
 
This project has received funding from the European Union’s Horizon 2020  
research and innovation programme under grant agreement No 833955   

 

 

 

 

Project No. 833955 

Project acronym: SDN-microSENSE  

Project title: 

SDN - microgrid reSilient Electrical eNergy SystEm 

 

Deliverable D3.3  
EPES Honeypots 

 
 
 
 
 
 

Programme: H2020-SU-DS-2018 
Start date of project: 01.05.2019 
Duration: 36 months  
 

 

 

 

Editor: TECNALIA 

Due date of deliverable: 31/07/2020     Actual submission date: 31/07/2020 

Ref. Ares(2020)4078229 - 03/08/2020



  D3.3 
  Version 1.0 
 

 

© SDN microSENSE consortium      Page | 2 
Public document 

  

Deliverable Description: 
 

Deliverable Name EPES Honeypots  

Deliverable Number D3.3 

Work Package WP3 

Associated Task T3.3 

Covered Period M1-M15 

Due Date M15 

Completion Date M15 

Submission Date 31/07/2020 

Deliverable Lead Partner TECNALIA 

Deliverable Author(s) Marisa Escalante (TECNALIA) 
Xabier Yurrebaso (TECNALIA) 
Santiago de Diego (TECNALIA) 
Alberto Molinuevo (TECNALIA) 
Vasilis Machamint (8BELLS) 
Ruben Trapero (ATOS) 
Preetika Srivastava (CLS) 
Alba Collet (IREC) 
Elisavet Grigoriou (SIDROCO) 
Anastasios Lytos (SIDROCO) 
Panagiotis I. Radoglou (UOWM) 
Thomas Lagkas (UOWM) 

Version 1.0 

 

 

 

CHANGE CONTROL 

DOCUMENT HISTORY 

Version Date Change History Author(s) Organisation 

0.0 15/05/2020 ToC Marisa Escalante  TECNALIA 

0.1 26/05/2020 ToC ready for review 
Marisa Escalante and 
Panagiotis Radoglou 

TECNALIA & 
UOWM  

0.2 22/06/2020 First iteration of contributions 

Marisa Escalante 
Xabier Yurrebaso 
Vasilis Machamint 
Ruben Trapero 
Preetika Srivastava 

TECNALIA 
8BELLS 
ATOS 
CLS 

Dissemination Level 

PU Public X 

PP Restricted to other programme participants (including the Commission 
Services) 

 

RE Restricted to a group specified by the consortium (including the 
Commission Services) 

 

CO Confidential, only for members of the consortium (including the 
Commission Services) 

 



  D3.3 
  Version 1.0 
 

 

© SDN microSENSE consortium      Page | 3 
Public document 

  

 

0.3 25/06/2020 Added contributions 
Marisa Escalante 
Xabier Yurrebaso 
 

TECNALIA 
 

V0.4 26/06/2020 Added contributions 

Marisa Escalante 
Xabier Yurrebaso 
Santiago de Diego 
Alberto Molinuevo 
Vasilis Machamint 
Alba Collet 

TECNALIA 
8BELLS 
Irec 

V0.5 01/07/2020 
Integration of all the 
contributions. Some 
information is missing 

Marisa Escalante 
Xabier Yurrebaso 
Santiago de Diego 
Alberto Molinuevo 
Elisavet Grigoriou 
Anastasios Lytos 
Panagiotis I. Radoglou-
GrammatikisThomas 
Lagkas 

TECNALIA 
SIDROCO 
UOWM 

V0.6 03/07/2020 
Version ready for internal 
review 

Marisa Escalante 
Xabier Yurrebaso 
Santiago de Diego 
Alberto Molinuevo 
Vasilis Machamint 
Ruben Trapero 
Preetika Srivastava 
Alba Collet 
Elisavet Grigoriou 
Anastasios Lytos 
Panagiotis I. Radoglou 
Thomas Lagkas 

TECNALIA 
8Bells 
ATOS 
CLS 
IREC 
SIDROCO 
UOWM 

V07 16/07/2020 
Version with the comments 
from reviewers 

Marisa Escalante 
Xabier Yurrebaso 
Orestis Mavropoulos 
Elisavet Grigoriou 
Alba Collet 
 

TECNALIA 
IREC 
CLS 
 

V0.8 23/07/2020 Version including unit testing 

Marisa Escalante 
Xabier Yurrebaso 
Santiago de Diego 
Alberto Molinuevo 
Elisavet Grigoriou 
Anastasios Lytos 
Panagiotis I. Radoglou 
Thomas Lagkas 
 

TECNALIA 
SIDROCO 
UOWM 

V1.0 30/07/2020 Final Version Marisa Escalante TECNALIA 

 



  D3.3 
  Version 1.0 
 

 

© SDN microSENSE consortium      Page | 4 
Public document 

  

DISTRIBUTION LIST 

SAB APPROVAL  

NAME INSTITUTION DATE 

PROF. STEPHEN D. WOLTHUSEN NTNU 22/07/2020 

 

ACADEMIC AND INDUSTRIAL PARTNER REVISION 

NAME INSTITUTION DATE 

DR. DAVE RAGGETT ERCIM (ACADEMIC) 06/07/2020 

HANS CHRISTIAN BOLSTAD SINTEF (ACADEMIC) 10/07/2020 

GIANNIS LEDAKIS UBITECH (INDUSTRIAL) 10/07/2020 

 

TECHNICAL MANAGER REVISION 

NAME INSTITUTION DATE 

ANASTASIOS DROSOU CERTH 06/07/2020 

 

QUALITY MANAGER REVISION 

NAME INSTITUTION DATE 

DIMOSTHENIS IOANNIDIS CERTH 06/07/2020 

 

Date Issue Group 

03/07/2020 Revision 

CERTH 
ERIC 
UBITECH 
AYESA 

29/07/2020 Acceptance 
CERTH 
AYESA 
SAB 

30/07/2020 Submission AYESA 

 

 



  D3.3 
  Version 1.0 
 

 

© SDN microSENSE consortium      Page | 5 
Public document 

  

  



  D3.3 
  Version 1.0 
 

 

© SDN microSENSE consortium      Page | 6 
Public document 

  

Table of contents 
 

Table of contents .............................................................................................................. 6 

List of Figures.................................................................................................................... 8 

List of Tables ....................................................................................................................10 

Acronyms ........................................................................................................................11 

1 Introduction ..............................................................................................................14 

1.1 Purpose of the document ...................................................................................................... 14 

1.2 Structure of the document .................................................................................................... 14 

1.3 Relation of this deliverable with other SDN microSENSE tasks............................................. 15 

2 Honeypots Overview .................................................................................................16 
2.1 Honeypot Definition .............................................................................................................. 16 

2.2 Honeypot classifications ........................................................................................................ 16 

2.2.1 Operation field .............................................................................................................. 17 

2.2.1.1 Research Honeypots .................................................................................................. 17 

2.2.1.2 Production Honeypots [ABH03] ................................................................................ 18 

2.2.2 Level of Interaction of Honeypots ................................................................................. 20 

2.2.2.1 Low-interaction honeypots ....................................................................................... 21 

2.2.2.2 Medium-interaction honeypots ................................................................................ 21 

2.2.2.3 High-interaction honeypots ...................................................................................... 22 

2.2.3 Physicality of Honeypots ............................................................................................... 22 

2.2.4 Location of Honeypots .................................................................................................. 22 

3 Existing honeypots for EPES.......................................................................................23 
3.1 Honeypot solutions in research projects .............................................................................. 24 

3.2 Innovations of honeypots in SDN-Microsense ...................................................................... 25 

4 Analysis of Use Case Requirements and Specifications for Honeypots ........................28 

5 Architecture and Detailed design...............................................................................34 
5.1 Architecture overview ........................................................................................................... 34 

5.2 Functional and Components view ......................................................................................... 36 

5.2.1 IEC 61850 Honeypot ...................................................................................................... 36 

5.2.1.1 Functional description ............................................................................................... 36 

5.2.1.2 Technical and deployment details ............................................................................. 41 

5.2.1.3 Prototype architecture and components description ............................................... 44 



  D3.3 
  Version 1.0 
 

 

© SDN microSENSE consortium      Page | 7 
Public document 

  

5.2.2 IEC60870-5-104 Honeypot ............................................................................................ 46 

5.2.2.1 Functional description ............................................................................................... 46 

5.2.2.2 Technical description ................................................................................................. 46 

5.2.2.3 Prototype architecture and components description ............................................... 47 

5.2.3 Modbus Honeypot ......................................................................................................... 54 

5.2.3.1 Functional description ............................................................................................... 54 

5.2.3.2 Technical description ................................................................................................. 55 

5.2.3.3 Prototype architecture and components description ............................................... 59 

5.2.4 Honeypot Manager ....................................................................................................... 60 

5.2.4.1 Functional description ............................................................................................... 60 

5.2.4.2 Technical description ................................................................................................. 62 

5.2.4.3 Prototype architecture and components description ............................................... 63 

5.3 Interfaces model.................................................................................................................... 71 

5.3.1 Honeypots: IEC 61850, IEC60870-5-104, Modbus ........................................................ 71 

5.3.2 Honeypot Manager ....................................................................................................... 73 

5.4 Deployment details ............................................................................................................... 77 

5.4.1 Honeypots: IEC 61850, IEC60870-5-104, Modbus ........................................................ 77 

5.4.2 Honeypot Manager ....................................................................................................... 81 

6 SDN-Microsense Assessment: Unit Testing.................................................................84 
6.1 IEC 61850 Honeypot .............................................................................................................. 84 

6.1.1 Unit testing scenario ..................................................................................................... 84 

6.1.2 Unit tests ....................................................................................................................... 84 

6.2 IEC 60870-5-104 Honeypot ................................................................................................. 102 

6.3 Modbus Honeypot ............................................................................................................... 105 

6.4 Honeypot Manager ............................................................................................................. 119 

7 Conclusions ............................................................................................................. 124 

References ..................................................................................................................... 125 
 

  



  D3.3 
  Version 1.0 
 

 

© SDN microSENSE consortium      Page | 8 
Public document 

  

List of Figures 
Figure 1. Deliverable D3.3 relationships within other SDN-Microsense Deliverables .......................... 15 

Figure 2. Honeypots classification ......................................................................................................... 17 

Figure 3. SDN-microSENSE Architecture. Structural View..................................................................... 34 

Figure 4. General view of the components and the relationships with other components. ................ 35 

Figure 5. Response to Security Events detected in honeypots. [SMS20-D23] ...................................... 36 

Figure 6. Types of circuit breakers ........................................................................................................ 37 

Figure 7. Simplified network architecture of an IEC 61850 substation and IED connection to circuit 

breakers. ................................................................................................................................................ 38 

Figure 8. IEC 61850 functional hierarchy of the honeypot ................................................................... 39 

Figure 9. Attacker view of the honeypot ............................................................................................... 40 

Figure 10. Organization of LDs, LNs, DOs and DAs of honeypot ........................................................... 40 

Figure 11. Honeypot software building process ................................................................................... 41 

Figure 12. IEC 61850 Components diagram .......................................................................................... 44 

Figure 13. Overview of the Conpot functionality [COH] ....................................................................... 47 

Figure 14. IEC104 topology [MRG19] .................................................................................................... 48 

Figure 15. Network topology of SCADA monitoring system [TR-IEC104] ............................................. 48 

Figure 16. Modbus honeypot Operation Flow as Server ...................................................................... 57 

Figure 17. Modbus honeypot GAN Structure ........................................................................................ 58 

Figure 18. Modbus honeypot Operation Flow as Client ....................................................................... 58 

Figure 19. Modbus honeypot Architecture ........................................................................................... 59 

Figure 20. Honeypot Manager – Main functionalities .......................................................................... 60 

Figure 21. General overview of the Honeypot Manager and its interaction with other SDN-microSENSE 

components ........................................................................................................................................... 61 

Figure 22. Honeypot Manager - High Level Architecture ...................................................................... 63 

Figure 23. Main Screen - Honeypot catalogue ...................................................................................... 64 

Figure 24. Add/edit option - Honeypot catalogue ................................................................................ 64 

Figure 25. View option - Honeypot catalogue ....................................................................................... 65 

Figure 26. Prepare deployment option - Honeypot catalogue ............................................................. 65 

Figure 27. Main Screen - Target host manager ..................................................................................... 66 

Figure 28. Add/edit host option - Target host manager ....................................................................... 66 

Figure 29. View host option - Target host manager .............................................................................. 67 

Figure 30. Main Screen – Task deployment manager ........................................................................... 67 

Figure 31. View Option – Task deployment manager ........................................................................... 68 

Figure 32. Main Screen – Unknown Anomalies manager ..................................................................... 69 

Figure 33. Unknown Anomaly details – Unknown Anomalies manager ............................................... 69 

Figure 34. Interface model .................................................................................................................... 72 

Figure 35. Fan-out queue configuration used to feed the Honeypot Manager .................................... 73 

Figure 36. RabbitMQ exchange queue for alerts .................................................................................. 74 

Figure 37. Steps to deploy a honeypot using the Honeypot Manager ................................................. 78 

Figure 38. Login Screen – Honeypot Manager ...................................................................................... 78 

Figure 39. Manage host – Honeypot Manager ..................................................................................... 78 

Figure 40. Manage Honeypots – Honeypot Manager ........................................................................... 79 

Figure 41. Deployment configuration – Honeypot Manager ................................................................ 79 



  D3.3 
  Version 1.0 
 

 

© SDN microSENSE consortium      Page | 9 
Public document 

  

Figure 42. Deployments prepared (example)– Honeypot Manager ..................................................... 79 

Figure 43. Task management screen– Honeypot Manager .................................................................. 80 

Figure 44. Start deployment– Honeypot Manager ............................................................................... 80 

Figure 45. Deployment in progress– Honeypot Manager ..................................................................... 80 

Figure 46. Honeypot running– Honeypot Manager .............................................................................. 80 

Figure 47. Honeypot status management– Honeypot Manager .......................................................... 81 

Figure 48. IEC 61850 testing scenario ................................................................................................... 84 

Figure 49. Nmap execution which validates that the Modbus/TCP service is used by the Modbus 

honeypot which operates as a server. ................................................................................................ 106 

Figure 50. Generation and Transmission of the Modbus/TCP request packet with the function code 01 

(Read Coils). ......................................................................................................................................... 107 

Figure 51. Generation and Transmission of the Modbus/TCP request packet with the function code 02 

(Read Discrete Inputs). ........................................................................................................................ 107 

Figure 52. Generation and Transmission of the Modbus/TCP request packet with the function code 03 

(Read Holding Register). ...................................................................................................................... 107 

Figure 53. Recognition of the Modbus honeypot (operating as a client) as a Unitronics Vision 700 PLC.

