEMENT",
 "invNetLevel": "SDN_SWITCH_LEVEL",
 "invAssetType": "SDN_SWITCH",
 "invState": "CONN_E",
 "invFather": "None",
 "invAttributeValues": [
 {
 "attribute": "InvDescription",
 "value": "None"
 },
 {
 "attribute": "sdnManufacturer",
 "value": "Nicira, Inc."
 },
 {
 "attribute": "sdnSwDesc",
 "value": "2.3.90"
 }
],
 "relationships": [
 {
 "relationshipId": "1",
 "externalIdA": "0000000000000001",
 "externalIdB": "0000000000000002",
 "enable": true,
 "weight": 1.0,
 "capacity": 1.0
 },
 {
 "relationshipId": "2",
 "externalIdA": "0000000000000002",
 "externalIdB": "0000000000000001",
 "enable": true,
 "weight": 1.0,
 "capacity": 1.0
 },
 {
 "relationshipId": "5",
 "externalIdA": "0000000000000002",
 "externalIdB": "0000000000000003",
 "enable": true,
 "weight": 1.0,
 "capacity": 1.0
 },
 {
 "relationshipId": "6",
 "externalIdA": "0000000000000003",

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 218
Public document

 "externalIdB": "0000000000000002",
 "enable": true,
 "weight": 1.0,
 "capacity": 1.0
 }
]
 },
 {
 "invExternalId": "0000000000000003",
 "invExternalName": "0000000000000003",
 "invClass": "ELEMENT",
 "invNetLevel": "SDN_SWITCH_LEVEL",
 "invAssetType": "SDN_SWITCH",
 "invState": "CONN_E",
 "invFather": "None",
 "invAttributeValues": [
 {
 "attribute": "InvDescription",
 "value": "None"
 },
 {
 "attribute": "sdnManufacturer",
 "value": "Nicira, Inc."
 },
 {
 "attribute": "sdnSwDesc",
 "value": "2.3.90"
 }
],
 "relationships": [
 {
 "relationshipId": "4",
 "externalIdA": "0000000000000003",
 "externalIdB": "0000000000000001",
 "enable": true,
 "weight": 1.0,
 "capacity": 1.0
 },
 {
 "relationshipId": "3",
 "externalIdA": "0000000000000001",
 "externalIdB": "0000000000000003",
 "enable": true,
 "weight": 1.0,
 "capacity": 1.0
 },
 {
 "relationshipId": "6",
 "externalIdA": "0000000000000003",
 "externalIdB": "0000000000000002",
 "enable": true,
 "weight": 1.0,
 "capacity": 1.0
 },
 {
 "relationshipId": "5",
 "externalIdA": "0000000000000002",
 "externalIdB": "0000000000000003",
 "enable": true,
 "weight": 1.0,
 "capacity": 1.0
 }
]
 },
 {
 "invExternalId": "10.0.0.1",
 "invExternalName": "10.0.0.1",

 "invClass": "ELEMENT",
 "invNetLevel": "SDN_HOST_LEVEL",
 "invAssetType": "PDC",
 "invState": "CONN_E",
 "invFather": "None",
 "invAttributeValues": [
 {
 "attribute": "InvDescription",
 "value": "None"
 },
 {
 "attribute": "sdnIP",
 "value": "10.0.0.1"
 }
],
 "relationships": [
 {
 "relationshipId": "7",
 "externalIdA": "10.0.0.1",
 "externalIdB": "0000000000000001",
 "enable": true,
 "weight": 1.0,
 "capacity": 1.0
 },
 {
 "relationshipId": "8",
 "externalIdA": "0000000000000001",
 "externalIdB": "10.0.0.1",
 "enable": true,
 "weight": 1.0,
 "capacity": 1.0
 },
 {
 "relationshipId": "80",
 "externalIdA": "10.0.0.3",
 "externalIdB": "10.0.0.3",
 "enable": true,
 "weight": 1.0,
 "capacity": 1.0
 }
]
 },
 {
 "invExternalId": "10.0.0.2",
 "invExternalName": "10.0.0.2",
 "invClass": "ELEMENT",
 "invNetLevel": "SDN_HOST_LEVEL",
 "invAssetType": "PDC",
 "invState": "CONN_E",
 "invFather": "None",
 "invAttributeValues": [
 {
 "attribute": "InvDescription",
 "value": "None"
 },
 {
 "attribute": "sdnIP",
 "value": "10.0.0.2"
 }
],
 "relationships": [
 {
 "relationshipId": "9",
 "externalIdA": "10.0.0.2",
 "externalIdB": "0000000000000002",
 "enable": true,
 "weight": 1.0,