 ............................................................................................................................................................. 108 

Figure 54. Generation and transmission of the Modbus/TCP request packet with the function code 22 

(Mask Write Register).......................................................................................................................... 109 

Figure 55. Modbus/TCP function code 22 (Mask Write Register) request packet in Wireshark. ....... 109 

Figure 56. Response of the Modbus honeypot, which operates as a server in a Modbus/TCP function 

22 (Mask Write Register) request packet. ........................................................................................... 110 

Figure 57. Modbus/TCP function code 22 (Mask Write Register) response packet generated by the 

Modbus honeypot. .............................................................................................................................. 111 

Figure 58. Modbus/TCP function code 23 (Read/Write Multiple Registers) request packet in Wireshark.

 ............................................................................................................................................................. 112 

Figure 59. Response of the Modbus honeypot, which operates as a server in a Modbus/TCP function 

23 (Read/Write Multiple Registers) request packet. .......................................................................... 113 

Figure 60. Modbus/TCP function code 23 (Read/Write Multiple Registers) response packet generated 

by the Modbus honeypot. ................................................................................................................... 113 

Figure 61. Modbus/TCP function code 24 request packet generated by the Modbus honeypot. ..... 114 

Figure 62. Modbus/TCP function code 24 (Read FIFO Queue) request packet generated by the Modbus 

honeypot in Wireshark. ....................................................................................................................... 114 

Figure 63. Response of the Modbus honeypot, which operates as a server in a Modbus/TCP function 

24 (Read FIFO Queue) request packet. ............................................................................................... 115 

Figure 64. Modbus/TCP function code 24 (Read FIFO Queue) response packet generated by the 

Modbus honeypot. .............................................................................................................................. 115 

Figure 65. The Modbus/TCP network traffic generated by the Modbus honeypot ........................... 116 

Figure 66. The Modbus/TCP network traffic generated by the real Unitronics Vision 700 PLC ......... 117 

Figure 67. Standard deviation of the data against the number of epochs. ........................................ 118 

Figure 68. Arithmetic mean of the data against the number of epochs. ............................................ 118 

Figure 69. Modbus honeypot (server) logs. ........................................................................................ 119 

 



  D3.3 
  Version 1.0 
 

 

© SDN microSENSE consortium      Page | 10 
Public document 

  

List of Tables 
Table 1. Honeypot interaction level comparison .................................................................................. 20 

Table 2. Types of attacks detected by honeypots ................................................................................. 33 

Table 3. Information stored for each event .......................................................................................... 42 

Table 4. Format of parameter information associated to an event ...................................................... 42 

Table 5. Events listed ............................................................................................................................. 43 

Table 6. Conpot Templates [CON20] ..................................................................................................... 46 

Table 7. The definition of TypeID numbers for process and system information in monitor and control 

direction ................................................................................................................................................ 49 

  



  D3.3 
  Version 1.0 
 

 

© SDN microSENSE consortium      Page | 11 
Public document 

  

Acronyms 
Acronym Explanation 

API Applications Programming Interface 

BACnet Building Automation and Control Networks 

CAPEC Common Attack Pattern Enumeration and Classification 

EPES Electrical Power and Energy Systems 

FTP File Transfer Protocol 

FTP File Transfer Protocol 

HTTP Hyper-text Transfer Protocol 

HTTPS Secure HTTP 

ICD IED Capability Description 

ICS Industrial Control System 

ICT Information and Communication Technologies 

IDPS Intrusion Detection and Prevention System 

IEC International Electrotechnical Commission 

IED Intelligent Electronic Device 

IP Internet Protocol 

IPMI Intelligent Platform Management Interface 

JSON JavaScript Object Notation 

ML Machine Learning 

NBI North-bound Interface 

PLC Programmable Logic Controller 

RAF Risk Assessment Framework 

REST Representational State Transfer 

RTU  Remote Terminal Unit 

SBI South-bound Interface 

SCADA Supervisory Control and Data Acquisition  

SDN Software Defined Networks 

SIEM Security Information and Event Management 

SLD Single Line Diagram 

SMS SDN-microSENSE 

SNMP Simple Network Management Protocol 

S-RAF SDN-microSENSE Risk Assessment Framework 

SSH Secure Shell 

SSL Secure Sockets Layer 

TCP Transfer Control Protocol 

UA Unknown Anomaly 

UDP User datagram protocol 

VM Virtual Machine 

VPN Virtual Private Network 

XL-EPDS Cross-layer Energy Protection and Detection System 

XL-SIEM Cross-layer SIEM 



  D3.3 
  Version 1.0 
 

 

© SDN microSENSE consortium      Page | 12 
Public document 

  

XML Extensible Mark-up Language 

 

  



  D3.3 
  Version 1.0 
 

 

© SDN microSENSE consortium      Page | 13 
Public document 

  

Executive Summary 

Deception technologies such as honeypots are being used as part of al cyber defence strategy of an 

organization in order to protect critical assets in the system. The greatest impact of the deception 

mechanisms is at the detection area. Since it is very difficult to detect zero-day and advanced attacks 

against production systems, the honeypots can simplify the detection process. 

Honeypots comprise an additional layer of security in the SDN-microSENSE architecture. As internet-

connected energy elements become more pervasive, enabling remote monitoring of elements, cyber-

criminals are finding new ways to breach energy and power networks through advanced malware. The 

attack surface of the energy system expands when interconnected devices, such as IEDs, infrastructure 

and applications, are permitted to connect to the EPES network. The SDN-microSENSE honeypots are 

software applications designed to be attacked by hackers in order to provide them configuration 

information and try to keep them busy, while security auditors try to collect information about the 

attack practices. Honeypots assist in the development of a more holistic data collection and analysis 

process, since they go beyond ‘traditional’ network data, used as forensics, to a richer set of evidence 

based on the execution of actual attacks. 

This document presents the honeypots (IEC 61850, IEC60870-5-104, and Modbus) and the Honeypot 

Manager. The honeypots, in general, play the role of deception technology within an overall cyber 

defence strategy of an organization, and specifically the SDN-microSENSE honeypots emulate the most 

relevant protocols in the Electrical Power and Energy Systems (EPES). On the other hand, the Honeypot 

Manager provides two main functionalities: (i) supports the automatic deployment of the different 

types of honeypots; and (ii) indicates to the SDN controller the required information to re-arrange the 

honeypots network in order to collect information for unknown anomalies. 

All mentioned components have been implemented as part of T3.3 and are documented in this 

deliverable. Specifically, the implemented components are: (i) IEC 61850 honeypot (ii) IEC60870-5-104 

honeypot (iii) Modbus honeypot and (iv) the Honeypot Manager. The functional and architectural 

description as well as the interface model and the deployment details are presented in the section 5 

of this deliverable. This deliverable also presents a state of the art of the honeypots and the added 

value provided by the SDN-microSENSE developments (Section 2 and Section 3). 

  



  D3.3 
  Version 1.0 
 

 

© SDN microSENSE consortium      Page | 14 
Public document 

  

1 Introduction  

1.1 Purpose of the document 
The objective of this deliverable is to present the development and technical details of the honeypots 

developed during the Task 3.3: IEC 61850, IEC60870-5-104 and Modbus. The main function of 

honeypots in the context of the SDN-microSENSE project is to serve as a decoy mechanism to possible 

attackers, facilitating early detection of threats and attack patterns, and the mitigation of potential 

risks. The information that the honeypots capture is sent to the XL-SIEM and it is a complementary 

information source, usable by the Intrusion Detection and Prevention Systems (IDPS) and the risk 

assessment components. Honeypots can capture details on an attacker's activity on the system, which 

also makes it possible to learn about these attacks, which may indicate potential vulnerabilities in the 

real system. Insofar as all incoming activities in honeypots may be regarded as suspicious,  

In the task 3.3, the Honeypot Manager is also developed. This Honeypot Manager has two main 

functions. On the one hand, the Honeypot Manager is responsible for processing the information 

about unknown anomalies (like zero-day attacks) and to indicate to the SDN controller the required 

information to re-arrange the honeypots network in order to collect information for unknown 

anomalies detected by the ML models of the XL-EPDS. On the other hand, the Honeypot Manager is 

responsible for automating the deployment and configuration of honeypots in the virtual machines. 

The document is accompanied by the actual implementation of the following tools: (i) IEC 61850 

honeypot, (ii) IEC60870-5-104 honeypot, (iii) Modbus honeypot and, (iv) the Honeypot Manager, in 

the form of software prototypes that are available as explained in Section 5. 

1.2 Structure of the document 
D3.3 is divided into the following sections:  

• Section 1 is the introductory part of the report and gives the objective and the relation of the work 

done in this task with the other WPs. 

• Section 2 provides a general vision of honeypots and how the honeypots can be classified based 

on their characteristics.  

• Section 3 provides a State of the Art of the honeypots available in the EPES environments. This 

section also indicates those honeypots developed in different EU projects and finally the added 

value of the work done in SDN-microSENSE project 

• Section 4 contains the analysis of the specifications related to the EPES honeypots defined in the 

deliverable D2.3 and how these specifications are solved with the work done in the task 3.3 

• Section 5 contains one subsection that presents how the honeypots and Honeypot Manager fit in 

the overall architecture of SDN-microSENSE and the following subsections present the details of 

functional description, the prototype architecture, the interface model and the deployment details 

for each of the developed honeypots and the Honeypot Manager.   

• Section 6 describes the unit testing related to the honeypots and related components.  

• Section 7 concludes the document summarising the document contents and identifying the main 

innovations.  

 



  D3.3 
  Version 1.0 
 

 

© SDN microSENSE consortium      Page | 15 
Public document 

  

1.3 Relation of this deliverable with other SDN microSENSE tasks 
Figure 1 depicts the relationships of the deliverable to deliverable to the other deliverables of the 

project . 

 

Figure 1. Deliverable D3.3 relationships within other SDN-Microsense Deliverables 

This deliverable D3.3 collects the specifications defined for the honeypot in the deliverable D2.3 

[SMS20-D23], that are based in the requirements expressed in the D2.2. How the honeypots and the 

Honeypot Manager developed in this task cover the specifications is explained in section 4.  

The deliverable D3.3 is used to complete the D3.5 “SDN-microSENSE Risk assessment framework” 

because honeypots and the Honeypot Manager are part of the S-RAF. In addition, this deliverable D3.3 

is used by the Deliverable D5.1 because provides information about the logs collected by the 

honeypots.  

Section 4 explains which and how specifications of the D2.3 are covered by the work done in task 3.3 

and in Section 5.1, it is explained how the components developed in the task T3.3 fit in the general 

SDN microSENSE architecture and the interfaces used. 

 

  



  D3.3 
  Version 1.0 
 

 

© SDN microSENSE consortium      Page | 16 
Public document 

  

2 Honeypots Overview  

2.1 Honeypot Definition  
Honeypots serve various purposes and have diverse capabilities, although they are commonly defined 

as "an information system resource whose value lies in unauthorized or illicit use of that resource" 

[SPI-03]. A honeypot is a computer system that is set up to act as a decoy to lure cyber-attackers, to 

detect and learn about new cyber threats and attack patterns and to improve the cyber security 

strategy of the organization [HDEF].  

Security personal often use honeypots as a tool to gather intelligent on the attacker. Attackers 

constantly modify their methods to take advantage of different types of attacks. In some cases, it can 

be seen attackers using zero-day attacks against honeypot servers. If the security 

operator/administrator does not configure the honeypot properly, it might appear suspicious to an 

experienced attacker and simply avoid it. The honeypot supports the security team to understand the 

attacker’s methodologies, learn more about known and unknown attacks and in this way to better 

protect the real production systems. Thus, making honeypots a very useful part of the defence system. 

[MAS19]. Based on this, some advantages and disadvantages of the honeypots could be identified: 

Advantages: 

• Attackers can be can observed in action and learn about their behaviour.  

• Knowing the types of attacks being used supports the Security team in the implementation of 

the defences needed to be installed to protect your real systems and data from attack. 

• To attack on a honeypot is likely to frustrate attackers and stop them from hacking your real 

computer systems. 

Disadvantages[MAS19] [TIT15]: 

• The capture of data takes place only when the attacker is attacking the system actively. 

• If there is an attack occurring in another system, the honeypot will not be able to identify it. 

• It is easy for an experienced attacker to understand if he is attacking a honeypot system or a 

real system. Additionally, more attacks are automated, and these automated threats will scan, 

attack, and exploit any device that you might find vulnerable. 

• Honeypots add complexity to a network, and the more complex a network is, the harder it is 

to secure. The honeypot could introduce vulnerabilities that could be exploited to gain access 

to real systems and data. 

• An attacker may use the own honeypots to distract, exploiting it as a zombie. Thus, giving him 

the opportunity to attack other systems within the network and compromising them.  

Depending on the type of the honeypots used the advantages and disadvantages explain above can be 

appeared or not. In the following sections, different classifications of honeypot are presented, each 

security responsible of the system should choose the better type of honeypots depending on his 

system and need.  

2.2 Honeypot classifications  
The honeypots can be classified according to their physicality, operation field, location and level of 

interaction, as shown in Figure 2.  



  D3.3 
  Version 1.0 
 

 

© SDN microSENSE consortium      Page | 17 
Public document 

  

 

Figure 2. Honeypots classification 

In the following sections detailed explanation of this classification is provided. 

2.2.1 Operation field 
Honeypots can be deployed and used for two different purposes [MCG+17] [NWS+16]: production and 

research. The purpose of a production honeypot is to assist in mitigating risk in an organization by 

adding value to the security measures implemented. Instead, when a honeypot is deployed for 

research purposes, it is designed to gather useful information for the community in order to generate 

intelligence about threats and attacks, with the ultimate goal of improving the protection of the 

companies' systems. 

2.2.1.1 Research Honeypots 
One of the biggest challenges that the security community faces is the lack of information about the 

enemy, information such as: who the threat is, why they attack, how they attack and when they attack. 

These kinds of questions are the ones that the security community often cannot answer. To defeat a 

threat, you first have to know about it. However, in the world of information security we have little 

such information.  

Honeypots can increase the value of research by providing a platform to study the threat [SR01]. 

Research honeypots provide comprehensive information about attacks but are difficult to deploy. The 

objective is to keep them functioning with the highest level of risk associated with them, in order to 

expose them to a wider range of attacks and compromised situations. They are often used by research 

organizations and network forensic scientists to examine attacks and develop comprehensive 

countermeasures against threats. The purpose of this kind of honeypots is to gather a large volume of 

statistical and event data, most of them being used only for research purposes. They do not directly 

protect an organization, but they help to understand threats, develop counter measures, and address 

exploitable breaches, thus indirectly contributing to security. In addition, research honeypots are 

excellent tools for capturing automated attacks. Since these attacks are targeted at entire blocks of 

the network, research honeypots can quickly capture these attacks for analysis. 

Learning from a research honeypot can be applied to improve the prevention, detection or reaction to 

an attack. However, research honeypots do not contribute significantly to security of an organization. 

If an organization is trying to improve the security of its production environment, it might want to 

consider using production honeypots, as they are easy to implement and maintain. However, if an 



  D3.3 
  Version 1.0 
 

 

© SDN microSENSE consortium      Page | 18 
Public document 

  

organization, such as a university, government or large company, is interested in learning more about 

threat research, honeypots would be a useful research tool. 

In summary, research honeypots have 3 main functions to perform the role for which they are 

deployed: 1) help to understand threats, develop countermeasures and address exploitable breaches, 

2) capture automated attacks and 3) generate intelligence regarding malicious attacks. 

Honeypots as Sensors 

Honeypots can be considered as sensors, since they can gather valuable data about the attacks they 

suffer. This is particularly useful for detecting weaknesses and vulnerabilities in system design, as data 

captured from attacks can be analysed to understand the attacker's behaviour and strategies, as well 

as their motivations. 

A number of critical aspects in the design of the honeypot itself is involved here. On the one hand, if 

the goal is to be able to detect and analyse the vulnerabilities and weaknesses of the 

services/components that will be part of the system in production, it must be exactly the same as the 

exposed service/system, but securing all the necessary logic of the honeypot, so that the attacker does 

not detect the deception. Moreover, if the purpose is to study the behaviour of the attacker (tactics 

and strategies), the honeypot will present certain vulnerabilities, specially designed to be exploited by 

the attacker. 

Honeypots as Collector of Valuable Data 

Research honeypots can be considered as a data collection system, where these data will not be 

contaminated by the noise introduced by production activities and which are usually of great value. 

This reduces the size of the data sets and makes data analysis less complex. Regardless of the workload, 

the Honeypots only need to process the traffic that goes to them or originates from them.  

If the honeypots are of medium or high interaction, the volume of information increases, and the 

complexity associated with its analysis also increases. For example, a honeypot designed to detect a 

zero-day-exploit captures everything that is used against them, this means that it will be able to 

identify unknown strategies and zero-day-exploits. How to capture and store data in a misleading way 

is an eternal problem, where each author develops a different solution.  

Honeypots as Tactics and Strategies Modelling  

If we focus on the last stage that provides a research honeypot, we can consider it as a modelling 

system of tactics and strategies. In the design of the research honeypot, one of the main objectives is 

to provide the attacker with great flexibility, so that he can perform the required actions during his 

attack. A subsequent analysis of these actions will allow us to identify the tactics and strategies used.  

Given the large volume of information collected, the innate complexity of today's systems, as well as 

the tactics and strategies used by the attacker to avoid detection, it is necessary to apply techniques 

and algorithms based on artificial intelligence or statistical analysis, so that we can generate the 

knowledge we are looking for in relation to the attack. Automating this process is one of the open 

challenges today. 

2.2.1.2 Production Honeypots [ABH03] 
A second type of honeypots in relation to their purpose, are the honeypots that are deployed in 

production, having an active part in defence functions of the global cyber security of an organization. 



  D3.3 
  Version 1.0 
 

 

© SDN microSENSE consortium      Page | 19 
Public document 

  

The production honeypots are characterized by their simplicity of deployment and operation and the 

amount of information gathered, being closely monitored and maintained, having an important part 

in the Information Security Management System (ISMS). Their purpose is to achieve a higher level of 

security in the network of a specific company by redirecting attacks.  

A honeypot includes two essential elements, decoys and security programs. The decoy may be any 

type of information system resource, and the security program facilitates security-related functions 

such as attack monitoring, prevention, detection, response and profiling. In addition, the security 

program must be run stealthily to avoid detection. 

Honeypots as Decoys [FDF+18]  

A honeypot, a system designed to be compromised, will not help to keep attackers out. What will keep 

the attackers out are good security practices, such as disabling unnecessary or unsecured services, 

patching services that are required, and using strong authentication mechanisms. In fact, if a honeypot 

is implemented incorrectly, it can make it easier for an attacker to get in. 

Honeypot is generally a "decoy" system designed to attract cyber-attackers in the interest of early 

detection of attack attempts, slowing down the attacker's actions and mitigating them. It is also 

responsible for gathering traces of real-world attacks to learn attack vectors and design cyber security 

systems. One of the most interesting functions that a honeypot can assume is to deceive the attacker 

in order to dissuade him from his goal. The idea is that the attackers will spend time and resources to 

attack the honeypots instead of attacking the production systems. In order to be effective, the 

honeypot must seem to be exactly what the attacker is looking for. When the honeypot is attacked, it 

can immediately notify system administrators of the presence of an intruder on the network, allowing 

them to take the appropriate course of action to secure it. 

The most important thing, perhaps, is that this deception process will fail against the most common of 

attacks: automated tools and worms. These days, more and more attacks are automated. These 

automated threats will scan, attack, and exploit any device that you might find vulnerable.  

Honeypots as Active Network Defence 

Firewalls are often deployed around an organization's perimeter to block unauthorized access by 

filtering certain ports and content, but they are not used to assess traffic. They can block all access to 

a certain service in order to prevent malicious traffic, but this also blocks any benign traffic that wants 

to access the service. In contrast, honeypots are designed to open ports to capture as many attacks as 

possible for subsequent data analysis. 

Although not usually considered, honeypots also provide added value to the reaction. Often, when an 

organization is compromised, the Incident Response Team cannot determine what has actually 

happened if users and systems have contaminated the data collected. Clean evidence is much more 

difficult to gather in this type of context; the deployment of a production honeypot facilitates this 

process of gathering evidence that is valid for later analysis. Another challenge faced by many 

organizations is that compromised systems cannot be removed from the network after an incident. As 

a result, incident response teams are unable to perform adequate or complete forensic analysis. A 

deployment of a production honeypot facilitates these processes. 



  D3.3 
  Version 1.0 
 

 

© SDN microSENSE consortium      Page | 20 
Public document 

  

Honeypots as Intrusion Detector  

Intrusion detection systems are designed to detect attacks. However, IDS administrators can be 

overwhelmed with false positives, alerts that are erroneously generated when a sensor senses and 

alerts on an attack that is actually valid traffic. False positives are dangerous because system 

administrators receive so many alerts that they get accustomed to them, as they are falsely alerted 

day after day. If false positives are not effectively reduced, system administrators can simply begin to 

ignore alerts issued by IDS sensors. This does not mean that honeypots will never have false positives, 

only that they will be dramatically lower than in most IDS implementations.  

Another risk that the intrusion detection systems present is false negatives, which occur when IDS 

systems fail to detect a valid attack. Honeypots eliminate false negatives, as they are not easily evaded 

or defeated by new exploits. In fact, one of the main values of honeypots is that they can detect new 

or unknown attacks. Administrators do not have to worry about updating the signature database or 

patching the anomaly detection engines. Honeypots successfully capture any attack that is presented 

to them. However, as discussed above, this only works if the honeypot itself is attacked.  

Honeypots can simplify the detection process. Since honeypots have no production activity, all 

connections to and from the honeypot are suspicious by nature. By definition, each time a connection 

is established to the honeypot, it is most likely a scan or unauthorized attack. Each time the honeypot 

initiates a connection, this most likely means that the system was successfully compromised. This helps 

reduce both false positives and false negatives, simplifying the detection process enormously. By no 

means should honeypots replace your IDS systems or be the only method of detection; however, they 

can be a powerful tool to complement intrusion detection capabilities. 

2.2.2 Level of Interaction of Honeypots  
Honeypots differ in the way that they are deployed, and the sophistication of the decoy attack vectors. 

One way to classify the different kinds of honeypots is by their level of involvement, or interaction with 

host systems [WW19]. The level of interaction determines the level of penetration a malicious actor 

can have on the targeted system. A higher level of interaction between a honeypot and the host system 

means that a malicious actor can interact more critically with the system. Lower level interaction 

means that a malicious actor will not be able to interact with the host system in a critical manner.  

There are three levels of interaction for honeypots [KGV+17]: 1) low-interaction honeypots; 2) 

medium-interaction honeypots [WIC06], and 3) high-interaction honeypots. Table 1 shows a relative 

comparison between the different levels of interaction [KMS14]. 

Table 1. Honeypot interaction level comparison 

Level of 
Interaction 

Benefits Drawbacks 

Low • A malicious actor cannot critically 
impact the system because it has 
little interaction with the underlying 
host system. 

• Simple to deploy with an easy 
configuration. 

• It does not require significant 
resources to maintain.  

• The data generated from a 
malicious actor are minimal and do 
not provide any critical details on a 
malicious actor’s behaviour 
(complex threats, zero-day 
exploits). 

• Easy for a malicious actor to detect 
the presence of the honeypot.  



  D3.3 
  Version 1.0 
 

 

© SDN microSENSE consortium      Page | 21 
Public document 

  

Medium • The system looks as an attractive 
target to a malicious actor since it is 
emulated to provide a more realistic 
setting. 

• Data generated from a malicious 
actor’s actions offer better view of 
their behaviour. 

• The risk of actual system 
compromised is increased since 
malicious actors can escape from 
the protected environment and 
impact the host system. 

High • High-interaction honeypots help in 
identifying unknown vulnerabilities.  

• The data generated offer, reflect a 
malicious actor’s behaviour 
accurately. 

• The risk of host system compromise 
is significant because malicious 
actors can exploit the honeypot to 
access the host system. 

• Time-consuming and complex 
configuration to implement. 

  

2.2.2.1  Low-interaction honeypots 
Low-interaction honeypots offer limited interaction with the actual system. A malicious actor has very 

limited attack vectors for compromising or impacting the actual system. Low-interaction honeypots 

have no operating system that a malicious actor can interact. As a result, the attack surface is 

minimized. The deployment and configuration of low-level honeypots is a simple task. However, due 

to the limited interaction between a malicious actor, it is not possible to receive any significant amount 

of actionable data. The main use of low-interaction honeypots is the monitoring and identification of 

network traffic. Network traffic can enable security analysts to identify network-based attacks, such as 

viruses, and worms. Low-interaction honeypots offer one or more simple services, such as Secure Shell 

(SSH), File Transfer Protocol (FTP), web servers, or other network daemons. Such services need to be 

simple and available for a malicious to interact with. All communication attempts with any particular 

service are logged and investigated afterward. This type of honeypots is considered as system daemons 

that help a network administrator to monitor any attempts of compromise on the host system in 

passively. 

2.2.2.2 Medium-interaction honeypots 
Medium-interaction honeypots try to combine the benefits of both approaches regarding to botnet 

detection and malware collection while removing their shortcomings [AAO13]. Medium-interaction 

honeypots are more advanced than low-interaction honeypots and offer additional features. The host 

operating system is emulated through application layer virtualization to provide a more attractive 

target to a malicious actor. As a result, the data generated by the behaviour of the malicious actor is 

more actionable than the data generated by low-interaction honeypots. Medium-interaction 

honeypots do not aim to fully simulate the host system's operation environment, such as 

implementing application protocols in detail. Medium-interaction honeypots aim to provide enough 

responses that known exploits wait on certain ports that will trick malicious actors into sending their 

payload. Once this payload has been received, the shellcode of the exploits can be extracted and 

analysed. This type of data is highly valuable in preventing novel attack vectors on the host system. 

A medium-interaction honeypot strategy is a balanced solution [AAO13]. It provides less risk than 

creating a complete physical or virtualized system to divert malicious actors, but with more 



  D3.3 
  Version 1.0 
 

 

© SDN microSENSE consortium      Page | 22 
Public document 

  

functionality. Medium-interaction honeypots are still not suitable for complex threats such as zero-day 

exploits but could reveal attack patterns for specific vulnerabilities. 

2.2.2.3 High-interaction honeypots 
High-interaction honeypots are the most advanced type of honeypots. Rather than emulating certain 

services and applications of the host system, a malicious actor is provided with a real system to 

compromise [PB19]. This reduces the likelihood of the honeypot's discovery by the malicious actor. It 

allows security analysts to learn more about the tools, tactics, and motives of malicious actors and get 

a better understanding of their behaviour [CAB+17]. A high-interaction honeypot is a conventional 

computer system, such as a commercial off-the-shelf (COTS) computer, a router, or a switch. A high-

interaction honeypot can adapt to each incident, making it far less likely that the malicious actor will 

realize they are engaging with a decoy. The main drawback to a high-interaction honeypot is the time 

and effort it takes to build the decoy system, and then to maintain the monitoring of it long-term to 

mitigate risk for the host system. Furthermore, the level of interaction with the host system is 

significant, increasing the likelihood of the malicious actor compromising and exploiting the host 

system. 