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 219
Public document

 "capacity": 1.0
 },
 {
 "relationshipId": "10",
 "externalIdA": "0000000000000002",
 "externalIdB": "10.0.0.2",
 "enable": true,
 "weight": 1.0,
 "capacity": 1.0
 }
]
 },
 {
 "invExternalId": "10.0.0.3",
 "invExternalName": "10.0.0.3",
 "invClass": "ELEMENT",
 "invNetLevel": "SDN_HOST_LEVEL",
 "invAssetType": "PMU",
 "invState": "CONN_E",
 "invFather": "10.0.0.2",
 "invAttributeValues": [
 {
 "attribute": "InvDescription",
 "value": "None"
 },
 {
 "attribute": "sdnIP",
 "value": "10.0.0.3"
 }
],
 "relationships": [
 {
 "relationshipId": "11",
 "externalIdA": "10.0.0.3",
 "externalIdB": "0000000000000003",
 "enable": true,
 "weight": 1.0,
 "capacity": 1.0
 },
 {
 "relationshipId": "12",
 "externalIdA": "0000000000000003",
 "externalIdB": "10.0.0.3",
 "enable": true,
 "weight": 1.0,
 "capacity": 1.0
 },
 {
 "relationshipId": "120",
 "externalIdA": "10.0.0.1",
 "externalIdB": "10.0.0.1",
 "enable": true,
 "weight": 1.0,
 "capacity": 1.0
 }
]
 },
 {
 "invExternalId": "10.0.0.4",
 "invExternalName": "10.0.0.4",
 "invClass": "ELEMENT",
 "invNetLevel": "SDN_HOST_LEVEL",
 "invAssetType": "Attacker",
 "invState": "CONN_E",
 "invFather": "None",
 "invAttributeValues": [
 {

 "attribute": "InvDescription",
 "value": "None"
 },
 {
 "attribute": "sdnIP",
 "value": "10.0.0.3"
 }
],
 "relationships": [
 {
 "relationshipId": "13",
 "externalIdA": "10.0.0.4",
 "externalIdB": "0000000000000001",
 "enable": true,
 "weight": 1.0,
 "capacity": 1.0
 },
 {
 "relationshipId": "14",
 "externalIdA": "0000000000000001",
 "externalIdB": "10.0.0.4",
 "enable": true,
 "weight": 1.0,
 "capacity": 1.0
 }
]
 }
]

From S-RAF to EDAE process
{
 "ASSETS":[
 {
 "name":"SDN-Switch",
 "type":"h",
 "category":"NetworkComponent/Switch",
 "gdpr":false,
 "assetId":1,
 "riskassessmentId":1714,
 "businesspartnerId":1,
 "risklevel":"M",
 "threats":[
 {
 "threat":"DEFAULT-1",
 "name":"DEFAULT",
 "level":"VH",
 "vulnerabilities":[
 {
 "vulnerability":"CVE-2019-1890",
 "level":"L",
 "impact":"M",
 "risklevel":"M",
 "privacyfunctionalimpactscore":0,
 "privacyimpactscopescore":0,
 "privacydatatypes":[

],
 "privacydatatypescore":0,
 "privacyscore":0,
 "privavyriskscore":0,
 "cvssscore":3,
 "cvss":"L"
 }
],

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 220
Public document

From S-RAF to EDAE process
 "result":"M"
 }
],
 "cumulativeRiskLevel":"M",
 "contributingirls":[
 "M"
],
 "controls":[

],
 "links":[
 {
 "type":"CONNECTED_TO",
 "assetId":3
 },
 {
 "type":"CONNECTED_TO",
 "assetId":5
 }
],
 "businessValue":"VH",
 "tags":{

 }
 },
 {
 "name":"SDN-enabled RTU",
 "category":"Business Service/Infrastructure Service",
 "gdpr":false,
 "assetId":2,
 "riskassessmentId":1714,
 "businesspartnerId":1,
 "risklevel":"H",
 "threats":[
 {
 "threat":"DEFAULT-1",
 "name":"DEFAULT",
 "level":"VH",
 "vulnerabilities":[
 {
 "vulnerability":"CVE-2019-14931",
 "level":"VL",
 "impact":"VH",
 "risklevel":"H",
 "privacyfunctionalimpactscore":0,
 "privacyimpactscopescore":0,
 "privacydatatypes":[