2.2.3 Physicality of Honeypots  
The honeypots can be classified by their physicality [PRO04]: 

• Virtual Honeypots. These are virtual honeypots and are simulated by a host machine that 

forwards the network traffic to the virtual honeypot. Usually, this kind of honeypots is high-

interaction honeypots, more flexible and cost-effective. These ones are the ones used in this 

project. 

• Physical Honeypots: This kind of honeypot are real machines on the network with its IP 

address. Physical honeypots have higher costs in comparison with the virtual one, but they 

are more reliable and it’s more difficult be identified as honeypots.  

2.2.4 Location of Honeypots  
The honeypots can be classified based on their location on the following categories [MZG12]:  

• Client honeypots identify attacks on client applications, discover vulnerabilities of client 

applications and detect malicious webservers. A characteristic example is the case of a browser 

that visits a variety of websites in order to attack them by taking advantage of any existing 

vulnerability. 

• Server honeypots serve as decoys on the network waiting for an attacker. They are designed 

to protect production environments by mirroring production servers and services. In case that 

a server honeypot is attacked then all the actions of the attacker are recorded. Thus, the 

administrators can be more prepared and have a better protection against future attackers.  

• Hybrid honeypots include active modules of client honeypots into server honeypots to interact 

with webservers and increase the exposure of server honeypot's services. 

In the SDN-microSENSE project, the objective of having honeypots as part of the Risk assessment 

framework is to serve as a decoy mechanism to possible attackers, facilitating early detection of threats 

and attack patterns, and the mitigation of potential risks. The three honeypots (IEC 61850, IEC60870-

5-104 and Modbus ) are classified as production, medium interaction, virtual and server honeypots. 

The description of the functionalities of the different honeypots are detailed in the section 5.   



  D3.3 
  Version 1.0 
 

 

© SDN microSENSE consortium      Page | 23 
Public document 

  

3 Existing honeypots for EPES 
EPES and other relevant environments that handle the generation, transmission and energy metering, 

have become a prominent target for major cyberattacks. The convergence of IT and Operational 

Technology (OT) environments has complicated OT security, making Industrial Control Systems (ICS) 

infrastructure of EPES a target of increasingly sophisticated cyberattacks. ICS (Industrial Control 

Systems) are systems or devices that manage, regulate and control the behaviour of other devices or 

control systems used in the specific processes of an industry, such as nuclear, electrical, chemistry, oil, 

gas, water, etc. They combine electronic, mechanical, electrical, hydraulic, pneumatic components, 

among others. Some of the multiple communication protocols used by ICS are Modbus, DNP3, EIP, 

ICCP and CIP. 

ICSs are made up of multiple types of control systems, including the Distributed Control Systems (DCS), 

the Process Control System (PCS), the Supervisory Control Systems and data acquisition (SCADA), the 

Remote Terminal Units (RTU), the Human Machine Interface (HMI), the Programmable Logic Controller 

etc. EPES systems that have industrial processes use ICS, SCADA, PLC, RTU, HMI and other industrial 

control devices, and are made up of a corporate network (web services, email, etc.), of supervision 

(SCADA, workstations, etc.), of control systems (HMI, PLC, RTU etc). The industrial process is supervised 

and controlled from a control network that allows sending and receiving information using industrial 

communication protocols (Modbus, DNP3, etc.) to the PLCs and RTUs through an HMI by wired or 

wireless means, to control industrial devices that can open or close breakers and connectors, obtain 

temperature, release pressure, among other functions. 

In recent years, various honeypot projects have emerged to protect and secure ICS systems. While 

most of the honeypot projects are developed for IT environments, there are honeypots developed for 

OT environments, such as Conpot, among others. These honeypots have evolved and are currently 

implemented in the form of honeynets, entire networks of honeypots that simulate complete systems, 

thus allowing much more information to be gathered about attacks. it is very important to obtain all 

possible information about potential attackers, their methodology, potential targets and systems of 

interest, in order to anticipate potential attacks and increase the level of response to any occurred 

incidents.  

A honeypot is a useful tool to improve the security of control systems. There are several existing 

honeypots that can be quickly and easily deployed in an industrial control system. Several state-of—

the-art honeypot solutions for EPES systems are presented below.  

Conpot is a low-interactive server-side ICS / SCADA honeypot maintained by the Conpot development 

team and The Honeynet Project [RIS13]. The main features of Conpot is that it is designed to be easy 

to modify, expand and deploy. The present configuration simulates a Siemens SIMATIC S7-200 PLC, 

with basic functions, an input / output module and a CP 443-1 communications processor, that allows 

connecting to SIMATIC in an ethernet network.  

Another feature of Conpot is that it can be connected to a real HMI and also allows interaction with 

real ICS hardware, since Conpon has been created in order to work with industrial control protocols 

and with basic elements to build its own ICS. It supports common industrial control protocols like HTTP, 

Modbus, S7Comm, SNMP, CIP, Ethernet/IP, BACnet and IPMI.  



  D3.3 
  Version 1.0 
 

 

© SDN microSENSE consortium      Page | 24 
Public document 

  

It is possible to delay the response times of the services to imitate the behaviour of industrial systems 

when they are under high processing. In addition, it has a custom Human Machine Interface (HMI) 

software. These features improve emulation and expand the honeypot's interaction, increasing the 

points to associate and attack. This attracts cybercriminals, making them think that it is a real ICS, like 

a honeycomb that attracts bees; This allows obtaining more information on the methods and forms of 

attack to create intelligence and implement mitigation measures for these cyber-attacks. 

Honeyd is a very versatile low-interaction honeypot that can simulate various TCP/IP services [PH07]. 

It is an open-source honeypot that allows users to configure and run multiple virtual hosts on a 

computer network. These virtual hosts can be configured to mimic several different types of servers, 

allowing the user to simulate a large number of network configurations. In addition, Honeyd is able to 

assume up to thousands of unused IP addresses in a network and serving requests made to them. 

Honeyd is a highly configurable honeypot. Hundreds of simulated virtual machines can be created on 

the same physical machine. It can emulate any operating system, but also different switch operating 

systems, routers etc. The systems emulation is not only done at the application level but also at the IP 

stack level.  

Furthermore, it can listen to any TCP or UDP port and it is capable of handling ICMP ping requests. 

Another peculiarity of Honeyd is that it allows to redirect the requests made to a specific IP address 

and port to a server that presents this service. It also provides a fairly detailed package and service log. 

HoneyD can be used to hide the real system, identify threats, assess risks and improve network 

security. It supports IP, ICMP HTTP, FTP, MODBUS TCP and UDP protocols. 

Gridpot is an open-source honeypot that simulates a power grid SCADA in a realistic way. Gridpot uses 

a honeypot layer and a modelling layer to add electrical components and integration between GridLAB-

D and Conpot and has built-in IEC 61850 protocols for imitating largescale electric power grids 

[RNK+20]. This combination allows this honeypot to acquire all the data acquisition advantages of 

Conpot and a simulation environment with multiple models that provide great realism thanks to 

GridLAB-D. Researchers in [RNK+20] have found GridPot to be more successful at deception than 

Conpot. Gridpot supports HTTP, Modbus, S7Comm, SNMP, and IEC 61850 protocols.  

Dipot [CLL+18] is a Distributed Industrial Honeypot System that monitors and captures scanning and 

attacking behaviours against ICS. Dipot aims to collect data without being traced by attackers and is 

comprised of honeypot nodes, as well as data processing and visualization modules Dipot supports 

HTTP, Modbus, Kamstrup, SNMP, BACnet and S7comm protocols. 

SHAPE [KG15] is a honeypot specifically designed for Electric Power Substations. It can emulate any 

IED conforming to the IEC 61850 standard and can detect unauthorized or illicit traffic in IEC 61850-

based Electric Substation automation Systems. 

CryPLH [BJM+14] is a low-interaction PLC honeypot which can detect attacks against ICSs. It simulates 

HTTP, HTTPS, SNMP, and Siemens SIMATIC STEP7 configuration interfaces. CryPLH is also capable of 

detecting port scans and brute force attempts via SSH. 

3.1 Honeypot solutions in research projects 
There are several EU-funded and international projects that have developed honeypot solutions. One 

project deployed a large-scale cloud-based low-interaction honeynet for 28 days using Amazon’s EC2 

cloud environment. This honeynet was able to simulate Modbus, IEC-104, DNP3, ICCP, XMPP, TFTP and 



  D3.3 
  Version 1.0 
 

 

© SDN microSENSE consortium      Page | 25 
Public document 

  

SNMP protocols [SOY15]. Furthermore, researchers in [MLC19] implemented a low-interaction 

honeypot solution by setting up 5 AWS instances on different geographic locations. Their honeypot 

was able to simulate IEC 61850 MMS (and Siemens S7) Modbus TCP, ENIP, IEC 60870-5-104, DNP3 and 

BACnet. 

In the European Research Area, a number of projects have conducted research on honeypots. The 

H2020 SPEAR (Secure and PrivatE smArt gRid) project [SPE19] develops an innovative platform that 

exploits honeypot technologies to perform incident detection, anomaly detection and provide forensic 

data that can be presented as legal evidence in court [DAL19]. The AMI honeypots offered in SPEAR 

are mainly of two types: i) RTU honeypot s that emulate all the industrial communication protocols of 

RTUs used in Smart Grids, and ii) NeuralPot honeypots that leverage Deep Neural Networks (DNN) to 

efficiently emulate industrial devices utilising the Modbus protocol.  

The SERIoT (Secure and Safe Internet of Things) project [SER18] implements honeypots for IoT devices. 

The project develops low and medium interaction virtualized honeypots that can address the main 

typologies of IoT devices of the market. The project demonstrates their honeypot approach in real-

world environment showing effectiveness against attacks on IoT devices. 

The YAKSHA (Cybersecurity Awareness and Knowledge Systemic High-level Application) project 

[YAK18] focuses on IoT Security and develops the innovative concept of honeypots-as-a-service. It 

provides an automated framework for deploying honeypots, thus facilitating the end-users with the 

installation and configuration of custom honeypot solutions 

The ATENA (Advanced Tools to assEss and mitigate the criticality of ICT compoNents and their 

dependencies over Critical InfrAstructures) project [ATE20] developed an Intrusion and Anomaly 

Detection System that integrated both existing components and new probes, such as SCADA 

honeypots. The project’s developed detection agents included domain-specific honeypot s and 

Honeynets, Shadow RTUs, and other network devices. 

Last but not least, the SISSDEN (Secure Information Sharing Sensor Delivery Event Network) project 

[SIS16] deployed a worldwide network of over 250 sensors to observe client to server attacks. This 

network used various honeypot solutions and darknets (network telescopes). 13 types of honeypots 

were deployed as part of the sensor network: CiscoASA, Cowrie, Conpot, Dionaea, Elasticpot, Glastopf, 

Heralding, Honeypy, MICROS, Rdpy, Spampot, Struts and Weblogic. These honeypots collected over 2 

billion attack events over the course of the project. 

3.2 Innovations of honeypots in SDN-Microsense  
During the task 3.3 of SDN-microSENSE project, three honeypots that emulate IEC61850 [61850], 

IEC60870-5-104 [60870] and Modbus [MODBUS] protocols have been developed and also another 

component called Honeypot Manager that has two main objectives: 1) to process the information 

about unknown anomalies (like zero-day attacks) and to indicate to the SDN controller the required 

information to re-arrange the honeypots network in order to collect information for unknown 

anomalies detected by the ML models of the XL-EPDS and 2) to automate the deployment and 

configuration of honeypots in the virtual machines. 

This section will highlight how the SDN-microSENSE honeypot technology is differentiated compared 

to the existing EPES honeypots and the innovation provided with respect of the state of art presented 

in the section above. 



  D3.3 
  Version 1.0 
 

 

© SDN microSENSE consortium      Page | 26 
Public document 

  

Honeypot IEC 61850 

The adoption of the IEC 61850 [61850] standard family for substation automation is expanding rapidly 

worldwide. For this reason, new cybersecurity monitoring capabilities will need to be deployed into 

substation networks. The IEC 61850 honeypot developed in Task T3.3 comes to increase the potential 

of the monitoring tools and solutions of SDN-microSENSE architecture. The honeypot simulates the 

behaviour of a real Control IED (Intelligent Electronic Device) in charge of the control of a high/medium 

voltage circuit breaker in a substation. IEC 61850 honeypot design approach is based on the adaptation 

of the IED Capability Description (ICD) file of a real IED installed in Tecnalia’s Smart Grid Cybersecurity 

Laboratory. However, the implemented honeypot architecture and design facilitates the compilation 

of new ICD files to incorporate new IEC61850 control and protection functions to the honeypot or 

building different honeypots for each type of IED inside the substation. The flexibility introduced into 

the design will allow to deceive attackers and make the believe they are controlling a real IED while 

the honeypot register every valuable information for further analysis. Section 5.2.1 presents a detailed 

explanation of this honeypot. 

Honeypot IEC60870-5-104  

Conpot honeypot supports the IEC 60870-104 [60870] that used to monitor energy systems, control 

systems and their communications. We use the RTU honeypot to emulate the behaviour of an RTU 

that controls devices in a smart grid substation. In the context of the SDN-microSENSE, the Conpot 

honeypot was extended to support more communication commands regarding the System 

Information in the Control direction such as Counter Interrogation command and read command. 

Honeypot Modbus 

The Modbus [MODBUS] honeypot developed in the context of the SDN-microSENSE is capable of 

emulating any device using Modbus/TCP either it is a server device like an RTU or PLC or a client device, 

such as an HMI. Moreover, both functionalities are supported simultaneously, thus, taking full 

advantage of the flexibility provided by the Modbus/TCP protocol. In particular, the Modbus honeypot 

emulates dynamically the Modbus/TCP network traffic generated by the real devices, utilising a 

Generative Adversarial Network (GAN). Finally, compared to other Modbus honeypots, the specific 

honeypot supports more Modbus/TCP function codes, such as function codes 22, 23 and 24. 

Honeypot Manager 

The Honeypot Manager developed in this task, although it is based on the one created in SPEAR project 

[SPE20-D43], contains relevant improvements and added functionalities. First, and regarding to the 

deployment functionality, the business logic is used the one defined in SPEAR, but the component itself 

has been developed using a different technology to facilitate the integration with the rest of the 

components of SDN-MicroSENSE. In SPEAR project, the Honeypot Manager was developed using 

Phyton-Flask technology. In the Honeypot Manager of SDN-Microsense, the business logic is 

developed in: 1) Spring JPA to DB access, 2) Spring REST to build the API REST required and 3) Spring 

Boot to mount the whole back-end application, additionally the Honeypot Manager of this project 

offers a front-end to support the security operator to manage the honeypots deployment.  

 



  D3.3 
  Version 1.0 
 

 

© SDN microSENSE consortium      Page | 27 
Public document 

  

On the other hand, this Honeypot Manager has the functionality to receive information about unknow 

anomalies, like for example zero-day attacks from the XL-EDPS component. This information from the 

XL-EDPS is processed together with the information that the Honeypot Manager has about the 

honeypots that are deployed or available. Finally, the Honeypot Manager indicates to the SDN 

controller the required information to re-arrange the honeypots network in order to collect 

information for these unknown anomalies.  

  



  D3.3 
  Version 1.0 
 

 

© SDN microSENSE consortium      Page | 28 
Public document 

  

4 Analysis of Use Case Requirements and Specifications for Honeypots 
The following tables present the functional specifications and operational specification [SMS20-D23] 

related to the honeypots and the work done in the T3.3. The tables are completed with an explanation 

on how the developed honeypots and the Honeypot Manager give the solution to each specification. 

Specification Name 

Monitoring of 
Infrastructure 
Components and 
Anomaly Detection 

Specification ID SPEC-F1 

Action In order to get the previous, monitoring of the EPES infrastructure 
components and anomaly detection systems are included in the SDN-
microSENSE architecture, with focus on Intrusion Detection and 
Prevention and Advanced Anomaly Detection. These systems provide real-
time network traffic analysis and the network components monitoring, 
focusing in detecting deviations from what is considered the normal 
behaviour. This monitoring system is able to detect issues in all relevant 
industrial protocols as defined in the related requirements, e.g.: 

• Modbus TCP 

• EtherCAT 

• IEC 61850 

• IEC 60850-5-101 

• IEC 60850-5-102 

• IEC 60850-5-104 

• PROCOME 
The overall monitoring and detection process is performed in a continuous 
and automatic manner. The result of this processing is the generation of 
Security Events indicating a change of the EPES status, which can be related 
to a cyberattack or an anomaly. 

Related 
Requirement(s)1 

User Requirements: 
FR-UR-3, FR-UR-4, FR-UR-5, FR-UR-6, FR-UR-7, FR-UR-8, FR-UR-9, FR-UR-
10, FR-UR-11, FR-UR-12, FR-UR-13, FR-UR-14 and FR-UR-15.  
  
Use Case Requirements: 
FR-UC1-01, FR-UC1-02, FR-UC1-03, FR-UC1-04, FR-UC1-05, FR-UC1-06, FR-
UC1-07, FR-UC1-08, FR-UC1-09, FR-UC1-10, FR-UC1-11, FR-UC2-01 and FR-
UC3-01. 
  
General Functional Requirements: 
FR-GR-04, FR-GR-06, FR-GR-08, FR-GR-09, FR-GR-10 and FR-GR-12. 

Honeypot task 
contribution 

Three honeypots have been developed to decoy potential attacks using the 
following industrial protocols: 

• IEC 61850 

• Modbus 

• IEC 60850-5-104 

 

1 Codes here are the requirement codes in Deliverable D2.2 [SMS20-D22]. 



  D3.3 
  Version 1.0 
 

 

© SDN microSENSE consortium      Page | 29 
Public document 

  

Honeypot Manager, moreover, to deploy the honeypots selected by the 
security operator in the network, is in charge to get from the XL-SIEM 
information regarding the zero-day attacks detected by Nightwatch. It 
collects this information, analyses it and send to the SDN controller 
information to forward traffic network to the honeypots in order to get 
more information of these zero days attacks.  

 

Specification Name 
Security Events 
Processing 

Specification ID SPEC-F2 

Action The processing of the security events generated from the Intrusion 
Detection and Prevention and the Advanced Anomaly Detection systems 
is processed in real time by a specialized SIEM (Security Information and 
Event Management) system in the architecture, which generates the 
Security Alerts towards the SDN-microSENSE Risk Assessment Framework 
(S-RAF) system for further processing. 

Related 
Requirement(s) 

User’s Requirement: 
FR-UR-16 
 
Use Case Requirements: 
FR-UC1-01, FR-UC1-02, FR-UC1-03, FR-UC1-04, FR-UC1-05, FR-UC1-06, FR-
UC1-07, FR-UC1-08, FR-UC1-09, FR-UC1-10, FR-UC1-11, FR-UC2-01 and FR-
UC3-01. 
  
General Functional Requirements: 
FR-GR-03, FR-GR-04 and FR-GR-12. 

Honeypot task 
contribution 

Honeypots developed get information of the cyber-attacks received and 
send to the XL- SIEM in order to be analysed. The information collected by 
the honeypots are analysed by the XL-SIEM engine in the same way that 
analyses the information from other sensors.  

 

Specification Name Alerts Categorisation 
and Incidents 
Generation 

Specification ID SPEC-F4 

Action Alerts generated from the SIEM are forwarded towards a Risk Level 
Assessment component to be further processed and categorized. The risk 
assessment component is to conduct an analysis on the identified alerts 
coming for the XL-SIEM with respect to the existing assets and 
vulnerabilities of the infrastructure. Attacks that target vulnerable assets 
will be reported as incidents and will modify the risk models accordingly. 
For the case when the alerts are categorized as incidents, the following 
actions are performed by the Risk Level Assessment component: 

• Incident is recorded in an anonymous repository of incidents 
(ARIEC) 

• Incident is forwarded to the SDN-microSENSE self-healing 
which takes the necessary counter-measure actions on the 
EPES infrastructure. 



  D3.3 
  Version 1.0 
 

 

© SDN microSENSE consortium      Page | 30 
Public document 

  

The risks level categorization will be based in a meta-model covering 
existing IT and industrial devices (including older legacy SCADA and ICS 
devices and IoT components), electric power networks and related 
software systems, and energy-related personnel, stakeholders and 
processes. The risk assessment model will consider vulnerabilities and 
threats that target diverse energy equipment and services from AMIs, 
RTUs or SCADAS to IT systems.  
 
To provide this functionality, the Risk Assessment framework consists of 
two main functional blocks: 

i. The Risk Level Assessment block itself, 
ii. The Vulnerabilities Management block, and 
iii. An associated honeypots Management module 

 
The Vulnerabilities Management block is a kind of helper for the Risk Level 
Assessment block: the second one queries the first one to get information 
about the vulnerability of the different components in the infrastructure.  
 
Honeypots are used to emulate smart IT and industrial devices, in order to 
apply protection and detection of possible entry points, so as to hide the 
actual infrastructure to potential attackers. Thus, the honeypot s 
Management module is a key component for identifying security 
vulnerabilities, including IT (IoT devices, gateways and communication 
devices) and energy systems and devices (smart meters and SCADA & ICS 
components). Honeypots are intended to be operating as an additional 
level of security in the SDN-microSENSE architecture. 
 
This Risk Assessment framework will be deployed as an SDN application. 
This way, suspicious data flows can be automatically diverted towards the 
honeypot’s infrastructure if necessary.  

Related 
Requirement(s) 

User Requirements: 
FR-UR-01, FR-UR-02 and FR-UR-16. 
  
Use Cases Requirements: 
FR-UC1-01, FR-UC1-02, FR-UC1-03, FR-UC1-04, FR-UC1-05, FR-UC1-06, FR-
UC1-07, FR-UC1-08, FR-UC1-09, FR-UC1-10, FR-UC1-11, FR-UC2-01 and FR-
UC3-01. 
 
Non-Functional Requirements: 
NFR-DPT-03, NFR-DPT-28, NFR-SEC-16, NFR-SEC-20, NFR-TST-01 and NFR-
TST-02. 
 
Organizational Requirements: 
OR-GR-02, OR-GR-05, OR-GR-10, OR-GR-12 and OR-GR-15. 

Honeypot task 
contribution 

In this task, three honeypots to emulate three industrial protocols have 
been developed. These honeypots collect the information of the 
cyberattacks. The information of the logs collected by the honeypots are 



  D3.3 
  Version 1.0 
 

 

© SDN microSENSE consortium      Page | 31 
Public document 

  

sent to the S-RAF component through the XL-SIEM that is in charge of 
analysing the honeypot logs.  
During this task, a new functionality executed by Honeypot Manager is 
developed. With this functionality it is possible to get more information of 
the zero-day attacks (identified by nightwatch), forwarding the traffic 
network regarding these zero-day attacks to the honeypots and analysing 
the logs produced. This task is done through the SDN- Controller. The 
Honeypot Manager receives the information from the XL-SIEM about zero-
days attacks and analyses this information with the knowledge that it has 
about the honeypots that are deployed in the network. Based on this 
analysis, it forwards the information to the SDN-Controller to send the 
traffic network to the honeypot that is able to get more information. 

 

Specification Name Resilience and 
Reliability 

Specification ID SPEC-OP1 

Action A common and effective approach to address this problem is to make 
redundant the critical system components, which ensures the correct 
operation even in case of failures. To get this, all the elements in SDN-
microSENSE architecture have the possibility of being deployed in a 
redundant way following different approaches, ranging from the ability 
to deploy nodes with active-standby policies to more sophisticated 
options such as automatic fail-over. Regular backup of the systems 
comprising SDN-microSENSE (SPEC-OP4) also help on this, as it allows the 
system to be restored to a safe operating point. Also, for the SDN 
Controller (a critical component in the system) a specific Synchronisation 
and Coordination Service (SCS) has been issued as part of the 
architecture for providing distributed synchronization and group services 
for the SDN-C components.  
 
Also, because its main purpose and design, we can tell SDN-microSENSE 
is reliable by design, because it has been designed to detect certain 
potential failures (because cyberattacks or other causes) and initiate the 
necessary preventive actions to handle them. 

Related 
Requirement(s) 

Resilience Requirements:  
NFR-RES-01, NFR-RES-02 and NFR-RES-03.  
 
Reliability Requirements:  
NFR-RL-03, NFR-RL-04 and NFR-RL-05. 
 
Other Requirements:  
NFR-SDNSEC-12 

Honeypot task 
contribution 

The Honeypot Manager allows to deploy the honeypots that the security 
operator decided. This implies that any honeypot can be deployed 
following a redundant strategy.  
It is also important to take into account that honeypots are not 
considered as critical components, because they are not directly involved 
in the correct operation.  



  D3.3 
  Version 1.0 
 

 

© SDN microSENSE consortium      Page | 32 
Public document 

  

 

Specification Name Data security by design Specification ID SPEC-OP3 

Action In order to achieve this requirement, the SDN-microSENSE system adopts 
security by design approach and provides several tools that are geared 
towards the protection of the system. Here, the core functions of the XL-
EPDS are designed to detect, prevent and record security incidents. 
These are implemented through the Security Information and Event 
Management (SIEM) function, which is intended to monitor 
continuously, control and correlate the operations that take place in the 
Infrastructure Plane of the platform, an Intrusion Detection and 
Prevention System (SS-IDPS) function, to provide specification-based 
detection techniques, and having the capability to detect zero-day 
attacks; an Anomaly Detection function, to apply anomaly detection 
methods for detecting anomalies and identify risks based on them and 
an Anonymous Repository of Incidents (ARIEC), which stores and 
anonymously share information about the detected incidents with other 
EPES.  
 
In addition, SDN-microSENSE also incorporates the S-RAF framework, 
that consists of the honeypots Manager and the Risk Level Assessment 
module to enhance the security of the system. It establishes the 
necessary risk priorities and security policies, identifies possible threats 
and vulnerabilities and determines the corresponding risk levels. 
Furthermore, the various functionalities on the PPF as described in the 
previous table, are all geared towards the enhancement of the security 
of the SDN-microSENSE system. 

Related 
Requirement(s) 
 

Data security requirements (NFR-SEC). 
SDN-specific Security Requirements (NFR-SDNSEC). 

Honeypot task 
contribution 

Honeypots are intended to be operating as an additional level of security 
in the SDN-microSENSE architecture because all the traffic that the 
honeypots capture can be considered as attack, so all the information 
gathered by the honeypots is useful to improve the security of the 
network.  

 

Constraint Name Authentication Constraint ID CONS-T2 

Action To overcome this constraint, the SDN-microSENSE architecture uses 
authentication for all connections among parts of the system and the 
equipment used, while for sensitive information and session expiration 
multifactor authentication controls are implemented. Also, 
authentication is set on all connections among the system components. 
Specifically, the PPFs Access Control Manager is used for authentication 
procedures for all users and systems involved in the architecture. 

Related 
Requirement(s) 

NFR-SEC-03, NFR-SEC-04, NFR-SEC-09, NFR-SEC-10, NFR-SEC-18, NFR-
SDNSEC-01 and NFR-DPT-26. 



  D3.3 
  Version 1.0 
 

 

© SDN microSENSE consortium      Page | 33 
Public document 

  

Honeypot task 
contribution 

The Honeypot Manager has an authentication process implemented. At 
this point of the project the PPFs Access control manager is not 
implemented, but in the integration task, the authentication process 
that the Honeypot Manager has implemented will be adapted to the one 
offered by the PPFs Access Control Manager  

 

In the Deliverable D2.2 “User & Stakeholder, Security and Privacy Requirements” [SMS20-D22], 

different types of attacks are defined to be detected by the technologies developed in the project. The 

honeypots developed in this task could collect information about some of these attacks, mainly those 

related to the communications . The table relates the potential attacks that could be detected by the 

honeypots, the CAPEC id and the code of the requirement form D2.2. 