],

 "privacydatatypescore":0,
 "privacyscore":0,
 "privavyriskscore":0,
 "cvssscore":6,
 "cvss":"H"
 }
],
 "result":"H"
 }
],
 "cumulativeRiskLevel":"H",
 "contributingirls":[
 "H"
],
 "controls":[

],

From S-RAF to EDAE process
 "links":[
 {
 "type":"CONNECTED_TO",
 "assetId":1
 }
],
 "businessValue":"VH",
 "tags":{
 "attackpath":"source"
 }
 },
 {
 "name":"Programmable Logic Controller 1",
 "type":"h",
 "category":"Computer/Server",
 "gdpr":false,
 "assetId":3,
 "riskassessmentId":1714,
 "businesspartnerId":1,
 "risklevel":"H",
 "threats":[
 {
 "threat":"DEFAULT-1",
 "name":"DEFAULT",
 "level":"VH",
 "vulnerabilities":[
 {
 "vulnerability":"CVE-2017-6031",
 "level":"VH",
 "impact":"M",
 "risklevel":"H",
 "description":"A Header Injection issue was
discovered in Certec EDV GmbH atvise scada prior to Version
3.0. An \"improper neutralization of HTTP headers for scripting
syntax\" issue has been identified, which may allow remote
code execution.",
 "privacyfunctionalimpactscore":0,
 "privacyimpactscopescore":0,
 "privacydatatypes":[

],
 "privacydatatypescore":0,
 "privacyscore":0,
 "privavyriskscore":0,
 "cvssscore":6.8,
 "cvss":"H"
 },
 {
 "vulnerability":"CVE-2013-2780",

 "level":"VH",
 "impact":"L",
 "risklevel":"M",
 "privacyfunctionalimpactscore":0,
 "privacyimpactscopescore":0,
 "privacydatatypes":[

],
 "privacydatatypescore":0,
 "privacyscore":0,
 "privavyriskscore":0,
 "cvssscore":7.8,
 "cvss":"H"
 },
 {
 "vulnerability":"CVE-2017-6033",

 "level":"VH",

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 221
Public document

From S-RAF to EDAE process
 "impact":"M",
 "risklevel":"H",
 "description":"A DLL Hijacking issue was
discovered in Schneider Electric Interactive Graphical SCADA
System (IGSS) Software, Version 12 and previous versions. The
software will execute a malicious file if it is named the same as
a legitimate file and placed in a location that is earlier in the
search path.",
 "privacyfunctionalimpactscore":0,
 "privacyimpactscopescore":0,
 "privacydatatypes":[

],
 "privacydatatypescore":0,
 "privacyscore":0,
 "privavyriskscore":0,
 "cvssscore":6.8,
 "cvss":"H"
 }
],
 "result":"H"
 }
],
 "cumulativeRiskLevel":"H",
 "contributingirls":[
 "H",
 "M"
],
 "controls":[

],
 "links":[
 {
 "type":"USED_BY",
 "assetId":4
 }
],
 "businessValue":"VH",
 "tags":{

 }
 },
 {
 "name":"Administrator",
 "category":"Organizational/Personnel",
 "gdpr":false,
 "assetId":4,
 "riskassessmentId":1714,
 "businesspartnerId":1,

 "risklevel":"",
 "threats":[

],
 "cumulativeRiskLevel":"",
 "contributingirls":[

],
 "controls":[

],
 "links":[

],
 "businessValue":"H",
 "tags":{

 "attackpath":"destination"

From S-RAF to EDAE process
 }
 },
 {
 "name":"Programmable Logic Controller 2",
 "type":"h",
 "category":"Computer/Server",
 "gdpr":false,
 "assetId":5,
 "riskassessmentId":1714,
 "businesspartnerId":1,
 "risklevel":"H",
 "threats":[
 {
 "threat":"DEFAULT-1",
 "name":"DEFAULT",
 "level":"VH",
 "vulnerabilities":[
 {
 "vulnerability":"CVE-2013-2780",
 "level":"VH",
 "impact":"L",
 "risklevel":"M",
 "privacyfunctionalimpactscore":0,
 "privacyimpactscopescore":0,
 "privacydatatypes":[