Table 2. Types of attacks detected by honeypots 

Attacks type 
CAPEC id 

Requirements 
[SMS20-D22] 

Denial-of-service 
attack 

CAPEC-125: 
https://capec.mitre.org/data/definitions/125.html  

FR-UC1-03, FR-UC1-
06, FR-UC1-10, FR-
UC3-01, FR-UR-03 

Protocol Analysis CAPEC-192:  
https://capec.mitre.org/data/definitions/192.html 

FR-UR-13, FR-UR-07, 
FR-UR-10 

Unsolicited content 
injection attack 

CAPEC-148 
https://capec.mitre.org/data/definitions/148.html 

FR-UC1-02, FR-UC1-
05, FR-UC1-09, FR-
UC3-01, FR-UR-05 

  

https://capec.mitre.org/data/definitions/125.html


  D3.3 
  Version 1.0 
 

 

© SDN microSENSE consortium      Page | 34 
Public document 

  

5 Architecture and Detailed design 

5.1 Architecture overview  
This section presents how the components developed in this task fit in the general architecture of SDN-

Microsense [SMS20-D23]. 

The components developed in the task 3.3, the honeypots and the Honeypot Manager, are two 

components of the SDN- microSENSE architecture. The Honeypot Manager (Section 5.2.4) is placed in 

the application plane and the honeypots developed in this task (sections 5.2.1, 5.2.2, 5.2.3) are placed 

in the Data/Infrastructure plane.  

 

Figure 3. SDN-microSENSE Architecture. Structural View. 

Figure 4 shows the general architecture of the honeypots and the Honeypot Manager and how interact 

with other components of the architecture.  

 



  D3.3 
  Version 1.0 
 

 

© SDN microSENSE consortium      Page | 35 
Public document 

  

 

Figure 4. General view of the components and the relationships with other components. 

The Honeypot Manager interacts with other tools in the SDN-microSENSE ecosystem (see Figure 5): 

• It communicates with XL-EPDS interface to gather the information of the unknown anomalies, 

for example, the zero-day attacks provided by the XL-SIEM through the Application Plane Inner 

Interfaces [SMS20-D23]. The interface used (S-RAF/XL-EPDS-01) is the one provided by XL-

SIEM that provides necessary alerts metadata for processing the unknow anomalies alerts. 

These alerts are sent through RabbitMQ.  

• It communicates with the SDN-controller. The Honeypot Manager provides information in 

order to forward network traffic to the deployed honeypots about the unknown anomalies 

through the SDN- Controller. This is done using the North Bound interfaces. This interface (S-

RAF_NBI-1) allows to request to the SDN Controller (SDN-C) how network packets should be 

forwarded to the deployed honeypots, so that they can collect more information regarding the 

attacks or the anomalies. 

 



  D3.3 
  Version 1.0 
 

 

© SDN microSENSE consortium      Page | 36 
Public document 

  

 

Figure 5. Response to Security Events detected in honeypots. [SMS20-D23] 

The honeypots interact mainly with two other components in the SDN-microSENSE ecosystem, XL-

SIEM and SDN controller: 

• Honeypots send their logs to the XL-EPDS to allow analysing this information. Honeypots use 

an application Plane Inner Interfaces (S-RAF/XL-EPDS-03) to send to the XL-SIEM the captured 

logs. These logs are parser by the XL-SIEM and send to the Advanced anomaly detection.  

• SDN-controller communicates with the honeypots2 using the South-bound interface (see 

Figure 3). This interface allows the SDN controllers to define the behaviour at the 

Infrastructure/Data Plane elements. The most common API for this Southbound Interface is 

OpenFlow [ONF-15]. 

5.2 Functional and Components view 

5.2.1 IEC 61850 Honeypot  

5.2.1.1 Functional description 
The IEC Strategic Group 3 on Smart Grid includes the IEC 61850 communication protocol in their Smart 

Grid IEC reference architecture document [IECSTD] as one central communication standard. As stated 

in that reference architecture, IEC 61850 [61850] is the standard selected for the communications 

between field devices and systems inside a substation. Even if the different extensions of the IEC 61850 

consider the use of the standard also in communications between substations and control centres, the 

reality is that such implementation is not widespread today. 

Hereunder are listed some of the main features of this standard: 

 

2 The EPES Infrastructure components also include honeypots 



  D3.3 
  Version 1.0 
 

 

© SDN microSENSE consortium      Page | 37 
Public document 

  

• Communication profiles are based on existing IEC/IEEE/ISO/OSI communication standards. 

• All the protocols used are open and support self-descriptive devices. New functionalities can 

be added. 

• Data objects are defined by the standards related to the needs of the electric power industry. 

• Communications syntax and semantics are based on the use of common data objects related 

to the power system. 

• Communications services can be mapped to different state-of-the-art protocols. 

• Considers the implications of the substation being one node in the power grid. 

• Machine readable language is used to specify complete topology of an electrical system, the 

generated and consumed information and the information flow between all IEDs. 

Since the first edition of the standard, published between 2003 and 2005, the original parts of the 

IEC61850 series have been updated and extended. Original protection, control and monitoring 

functions included in the first edition were extended in future editions to include measurement and 

power quality information.  

IEC 61850 adoption by substation operators (TSO and DSO primarily) has been gradual since the 

publication of the standard. Nowadays, at least in Europe, IEC 61850 is the main standard for 

substation automation. IEC 61850 is being installed in most of new substations automation. In the case 

of existing substations legacy protection and control equipment is being replaced by modern IED 

supporting this standard. 

The strong adoption of the IEC 61850 into substation automation, from cybersecurity perspective, 

requires the development of new threat monitoring and prevention techniques that will contribute to 

the securitization of substation assets and by extension of the overall grid. In this context of a growing 

deployment of IEC 61850 compliant IEDs it is interesting to have specific IEC61850 protocol honeypots 

between network monitoring tools to detect and analyse APT targeting this kind of devices.  

The IEC 61850 honeypot functionality developed in this task simulates the behaviour of a real IED in 

charge of the control and protection of a high/medium voltage circuit breaker in a substation. In Figure 

6, two different types of circuit breakers that could be found in an electrical substation are shown. 

 
 

Figure 6. Types of circuit breakers 

High and medium voltage circuit breakers are electromechanical switching devices which connect and 

break current circuits (operating currents and fault currents) and carry the nominal current in closed 

position. Control, protection and measurement functionalities of this switchgear are carried out by 

IEDs that could be wired point-to-point to them or, in the case of modern substations, a single fiber-



  D3.3 
  Version 1.0 
 

 

© SDN microSENSE consortium      Page | 38 
Public document 

  

optic process bus could substitute those direct connections. IEDs are connected to the substation bus 

to be monitored and controlled by a substation SCADA or RTU by the IEC 61850 standard. The Figure 

7 depicts the simplified network architecture of an IEC 61850 substation and IED connection to circuit 

breakers.  

 

Figure 7. Simplified network architecture of an IEC 61850 substation and IED connection to 
circuit breakers. 

SDN-microSENSE IEC 61850 honeypot includes the following functional characteristics: 

• Integrates control functionalities that could be found in an operative IEC 61850 IED controlling 

a circuit breaker.  

• Includes simple Control operation interlocking capabilities. 

• Integrates the IEC 61850 model of a real IED to make it more attractive for attackers and make 

them believe that they are dealing with a real IED.  

• Easily deployable to simulate a complete substation bus in which different IEDs control 

different bay positions. 

• Buffered and unbuffered reports with different datasets are defined to simulate the 

interactions that normally take place in a substation between IEDs, RTUs and the SCADA. 

IEC 61850 Configuration Description Language 

Part 6 of IEC 61850 standard [61850-6] specifies the format of the file that describes communication 

related IED configurations and IED parameters, communications system configurations, switch yard 



  D3.3 
  Version 1.0 
 

 

© SDN microSENSE consortium      Page | 39 
Public document 

  

(function) structures, and the relations between them. In a nutshell, the purpose of this file format is 

to describe IED capabilities and could be used as part of IED configuration data. The language that IEC 

61850 has defined is based on XML version 1.0 and is called System Configuration Language (SCL). Files 

containing IED capability descriptions are called ICD or CID file.  

The goal of the honeypot described in this section is to represent, as accurately as possible, the 

behaviour and functionalities of a real IED. Therefore, the ICD file that has been used to create 

honeypot’s IEC61850 model is based on the ICD file of a fully commercial IED installed in Tecnalia’s 

Smart Grid Cybersecurity Laboratory. This approach allows to focus only in the monitorization of IEC 

61850 standard singularities. This ICD file has been simplified to leave only those elements of and IED 

model required to control the operation of a Breaker. Figure 8 shows a single line diagram (SLD) 

representation and a high-level diagram of the logical device and nodes included in the ICD file used 

to build the honeypot.  

 

Figure 8. IEC 61850 functional hierarchy of the honeypot 

Figure 9 aims to represent what an attacker would believe that is happening into a SLD of a real 

substation while interacting with the honeypot. The honeypot, in its interaction with the attacker, will 

react to received operation requests and update accordingly every data attribute involved in the 

operation of its IEC61850 model. By doing this, the attacker is deceived and believes that he is 

controlling a real electrical equipment while the honeypot is registering every interaction with it. 



  D3.3 
  Version 1.0 
 

 

© SDN microSENSE consortium      Page | 40 
Public document 

  

 

Figure 9. Attacker view of the honeypot 

The functionality of the honeypot could easily be expanded by compiling a new ICD files which contain 

more control and protection elements. This will create a new IEC 61850 model to be included into the 

honeypot building process (explained in “Technical description” section). The honeypot will need to 

incorporate the required functions to deal with the objects and data attributes introduced by the 

expanded model. Figure 10 shows an expanded representation of the high-level diagram shown in 

Figure 8 and Figure 9 to show data objects associated to each of the Logical nodes of the model: 

 

Figure 10. Organization of LDs, LNs, DOs and DAs of honeypot 



  D3.3 
  Version 1.0 
 

 

© SDN microSENSE consortium      Page | 41 
Public document 

  

• A set of logical nodes belong to a LD. 

• The LN LLN0 is a special logical node per LD and contains for example the data sets, the various 

control blocks. 

• The LN LPHD is a special logical node per LD and contains data objects that describe the status 

of the physical device (the IED). 

• Each logical node represents a function and contains a number of data objects (DO). 

• Each DO includes a number of data attributes (DA). 

5.2.1.2 Technical and deployment details 
The IEC 61850 honeypot software and all its auxiliary modules and libraries have been written in C 

language. The honeypot application is built upon libIEC61850 open source library [LIB61850-20]. The 

use of this library has facilitated the integration of IEC 61850 standard complexities. Honeypot 

application integrates with the library and defines all the control logic required to deal with different 

data objects and attributes involved in the operation. Hereunder are listed IEC 61850 features provided 

by the library integrated by the honeypot: 

• IEC 61850/MMS server: this server provided by the library is integrated into the honeypot 

software which facilitates the task of dealing with the complexities of the IEC 61850 MMS 

communications protocol. 

• Support for buffered and unbuffered reports 

• Data access service (get data, set data) 

• All data set services (get values, set values, browse) 

Source code is structured as a Makefile project to allow its compilation for several target architectures 

(i386, x64 or ARM) and OS (Linux and Windows). There is a principal Makefile with different targets to 

facilitate every task related to honeypot software building process. Building from scratch overall 

honeypot software simply requires running “make all” on this Makefile. It will recursively call to all 

Makefiles of the subsidiary modules and libraries.  

 

Figure 11. Honeypot software building process 



  D3.3 
  Version 1.0 
 

 

© SDN microSENSE consortium      Page | 42 
Public document 

  

As it could be noted from the previous image there is a first step needed before honeypot software 

building. IEC 61850 device model file with CID or ICD extension must be compiled before honeypot 

building process. Model compilation is performed by genmodel tool provided by libIEC61850 library. 

Model compilation gives as a result a .c file and a .h extension file. The resulting files need to be 

incorporated to the honeypot source code structure. This process needs to be done once unless the 

model is changed.  

Despite libIEC61850 library is designed according to edition 2 of the IEC 61850 standard series it is 

compatible to edition 1. In the current version of the honeypot Edition 1 CID/ICD device model has 

been used. The use of legacy edition of IEC 61850 might make the honeypot more attractive to 

attackers as they could believe that they are dealing with a legacy device.  

Event Registration 

The main goal of a honeypot is to register appropriately the different actions performed by attackers. 

For event registration, a logging library has been specifically developed for the project. Once the 

honeypot detects an action that shall be recorded for later analysis it calls the library to store it 

conveniently. The purpose of using this library is to decouple from the honeypot application’s source 

code the details of event management and, specifically, where those events are stored. With this 

approach future event publishing capabilities and storing locations (Databases, MQTT sending, etc) 

could be easily integrated into the honeypot without impacting its functionality. For each event the 

following information is passed to the library: 

Table 3. Information stored for each event 

Variable Format Description 

eventID String Identificator of the event 

Name String Name of the event 

timestamp String Timestamp with the exact time in which the event 
occurred. The format of the timestamp is yyyy-MM-
dd'T'HH:mm:ss*SSSZ 

parameters Array of parameters An array of parameter structures with additional 
information related to the event 

Each parameter is represented by key-value pair. In Table 4, it is described the format of one parameter 

associated to an event: 

Table 4. Format of parameter information associated to an event 

Variable Format Description 

key String String which represents the unique identifier of the 
parameter 

value String Value of the parameter 

Event information is stored into files in JSON format to be processed and analysed later by the 

appropriated tools. File or files with event information are stored by default in /var/log folder of the 

operative system. The JSON format has been selected for events because its usage is widespread 

among other honeypot solutions, such as the well-known Conpot [CON20].   