],
 "privacydatatypescore":0,
 "privacyscore":0,
 "privavyriskscore":0,
 "cvssscore":7.8,
 "cvss":"H"
 },
 {
 "vulnerability":"CVE-2017-6033",
 "level":"VH",
 "impact":"M",
 "risklevel":"H",
 "description":"A DLL Hijacking issue was
discovered in Schneider Electric Interactive Graphical SCADA
System (IGSS) Software, Version 12 and previous versions. The
software will execute a malicious file if it is named the same as
a legitimate file and placed in a location that is earlier in the
search path.",
 "privacyfunctionalimpactscore":0,
 "privacyimpactscopescore":0,
 "privacydatatypes":[

],

 "privacydatatypescore":0,
 "privacyscore":0,
 "privavyriskscore":0,
 "cvssscore":6.8,
 "cvss":"H"
 },
 {
 "vulnerability":"CVE-2017-6031",
 "level":"VH",
 "impact":"M",
 "risklevel":"H",
 "description":"A Header Injection issue was
discovered in Certec EDV GmbH atvise scada prior to Version
3.0. An \"improper neutralization of HTTP headers for scripting
syntax\" issue has been identified, which may allow remote
code execution.",

 "privacyfunctionalimpactscore":0,

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 222
Public document

From S-RAF to EDAE process
 "privacyimpactscopescore":0,
 "privacydatatypes":[

],
 "privacydatatypescore":0,
 "privacyscore":0,
 "privavyriskscore":0,
 "cvssscore":6.8,
 "cvss":"H"
 }
],
 "result":"H"
 }
],
 "cumulativeRiskLevel":"H",
 "contributingirls":[
 "H",
 "M"
],
 "controls":[

],
 "links":[
 {
 "type":"CONNECTED_TO",
 "assetId":6
 }
],
 "businessValue":"VH",
 "tags":{

 }
 },
 {
 "name":"SCADA 1",
 "type":"h",
 "category":"Computer/Server",
 "gdpr":false,
 "assetId":6,
 "riskassessmentId":1714,
 "businesspartnerId":1,
 "risklevel":"H",
 "threats":[
 {
 "threat":"DEFAULT-1",
 "name":"DEFAULT",
 "level":"VH",
 "vulnerabilities":[
 {

 "vulnerability":"CVE-2013-2780",
 "level":"VH",
 "impact":"L",
 "risklevel":"M",
 "privacyfunctionalimpactscore":0,
 "privacyimpactscopescore":0,
 "privacydatatypes":[

],
 "privacydatatypescore":0,
 "privacyscore":0,
 "privavyriskscore":0,
 "cvssscore":7.8,
 "cvss":"H"
 },
 {

 "vulnerability":"CVE-2017-6031",

From S-RAF to EDAE process
 "level":"VH",
 "impact":"M",
 "risklevel":"H",
 "description":"A Header Injection issue was
discovered in Certec EDV GmbH atvise scada prior to Version
3.0. An \"improper neutralization of HTTP headers for scripting
syntax\" issue has been identified, which may allow remote
code execution.",
 "privacyfunctionalimpactscore":0,
 "privacyimpactscopescore":0,
 "privacydatatypes":[

],
 "privacydatatypescore":0,
 "privacyscore":0,
 "privavyriskscore":0,
 "cvssscore":6.8,
 "cvss":"H"
 },
 {
 "vulnerability":"CVE-2017-6033",
 "level":"VH",
 "impact":"M",
 "risklevel":"H",
 "description":"A DLL Hijacking issue was
discovered in Schneider Electric Interactive Graphical SCADA
System (IGSS) Software, Version 12 and previous versions. The
software will execute a malicious file if it is named the same as
a legitimate file and placed in a location that is earlier in the
search path.",
 "privacyfunctionalimpactscore":0,
 "privacyimpactscopescore":0,
 "privacydatatypes":[

],
 "privacydatatypescore":0,
 "privacyscore":0,
 "privavyriskscore":0,
 "cvssscore":6.8,
 "cvss":"H"
 }
],
 "result":"H"
 }
],
 "cumulativeRiskLevel":"H",
 "contributingirls":[
 "H",
 "M"

],
 "controls":[

],
 "links":[

],
 "businessValue":"VH",
 "tags":{
 "attackpath":"destination"
 }
 }
],
 "PATHS":[
 [
 {

 "id":"5f7ec5302af19b000193880f",

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 223
Public document

From S-RAF to EDAE process
 "name":"SDN-enabled RTU",
 "category":"Business Service/Infrastructure Service",
 "gdpr":false,
 "assetId":2,
 "riskassessmentId":1714,
 "businesspartnerId":1,
 "risklevel":"H",
 "threats":[
 {
 "threat":"DEFAULT-1",
 "name":"DEFAULT",
 "level":"VH",
 "vulnerabilities":[
 {
 "vulnerability":"CVE-2019-14931",
 "level":"VL",
 "impact":"VH",
 "risklevel":"H",
 "privacyfunctionalimpactscore":0,
 "privacyimpactscopescore":0,
 "privacydatatypes":[

],
 "privacydatatypescore":0,
 "privacyscore":0,
 "privavyriskscore":0,
 "cvssscore":6,
 "cvss":"H"
 }
],
 "result":"H"
 }
],
 "cumulativeRiskLevel":"H",
 "contributingirls":[
 "H"
],
 "controls":[

],
 "links":[
 {
 "type":"CONNECTED_TO",
 "assetId":1
 }
],
 "businessValue":"VH",
 "tags":{
 "attackpath":"source"

 }
 },
 {
 "id":"5f7ec5302af19b000193880e",
 "name":"SDN-Switch",
 "type":"h",
 "category":"NetworkComponent/Switch",
 "gdpr":false,
 "assetId":1,
 "riskassessmentId":1714,
 "businesspartnerId":1,
 "risklevel":"M",
 "threats":[
 {
 "threat":"DEFAULT-1",
 "name":"DEFAULT",

 "level":"VH",

From S-RAF to EDAE process
 "vulnerabilities":[
 {
 "vulnerability":"CVE-2019-1890",
 "level":"L",
 "impact":"M",
 "risklevel":"M",
 "privacyfunctionalimpactscore":0,
 "privacyimpactscopescore":0,
 "privacydatatypes":[

],
 "privacydatatypescore":0,
 "privacyscore":0,
 "privavyriskscore":0,
 "cvssscore":3,
 "cvss":"L"
 }
],
 "result":"M"
 }
],
 "cumulativeRiskLevel":"M",
 "contributingirls":[
 "M"
],
 "controls":[

],
 "links":[
 {
 "type":"CONNECTED_TO",
 "assetId":3
 },
 {
 "type":"CONNECTED_TO",
 "assetId":5
 }
],
 "businessValue":"VH",
 "tags":{

 }
 },
 {
 "id":"5f7ec5302af19b0001938810",
 "name":"Programmable Logic Controller 1",
 "type":"h",
 "category":"Computer/Server",
 "gdpr":false,

 "assetId":3,
 "riskassessmentId":1714,
 "businesspartnerId":1,
 "risklevel":"H",
 "threats":[
 {
 "threat":"DEFAULT-1",
 "name":"DEFAULT",
 "level":"VH",
 "vulnerabilities":[
 {
 "vulnerability":"CVE-2017-6031",
 "level":"VH",
 "impact":"M",
 "risklevel":"H",
 "description":"A Header Injection issue was

discovered in Certec EDV GmbH atvise scada prior to Version

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 224
Public document

From S-RAF to EDAE process
3.0. An \"improper neutralization of HTTP headers for scripting
syntax\" issue has been identified, which may allow remote
code execution.",
 "privacyfunctionalimpactscore":0,
 "privacyimpactscopescore":0,
 "privacydatatypes":[

],
 "privacydatatypescore":0,
 "privacyscore":0,
 "privavyriskscore":0,
 "cvssscore":6.8,
 "cvss":"H"
 },
 {
 "vulnerability":"CVE-2013-2780",
 "level":"VH",
 "impact":"L",
 "risklevel":"M",
 "privacyfunctionalimpactscore":0,
 "privacyimpactscopescore":0,
 "privacydatatypes":[

],
 "privacydatatypescore":0,
 "privacyscore":0,
 "privavyriskscore":0,
 "cvssscore":7.8,
 "cvss":"H"
 },
 {
 "vulnerability":"CVE-2017-6033",
 "level":"VH",
 "impact":"M",
 "risklevel":"H",
 "description":"A DLL Hijacking issue was
discovered in Schneider Electric Interactive Graphical SCADA
System (IGSS) Software, Version 12 and previous versions. The
software will execute a malicious file if it is named the same as
a legitimate file and placed in a location that is earlier in the
search path.",
 "privacyfunctionalimpactscore":0,
 "privacyimpactscopescore":0,
 "privacydatatypes":[