  D3.3 
  Version 1.0 
 

 

© SDN microSENSE consortium      Page | 43 
Public document 

  

Concretely, The IEC 61850 honeypot described in this section, registers the events listed in the Table 5 

related to IEC61850/MMS communications standard: 

Table 5. Events listed 

 Parameters 

eventId name timestamp key value 

0001 New 
connection 

YYYY-MM-DDThh:mm:ssZ ip Ip of connected 
client- 

0002 Connection 
closed 

YYYY-MM-DDThh:mm:ssZ ip Ip of disconnected 
client 

0003 Control 
operation 

YYYY-MM-DDThh:mm:ssZ ip Ip of client sending 
control operation 

ctlNum ctlNum attribute 
send by the client 

orCat Originator 
category provided 
by the client 

ln Logical Node 

dataObject Requested Control 
object 

ctlVal Control Value 

0004 Read 
Operation 

YYYY-MM-DDThh:mm:ssZ ip Ip of client sending 
control operation 

Ln Logical node 
owning requested 
data object 

dataObject Data object 
owning requested 
data attribute 

fc Functional 
Constraint 

0005 Write 
Operation 

YYYY-MM-DDThh:mm:ssZ ip Ip of client sending 
control operation 

Ln Logical node 
owning requested 
data object 

dataObject Data object 
owning requested 
data attribute 

dataAttribute Requested data 
attribute 

 

The honeypot software could easily integrate additional event registrations. During pilot 

demonstrators new monitoring requirements might be identified.  



  D3.3 
  Version 1.0 
 

 

© SDN microSENSE consortium      Page | 44 
Public document 

  

5.2.1.3 Prototype architecture and components description 

 

Figure 12. IEC 61850 Components diagram 

The Figure 12 represents the component diagram for the IEC61850 honeypot. Following an explanation 

of each component is presented  

• Reports Block 

This is the block in charge of the of Report Control functionality. IEC 61850 devices could generate 

reports based on certain parameters and conditions specified by device model. Low level report 

control functionality is provided by the lib61850 library and the honeypot application defines which 

reports will be made available to clients connecting to the honeypot. Every report is associated to a 

dataset. The Reports Block included into the honeypot architecture supports the two kind of reports 

included in the IEC61850: 

• Buffered reports: these reports are used to communicate internal events (triggered by 

different changes into the device: data-change, data-update, etc.) which need to issue an 

immediate sending of reports or to buffer the events for its transmission. The main feature 

of this type of report is that it provides the Sequence-Of-Events (SOE) functionality. It 

guarantees that values of data objects are not lost due to transport flow control or loss of 

connection. 

• Unbuffered reports: this type of reports could be generated under the same events as the 

buffered reports, but unbuffered reports do not guarantee that events are transmitted 

and may be lost if no association exists, or if the data flow transport is not fast enough. 

The sending of the unbuffered reports is done on a best-efforts basis. 

The different reports that the honeypot will serve could not be defined dynamically. Therefore, its 

definition is made statically at ICD/CID file compilation time as shown in Figure 11. ICD/CID file used 



  D3.3 
  Version 1.0 
 

 

© SDN microSENSE consortium      Page | 45 
Public document 

  

for honeypot development contains the description, type and datasets associated to the different 

reports the honeypot will serve.  

• Datasets Block 

The information exchange modelling described in IEC61850-7-2 defines the permission to group data 

objects and data attributes into Datasets. Datasets are key elements of IEC61850 standard reporting 

functionality described before. Data sets are tied to Logical Nodes, but their member variables can be 

located at different logical nodes and even different logical devices.  

• Handlers 

Handlers architectural block’s main goal is to register every received IEC61850/MMS request received 

by the honeypot and implement the required logic to make attackers believe that are dealing with a 

real IEC 61850 device. Honeypot defines several handler modules to manage each type of MMS access: 

o Connection handler 

This is the module that registers new and closed IEC61850/MMS connections on port 102 of the 

honeypot. In the current version of the honeypot no authentication control is performed as in 

the majority of IEDs installed on real substations. Nevertheless, this handler is where 

authentication control could be located in future versions of the honeypot to register attacker’s 

interaction with the authentication module for later investigation.  

o Control handler 

Whenever a control operation is received this handler is called by the honeypot. Control handler, 

apart from registering the control operation request for later analysis, performs additional 

checks on the controlled object, such as remote/local condition, the command blocked 

condition, etc. IEC 61850 defines several control models that an IED could implement. In the 

case of this version of the honeypot “Direct control with normal security” control model has 

been implemented. An IED control logic could be extremely complex depending on the number 

and type of Logical Nodes managed. Despite the control logic of the first version of the honeypot 

is simple it performs the basic operative controls over CSWI logical node as: position reached, 

interlocking, etc. Probably, during use case test, it might be necessary to include into the 

honeypot new control capabilities or control models. Control handler design approach will let 

easy integration of those new capabilities. 

o Read Handler 

This is the module in charge of registering every data attribute read request received by the 

honeypot. This handler could also integrate access control to Data Objects and Data Attributes 

in future versions. 

o Write Handler 

Write access handler captures every IEC61850/MMS write operation on the honeypot and 

registers it for further analysis and later communication to XL-SIEM communication. 

• Event Register 



  D3.3 
  Version 1.0 
 

 

© SDN microSENSE consortium      Page | 46 
Public document 

  

This is the component that the honeypot uses to register the events that need to be recorded for 

deeper analysis. As described in honeypot technical information this component is based on a 

proprietary library specifically written for IEC 61850 honeypot which registers events to a log file. 

Besides, external tools could be used to process event file and extract information to different security 

analysis tools. This is the approach followed for the interface with the XL-SIEM. 

• Data Objects 

The IEC61850 standard defines a set of Logical Nodes (LN) which represent from a communication 

point of view a process function with several Data Objects (DO) associated. The number of DO and 

data attributes per DO is defined by the used LN type. Logical nodes and the associated DO included 

into the honeypot have been introduced in section 5.2.1.1.  

• Data Sources 

Previously presented Data Objects represent information signals that, in real substations, may be 

routed to SCADA systems, another substation level IEDs or bay control IEDs. In honeypot case, these 

real signals do not necessarily exist and the existence of data sources to read/write data from/to 

becomes necessary. The version of the honeypot described in this document makes a static 

assignation, at initialization time, for Data Attributes values associated to Data Objects and updates 

those values in memory while the attacker interacts with the honeypot. However, in the case of being 

necessary the honeypot might be extended to read/write to other data source type.  

As it has been described in this section the honeypot is composed of different blocks that work 

together to build its complete functionality. Each component has been designed to allow extensions 

in its functionality to include new lessons that will be learnt during pilot demonstrators. These pilot 

demonstrators could bring an advanced electrical knowledge from utilities and operators which the 

honeypot might benefit from. 

5.2.2 IEC60870-5-104 Honeypot 

5.2.2.1 Functional description 
IEC60870-5-104 honeypot is based on Conpot honeypot [CON20], which is an open-source low 

interaction honeypot focused on industrial systems. We use RTU honeypot to emulate the behaviour 

or real RTU that control devices located in smart grid substations. The RTU can use a variety of 

industrial communication protocols, but in this case, we focus on IEC 60870-5-104 (IEC104). This 

protocol is used to monitor energy systems, control systems and their associated communications. It 

is an asynchronous serial protocol, and it is used for tele-controlling. It adds TCP/IP capabilities and 

enables connectivity with LAN networks. An RTU device is able to work as a Master or as a Slave in real 

production systems. Thus, an RTU honeypot emulates the same behaviour.  

5.2.2.2 Technical description 
Conpot honeypot acts as a Master and provides multiple templates that simulate forms. Table 6 

describes the five Conpot templates; the first column has the name of the of the template, the second 

one is the list of the corresponding ports, and the last column has a short description of the template. 

Table 6. Conpot Templates [CON20] 

Template Port Description 



  D3.3 
  Version 1.0 
 

 

© SDN microSENSE consortium      Page | 47 
Public document 

  

Default template 21, 69, 80, 102, 161, 
502, 44818, 47808 

It simulates an electric-power plant using Siemens 
SIMATIC S7-200 Programmable Logic Controllers that 
communicate with at least two slaves 

Guardian_ast 10001 It simulates the Guardian AST tank-monitoring system 
typically used in gas stations 

IPMI 623 It simulates a basic system using the Intelligent 
Platform Management Interface (IPMI). 

Kamstrup_382 1025, 50100 It simulates a system for the Kamstrup 382 electricity 
meter 

IEC 104 2404 It simulates the behaviour of a Siemens S7-300 PLC 
communicating with the IEC-104 protocol.  

 

5.2.2.3 Prototype architecture and components description 
In order to implement the RTU honeypot, some modifications have been performed in Conpot 

honeypot. Figure 13 presents the main components of Conpot honeypot, and it is highlighted with a 

red line the component that has been modified. Conpot is executed in the terminal, and it receives a 

variety of parameters to config the configuration file (conpot.cfg) and defines the template that is 

going to be used. This template specifies the type of industrial device to simulate and defines the 

protocols it will use to communicate. If an attacker recognizes the honeypot, it will be identified as an 

Industrial Control System device due to the type of web interface and the protocols it uses. The 

interaction between the attacker and the Conpot will be recorded in a Log. During that process, the 

Conpot generates a response and send it to the attacker. 

 

Figure 13. Overview of the Conpot functionality [COH] 

IEC COMMUNICATION  

As shown in Figure 14, IEC 101/104 communication is exchanged between the controlled and the 

controlling station [CRW04]. 

• Controlled station or “RTU Slave” is monitored or commanded by a “RTU Master”/ 

“Controlling Station”. 



  D3.3 
  Version 1.0 
 

 

© SDN microSENSE consortium      Page | 48 
Public document 

  

• Controlling station or “RTU Master” is a station where a control of controlled stations is 

performed (SCADA).  

 

Figure 14. IEC104 topology [MRG19]  

IEC 101/104 defines 3 modes of direction: 

1. Monitor Direction is a direction of transmission from controlled station (RTU) to the 

controlling station (PC). 

2. Control Direction is a direction of transmission from controlling station, typical a SCADA 

system to the controlled station i.e. an RTU.  

3. Reversed Direction is a direction when monitored station is sending commands and 

controlling station is sending data in monitor direction. 

Figure 15 presents a topology of IEC104 router connected with 104 SCADA monitoring system using 

IEC104 protocol over TCP/IP and an RTU IEC101.  

 

Figure 15. Network topology of SCADA monitoring system [TR-IEC104] 



  D3.3 
  Version 1.0 
 

 

© SDN microSENSE consortium      Page | 49 
Public document 

  

IEC104 is implemented in the application layer of the TCP/IP stack using Application Protocol Data Unit 

(APDU) and Application Service Data Unit (ASDU). Based on APDU Control field, three APDU formats 

are defined:  

1. i-frame to transmit data. It includes two parts (a) fixed-length ASDU header and (b) a variable-

length list of information objects.  

2. s-frame for supervisory operations. 

3. u-frame to transmit unnumbered control functions (test frame, start transfer, stop transfer) 

The ASDU header includes (a) ASDU type (TypeID), (b) the number of transmitted objects, (c) the Cause 

of Transmission (COT) and (d) an ASDU address (station address). 

The ASDU Type Identification Field (TypeID): The range of numbers 1 to 127 is used for standard 

definitions from IEC 60870-5-101 standard. The range 128 to 135 is reserved for routing of messages. 

The numbers 136 up to 255 are for special use. In the range of standard type definitions, there are 

presently 58 specific types defined. These are grouped as shown in the Table 7. The Table includes for 

each group of processes the range of the TypeIDs, the name of the Group, the TypeID, the Code of it, 

a short description and in last two columns, we mentioned if this TypeID (Conpot command) is 

implemented by Conpot or by SDN-microSENSE.. 

Table 7. The definition of TypeID numbers for process and system information in monitor and 
control direction 

Defined 
TypeID 

Group TypeID Code Description Conpot 
support 

Extended by 
SDN_microSENSE  

1 – 40 Process 
information 
in monitoring 
direction 

1 M_SP_NA_1 Single point 
information 

YES  

2 M_SP_TA_1 Single point 
information 
with time tag 

YES  

3 M_DP_NA_1 Double point 
information 

YES  

4 M_DP_TA_1 Double point 
information 
with time tag 

YES  

11 M_ME_NB_1 Measured 
value, scaled 
value 

YES  

12 M_ME_TB_1 Measured 
value, scaled 
value with 
time tag 

YES  

13 M_ME_NC_1 Measured 
value, short 
floating 
point value 

YES  

14 M_ME_TC_1 Measured 
value, short 
floating 

YES  



  D3.3 
  Version 1.0 
 

 

© SDN microSENSE consortium      Page | 50 
Public document 

  

point value 
with time tag 

30 M_SP_TB_1 Single point 
information 
with time tag 
CP56Time2a 

YES  

31 M_DP_TB_1 Double point 
information 
with time tag 
CP56Time2a 

YES  

35 M_ME_TE_1 Measured 
value, scaled 
value with 
time tag 
CP56Time2a 

YES  

36 M_ME_TF_1 Measured 
value, short 
floating 
point value 
with time tag 
CP56Time2a 

YES  

45 – 51 Process 
information 
in control 
direction 

45 C_SC_NA_1 Single 
command 

YES  

46 C_DC_NA_1 Double 
command 

YES  

49 C_SE_NB_1 Setpoint 
command, 
scaled value 

YES  

50 C_SE_NC_1 Setpoint 
command, 
short 
floating 
point value 

YES  

70 System 
information 
in monitor 
direction 

     

100 – 
106 

System 
information 
in control 
direction 

100 C_IC_NA_1 General-
Interrogatio
n command 

YES  

101 C_CI_NA_1 Counter 
interrogatio
n command 

NO YES 

102 C_RD_NA_1 Read 
command 

NO YES 

102 C_CS_NA_1 Clock 
synchronizat

NO YES 



  D3.3 
  Version 1.0 
 

 

© SDN microSENSE consortium      Page | 51 
Public document 

  

ion 
command 

104 C_TS_NB_1 Test 
command 

NO YES 

105 C_RP_NC_1 Reset 
process 
command 

NO YES 

106 C_CD_NA_1 Delay 
acquisition 
command 

NO YES 

107 C_TS_TA_1 Test 
command 
with time tag 
CP56Time2a 

  

110 – 
113 

Parameter in 
control 
direction 

   NO  

120 - 
136 

File transfer     NO  

 

In the following section there are more details about the new TypeID (i.e. the Conpot commands) that 

we are implemented by SDN-microSENSE. For each command, it is mentioned the Name of the 

command, the information object type, the Code, the Sequence (SQ) bit that specifies the method of 

addressing the information objects and the valid Cause of Transmission (COT) codes that are supported 

(Control or Monitor). 