],
 "privacydatatypescore":0,
 "privacyscore":0,
 "privavyriskscore":0,

 "cvssscore":6.8,
 "cvss":"H"
 }
],
 "result":"H"
 }
],
 "cumulativeRiskLevel":"H",
 "contributingirls":[
 "H",
 "M"
],
 "controls":[

],
 "links":[

 {

From S-RAF to EDAE process
 "type":"USED_BY",
 "assetId":4
 }
],
 "businessValue":"VH",
 "tags":{

 }
 },
 {
 "id":"5f7ec5302af19b0001938811",
 "name":"Administrator",
 "category":"Organizational/Personnel",
 "gdpr":false,
 "assetId":4,
 "riskassessmentId":1714,
 "businesspartnerId":1,
 "risklevel":"",
 "threats":[

],
 "cumulativeRiskLevel":"",
 "contributingirls":[

],
 "controls":[

],
 "links":[

],
 "businessValue":"H",
 "tags":{
 "attackpath":"destination"
 }
 }
]
]
}

From SDN-C to EDAE process
{
 "1": [
 {
 "port_no": 1,
 "rx_packets": 9,
 "tx_packets": 6,
 "rx_bytes": 738,
 "tx_bytes": 252,
 "rx_dropped": 0,
 "tx_dropped": 0,
 "rx_errors": 0,
 "tx_errors": 0,
 "rx_frame_err": 0,
 "rx_over_err": 0,
 "rx_crc_err": 0,
 "collisions": 0,
 "duration_sec": 12,
 "duration_nsec": 9.76e+08
 },
]
}

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 225
Public document

From EDAE process to EDAE-Dashbaord
{
 "APPROVAL_REQUIRED":true,
 "PDC":[
 {
 "ID":"PDC_1",
 "PMUS_con":2,
 "PMUS":[
 "PMU_1",
 "PMU_4"
]
 },
 {
 "ID":"PDC_3",
 "PMUS_con":3,
 "PMUS":[
 "PMU_1”, “PMU_2",
 "PMU_4"
]
 }
],
 "PMU":[
 {
 "ID":"PMU_1",
 "PDC":[
 "PDC_1",
 "PDC_13"
],
 "traffic_demand":"10 Mbps"
 },
 {
 "ID":"PMU_2",
 "PDC":[
 "PDC_12"
],
 "traffic_demand":"20 Mbps"
 }
],
 "PATH":[
 {
 "path":[
 "PMU_1",
 "SW_3",
 "SW_2",
 "SW_1",

 "PDC_2"
]
 },
 {
 "path":[
 "PMU_4",
 "SW_2",
 "SW_1",
 "PDC_1"
]
 }
]
}

From EDAE process to SDN-C

{
 "dpid": 1,
 "cookie": 1,
 "cookie_mask": 1,
 "table_id": 0,
 "idle_timeout": 30,
 "hard_timeout": 30,
 "priority": 11111,
 "flags": 1,
 "match":{
 "in_port":1
 },
 "actions":[
 {
 "type":"OUTPUT",
 "port": 2
 }
]
 }' http://localhost:8080/stats/flowentry/add

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 226
Public document

From EDAE process to EDAE-Dasboard
{
 "APPROVAL_REQUIRED":true,
 "PDC":[
 {
 "ID":"PDC_1",
 "PMUS_con":2,
 "PMUS":[
 "PMU_1",
 "PMU_4"
]
 },
 {
 "ID":"PDC_3",
 "PMUS_con":3,
 "PMUS":[
 "PMU_1”, “PMU_2",
 "PMU_4"
]
 }
],
 "PMU":[
 {
 "ID":"PMU_1",
 "PDC":[
 "PDC_1",
 "PDC_13"
],
 "traffic_demand":"10 Mbps"
 },
 {
 "ID":"PMU_2",
 "PDC":[
 "PDC_12"
],
 "traffic_demand":"20 Mbps"
 }
],
 "PATH":[
 {
 "path":[
 "PMU_1",
 "SW_3",
 "SW_2",
 "SW_1",
 "PDC_2"
]
 },
 {
 "path":[
 "PMU_4",
 "SW_2",
 "SW_1",
 "PDC_1"
]
 }
]
}

Deliverable D4.2

Version 1.0

© SDN microSENSE consortium Page | 227
Public document

13.4.2 Output of the workflow

From S-RAF to EDAE process
Same as the input

From EDAE process to EDAE-Dashbaord
{
 "PROPOSAL_ID":53427606,
 "DATA":{
 "APPROVAL_REQUIRED":true,
 "PDC":[
 {
 "ID":"PDC_1",
 "PMUS_con":2,
 "PMUS":[
 "PMU_1",
 "PMU_4"
]
 },
 {
 "ID":"PDC_3",
 "PMUS_con":3,
 "PMUS":[
 "PMU_1”, “PMU_2",
 "PMU_4"
]
 }
],

 "PMU":[
 {
 "ID":"PMU_1",
 "PDC":[
 "PDC_1",
 "PDC_13"
],
 "traffic_demand":"10 Mbps"
 },
 {
 "ID":"PMU_2",
 "PDC":[
 "PDC_12"
],
 "traffic_demand":"20 Mbps"
 }
],
 "PATH":[
 {
 "path":[
 "PMU_1",
 "SW_3",
 "SW_2",
 "SW_1",

 "PDC_2"
]
 },
 {
 "path":[
 "PMU_4",
 "SW_2",
 "SW_1",
 "PDC_1"
]
 }
]
 }
}

From EDAE to SDN-C
{
 "dpid": 1,
 "cookie": 1,
 "cookie_mask": 1,
 "table_id": 0,
 "idle_timeout": 30,
 "hard_timeout": 30,
 "priority": 11111,
 "flags": 1,
 "match":{
 "in_port":1
 },
 "actions":[
 {
 "type":"OUTPUT",
 "port": 2
 }
]
 }' http://localhost:8080/stats/flowentry/add

From AIDB to EDAE process
Same as the input

From SDN-C to EDAE process
Same as the input

From EDAE process to SDN-C
Same as the input

This project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement No 833955

13.5 SDN-C API details
This section is considered as confidential and it is found in another document.

	Table of contents
	List of acronyms
	List of figures
	List of tables
	1 Introduction
	1.1 Purpose of the deliverable
	1.2 Relation with other WPs
	1.3 Structure of the document

	2 Self-healing techniques in Grid applications
	2.1 Objective of self-healing
	2.1.1 Safe systems
	2.1.2 Fault-tolerant systems
	2.1.3 Resilient Systems

	2.2 Self-healing methods
	2.2.1 General/Traditional Self-healing Methods in Power Systems
	2.2.1.1 Reserves
	2.2.1.2 Automatic Generation Control (AGC)
	2.2.1.3 Low Frequency Demand Disconnection
	2.2.1.4 Automatic Voltage Control (AVC)

	2.2.2 Self-healing methods in smart grids
	2.2.2.1 Variable Renewable Energy (VRE) and storage control
	2.2.2.2 Demand response and demand side management (DR/DSM)
	2.2.2.3 Controlled islanding (microgrids)
	2.2.2.4 Optimized grid reconfiguration
	2.2.2.5 SDN-Based Self-Healing Communication Network

	2.2.3 Summary and Conclusions on Self-Healing Methods

	3 Analysis of requirements for EDAE, SDN Controller and Northbound Interfaces
	3.1 D2.2 Functional Requirements
	3.2 SDN-microSENSE platform specifications (related to the WP4)
	3.3 Technical constraints
	3.4 Functional and non-functional requirements coverage
	3.4.1 EDAE requirements

	4 Architecture and detailed design
	4.1 Architecture overview
	4.2 Components view
	4.2.1 Detailed information flow of the inputs and outputs

	4.3 Interfaces Model
	4.3.1 AIDB – EDAE
	4.3.2 AIDB – EDAE Dashboard
	4.3.3 AIDB – S-RAF
	4.3.4 AIDB – SDN-C
	4.3.5 EDAE – EDAE-Dashboard
	4.3.6 EDAE – S-RAF
	4.3.7 EDAE – SDN-C
	4.3.8 EDAE-Dashboard – SDN-C

	5 SDN Controller design and implementation
	5.1 Interfaces Model - Northbound Interfaces
	5.1.1 Rest_topology API
	5.1.2 Ofctl_rest API
	5.1.3 Components Model
	5.1.3.1 SDN dashboard architecture
	5.1.3.2 Database schema
	5.1.3.3 User roles and privileges

	5.1.4 User Interfaces
	5.1.4.1 Users
	5.1.4.2 Homepage
	5.1.4.3 Flows
	5.1.4.4 Topology
	5.1.4.5 Settings

	5.1.5 SDN dashboard prototype deployment
	5.1.5.1 Prerequisites and Installation
	5.1.5.2 Source code repository

	6 Electric data Analysis engine (EDAE) design and implementation
	6.1 SDN-based System Model
	6.1.1 Network
	6.1.2 Power Grid

	6.2 EDAE core: Architecture
	6.2.1 Graph Construction Module
	6.2.2 Control Module
	6.2.3 Solvers Module

	6.3 EDAE Algorithm formulation
	6.3.1 Related methods from the literature
	6.3.2 Problem formulation
	6.3.2.1 Variables and Symbols
	6.3.2.2 Search for optimal path
	6.3.2.2.1 Variables and functions
	6.3.2.2.2 Objective functions and Constraints
	6.3.2.2.3 Solver
	6.3.2.2.4 Representation of the chromosomes

	6.3.2.3 PMU-PDC allocation for EPES observability
	6.3.2.3.1 Bandwidth constrained MILP
	6.3.2.3.2 PMU constrained MILP

	6.3.3 Problem Definition and Use Cases

	6.4 EDAE Dashboard
	6.4.1 Architecture and functionality
	6.4.2 Interfaces
	6.4.2.1 EDAE-Dashboard – EDAE: Network topology changes
	6.4.2.2 EDAE-Dashboard – EDAE: Network topology proposal acceptance
	6.4.2.3 EDAE-Dashboard – AIDB
	6.4.2.4 EDAE-Dashboard – SDN Controller

	6.5 Component Model
	6.6 Interfaces Model

	7 EDAE Core Engine Evaluation
	7.1 Evaluation framework of re-routing functionality
	7.1.1 Structure of the network topologies
	7.1.1.1 One Ring Bottleneck Topology (ORB)
	7.1.1.2 Two Ring Bottleneck Topology (TRB)

	7.1.2 Scale of the network topologies
	7.1.3 QoS requirements
	7.1.3.1 Definition of QoS requirements
	7.1.3.2 Modelling of QoS requirements

	7.1.4 Modelling the status of the network
	7.1.5 Comparison of EDAE’s modelling with something

	7.2 Results over the evaluation framework
	7.2.1 Evaluation details
	7.2.2 Computational time
	7.2.3 Objective success ratio and resource management
	7.2.3.1 Delay objective
	7.2.3.2 Jitter objective
	7.2.3.3 Bandwidth objective
	7.2.3.4 Packet loss objective
	7.2.3.5 Security objective

	7.3 Evaluation framework for the maximization of the EPES observability

	8 Assets inventory database design and implementation
	8.1 Interface model
	8.2 AIDB Information
	8.2.1 SDN asset modelling
	8.2.1.1 Switch
	8.2.1.2 Host
	8.2.1.3 SDN Controller

	8.2.2 SDN Topology
	8.2.2.1 SDN Topology Asset node
	8.2.2.2 SDN Topology Relationship

	8.2.3 Grid asset modelling
	8.2.4 Grid topology
	8.2.5 SDN and Grid asset relationships
	8.2.6 Vulnerability information

	8.3 Asset inventory database Implementation
	8.3.1 Architecture
	8.3.2 LDAP

	8.4 Asset inventory API
	8.4.1 Code lists
	8.4.2 Data partitions
	8.4.3 AssetQuery()
	8.4.4 Asset Create/Update/Delete()
	8.4.5 TopologicQuery()
	8.4.6 GridModelQuery()
	8.4.7 GridModelUpdate()
	8.4.8 AssetRiskQuery()

	9 Unit Testing
	9.1 Northbound Interface unit tests
	9.1.1 Technical environment
	9.1.2 Unit tests

	9.2 SDN Dashboard
	9.2.1 Technical environment
	9.2.2 Unit tests

	9.3 EDAE core
	9.3.1 Technical environment
	9.3.2 Unit Tests

	9.4 EDAE workflow
	9.4.1 Technical environment
	9.4.2 Unit tests

	9.5 EDAE-Dashboard
	9.5.1 Technical environment
	9.5.2 Unit tests

	9.6 Assets inventory database
	9.6.1 Technical environment
	9.6.2 Unit tests

	10 Innovation Summary
	11 Conclusions
	12 References
	13 Annexes
	13.1 EDAE Interface details
	13.2 Grid model example A
	13.3 AIDB unit test results
	13.4 EDAE unit testing details
	13.4.1 Inputs for the workflow
	13.4.2 Output of the workflow

	13.5 SDN-C API details