1. Counter interrogation command  

Information Object Type: 101 

Code: C_CI_NA_1 

Valid with SQ: 0 

Information Object for SQ = 0 (Sequence of Information Objects)  

Single information object only 

Information Object Address IOA = 0  

CP8 QCC (Qualifier of counter 
command) 

 

Valid Cause of Transmission (CoT) codes 

Direction Code 
number 

Code Description 

Control 6 Activation 

Control 8 Deactivation 

Monitor 7 Activation Confirmation 

Monitor 9 Deactivation confirmation 

Monitor 10 Activation termination 

Monitor 44 Unknown type identification 

Monitor 45 Unknown cause of transmission 



  D3.3 
  Version 1.0 
 

 

© SDN microSENSE consortium      Page | 52 
Public document 

  

Monitor 46 Unknown common address of 
ASDU 

Monitor 47 Unknown information object 
address 

 

2. Read command 

Information Object Type: 102 

Code: C_RD_NA_1 

Valid with SQ: 0 

Information Object for SQ = 0 (Sequence of Information Objects)  

Single information object only 

Information Object Address IOA = 0  

There is only the IoA with the data unit identifier for this command.  

Valid Cause of Transmission (CoT) codes 

Direction Code number Code Description 

 5 Request 

 

Information Object Address IOA = 0  

CP56Time2a Seven-octet binary time 

 

Valid Cause of Transmission (CoT) codes 

Direction Code number Code Description 

Control 6 Activation 

Monitor 3 Spontaneous 

Monitor 7 Activation Confirmation 

Monitor 44 Unknown type identification 

Monitor 45 Unknown cause of transmission 

Monitor 46 Unknown common address of ASDU 

Monitor 47 Unknown information object address 

 

3. Clock synchronization command  

Information Object Type: 103 

Code: C_CS_NA_1 

Valid with SQ: 0 

Information Object for SQ = 0 (Sequence of Information Objects)  

Single information object only 

Information Object Address IOA = 0  



  D3.3 
  Version 1.0 
 

 

© SDN microSENSE consortium      Page | 53 
Public document 

  

CP56Time2a Seven-octet binary time 

 

Valid Cause of Transmission (CoT) codes 

Direction Code number Code Description 

Control 6 Activation 

Monitor 3 Spontaneous 

Monitor 7 Activation Confirmation 

Monitor 44 Unknown type identification 

Monitor 45 Unknown cause of transmission 

Monitor 46 Unknown common address of ASDU 

Monitor 47 Unknown information object address 

 

4. Test command  

Information Object Type: 104 

Code: C_TS_NB_1 

Valid with SQ: 0 

Information Object for SQ = 0 (Sequence of Information Objects)  

Single information object only 

Information Object Address IOA = 0  

1 0 1 0 1 0 1 0 FBP (Fixed test pattern) 

0 1 0 1 0 1 0 1 

 

Valid Cause of Transmission (CoT) codes 

Direction Code number Code Description 

Control 6 Activation 

Monitor 7 Activation Confirmation 

Monitor 44 Unknown type identification 

Monitor 45 Unknown cause of transmission 

Monitor 46 Unknown common address of ASDU 

Monitor 47 Unknown information object address 

 

5. Reset process command 

Information Object Type: 105 

Code: C_RP_NC_1 

Valid with SQ: 0 

Information Object for SQ = 0 (Sequence of Information Objects)  

Single information object only 

Information Object Address IOA = 0  

UI8 QRP (Qualifier of reset process command) 

 



  D3.3 
  Version 1.0 
 

 

© SDN microSENSE consortium      Page | 54 
Public document 

  

Valid Cause of Transmission (CoT) codes 

Direction Code number Code Description 

Control 6 Activation 

Monitor 7 Activation Confirmation 

Monitor 44 Unknown type identification 

Monitor 45 Unknown cause of transmission 

Monitor 46 Unknown common address of ASDU 

Monitor 47 Unknown information object address 

 

6. Delay acquisition command  

Information Object Type: 106 

Code: C_CD_NA _1 

Valid with SQ: 0 

Information Object for SQ = 0 (Sequence of Information Objects)  

Single information object only 

Information Object Address IOA = 0  

CP16Time2a Two-octet binary time 

 

Valid Cause of Transmission (CoT) codes 

Direction Code number Code Description 

Control 6 Activation 

Monitor 7 Activation Confirmation 

Monitor 44 Unknown type identification 

Monitor 45 Unknown cause of transmission 

Monitor 46 Unknown common address of ASDU 

Monitor 47 Unknown information object address 

 

5.2.3 Modbus Honeypot  

5.2.3.1 Functional description 
Modbus is an application-layer protocol used for connecting and controlling industrial systems 

[PSL+20]. The first version of Modbus was released in 1979 and nowadays is adopted by multiple 

energy-related stakeholders due to its simplicity. Modbus is coming with two versions known as a) 

Modbus RS485 or Modbus Serial and b) Modbus TCP/IP. The first one follows a master/slave 

communication paradigm, while the second one takes full advantage of the TCP/IP stack and thus uses 

the server/client model. Modbus supports a variety of operations interpreted into particular function 

codes. Although many critical infrastructures adopt Modbus, it is characterised by severe cybersecurity 

issues since it does not comprise sufficient authentication and authorisation mechanisms. 

Consequently, potential cyberattackers can execute a plethora of cyberattacks [HCS08] [RSL+20] 

against Modbus, including unauthorised access attacks, Man in the Middle (MITM), Modbus-related 



  D3.3 
  Version 1.0 
 

 

© SDN microSENSE consortium      Page | 55 
Public document 

  

reconnaissance attacks, Modbus-related DoS/DDoS, replay attacks, false data injection and data 

modification attacks. 

Based on the aforementioned remarks, the Modbus honeypot aims to imitate both server and client 

devices using Modbus/TCP, thus misleading potential cyber attackers and hiding the real assets. The 

implementation of the Modbus honeypot relies on Conpot, a Python-based software framework for 

implementing Industrial Control System (ICS) honeypots [DSI+19] . However, it is noteworthy that 

Conpot does not support all Modbus/TCP function codes and cannot impersonate efficiently the 

responses of the client devices since the response Modbus/TCP packets include a predefined payload 

value, which reveals the honeypot identity.  

Therefore, in the context of SDN-microSENSE, the Modbus honeypot enhances the current 

functionalities provided by Conpot based on three main research and development pillars: 

• Emulating both server and client Modbus entities: The Modbus honeypot has the ability to 

emulate both entities operating like a server, such as an RTU or client entities like an HMI. 

• Supporting more Modbus/TCP function codes not available in Conpot. The current version of 

Conpot does not support adequately all Modbus function codes. In the context of the SDN-

microSENSE project, the Modbus honeypot adopts Conpot in order to emulate the server side 

of the Modbus TCP/IP communication, thereby incorporating more Modbus function codes. 

• Imitating the Modbus/TCP behaviour of real assets: Both sides of the Modbus honeypot (i.e., 

server and client) have the ability to mimic the behaviour of real devices, generating similar 

Modbus/TCP network traffic.  

5.2.3.2 Technical description 
Based on the previous research and development pillars, concerning the server-side, the Modbus 

honeypot relies on Conpot supporting the Modbus function codes provided in Table 7. It is worth 

mentioning that function codes 22, 23 and 24 are not supported by the current Conpot version, and 

they are implemented using the modbus-Tk [VKS15], PyModbus [COL17] and Scapy Python [RRM+18] 

libraries. More information about these Modbus function codes is provided in [MODBUS]. On the other 

hand, the client-side of the Modbus honeypot is implemented through a Python script, which also uses 

the aforementioned Python programming libraries. 

Table 7. Modbus honeypot Function Codes 

Function Code Name Explanation Supported by 
Conpot 

FC01 (0x01) Read Coils It requests the status of 
a discrete coil (1-bit 
registers with read/write 
permissions). 

√ 

FC02 (0x02) Read Discrete Inputs It requests the status of 
discrete inputs (1-bit 
registers with read-only 
permission) 

√ 

FC03 (0x03) Read Holding Registers It requests the value of 
16-bit holding registers 
(read/write permissions) 

√ 



  D3.3 
  Version 1.0 
 

 

© SDN microSENSE consortium      Page | 56 
Public document 

  

FC04 (0x04) Read Input Registers It requests the value of 
16-bit input registers 
(read-only permission) 

√ 

FC05 (0x05) Write Single Coil It changes the value of a 
single coil. 

√ 

FC06 (0x06) Write Single Register It changes the value of a 
single holding register. 

√ 

FC15 (0x0F) Write Multiple Coils It changes multiple coil 
addresses in a single 
command. 

√ 

FC16 (0x10) Write Multiple 
registers 

It changes multiple 
holding registers in a 
single command. 

√ 

FC17 (0x11) Report Slave ID (Serial 
Line only) 

It reads various 
information related to 
the remote device, such 
as its status and the type 
description. 

√ 

FC22 (0x16) Mask Write Register It changes the content of 
a holding register based 
on the use of AND 
and/or OR logical masks 
and the holding 
register’s current 
content.  

X 

FC23 (0x17) Read/Write Multiple 
registers 

It operates as both read 
and write operations in a 
single Modbus 
command. The write 
process preceded the 
read process. 

X 

FC24 (0x18) Read FIFO Queue It reads the content of a 
register’s First-In-First-
Out (FIFO) queue 

X 

FC43/13 (0x2B / 0x0D) CANopen General 
Reference Request 
and Response PDU 

It encloses all services 
used to read or write the 
records a CAN-Open 
Device Object Dictionary 
as well as to monitor and 
handle the CANopen 
system. 

√ 

FC43/14 (0x2B / 0x0E) Read Device 
Identification 

It is used to read 
information related to 
the functional and 
physical description of 
the remote device. 

√ 

 



  D3.3 
  Version 1.0 
 

 

© SDN microSENSE consortium      Page | 57 
Public document 

  

Regarding the third research and development pillar mentioned above, the imitation of the Modbus 

payload values is carried out via a Generative Adversarial Network (GAN) [YU19] [PYY+19]. Figure 15 

shows in an abstract way the operation flow of the Modbus honeypot, which operates as a server. In 

particular, a PCAP file including the Modbus/TCP network traffic of the real asset is used to extract the 

respective Modbus/TCP addresses and values from the Modbus/TCP response packets (i.e., those 

packets that are returned as answers to the corresponding Modbus/TCP request packets). The Modbus 

values are used for the training of GAN, which then can generate similar Modbus/TCP payload values. 

On the other side, the Modbus addresses are stored in a configuration file, which indicates to Conpot 

how the Modbus/TCP payload values generated by GAN will be correlated with the respective Modbus 

addresses. Thus, Conpot, part of the Modbus honeypot is capable of emulating an asset operating as 

a server, generating similar Modbus/TCP payload values. 

 

Figure 16. Modbus honeypot Operation Flow as Server 

Figure 16 depicts the structure of GAN used for generating Modbus/TCP payload values when Modbus 

honeypot operates as a server. It consists of three main modules, namely a) Input Module, b) 

Generator Module and c) Discriminator Module. The Input Module generates noise data that are used 

by the Generator Module to produce the Modbus/TCP payload values imitating the real ones. Finally, 

the Discriminator Module is used only during the training process and classifies the values generated 

by the generator (during the training process) as real or fake, thus optimising the effectiveness of the 

Generator Module. 



  D3.3 
  Version 1.0 
 

 

© SDN microSENSE consortium      Page | 58 
Public document 

  

 

Figure 17. Modbus honeypot GAN Structure 

Figure 17 shows the operation flow when the Modbus honeypot operates as a client. Similarly to the 

server operation, a PCAP file including the Modbus/TCP network traffic of the real asset is used to 

extract in a CSV file the Modbus/TCP function codes, the starting addresses and the quantity of the 

requested information (e.g., registers, coils, discrete inputs). Then, this data is used to construct and 

transmit the Modbus/TCP requests to specific targets.  

 

Figure 18. Modbus honeypot Operation Flow as Client 



  D3.3 
  Version 1.0 
 

 

© SDN microSENSE consortium      Page | 59 
Public document 

  

5.2.3.3 Prototype architecture and components description 

 

Figure 19. Modbus honeypot Architecture 

Figure 19 presents the overall architecture of the Modbus honeypot, which can operate either as a 

server or client. In the first case where the Modbus honeypot operates as a server, it is composed of 

three components: 

• Training Module: The Training Module undertakes the training of GAN incorporated into 

Conpot, so that it can generate Modbus/TCP payload values similar to the real assets. The 

previous section and specifically Figure 16 illustrates and explains how the Modbus honeypot 

works when it emulates a server device.  

• GAN: GAN is responsible for generating Modbus/TCP payload values similar to those 

generated by the corresponding real asset. In the previous section, Figure 17 depicts the 

structure of GAN. Moreover, the previous section explains in detail how the proposed GAN 

works.  

• Conpot: Conpot interacts with the respective communication parties, transmitting the 

Modbus/TCP response packets. It encloses the appropriate data structures and characteristics 

for emulating a server device. 

On the other side, when the Modbus honeypot operates as a client it consists of the following 

components: 

• Data Pre-processing Module: The Data Pre-processing Module receives a PCAP file including 

Modbus network traffic data and extracts a CSV file containing the Modbus function codes, 

the starting addresses, and the quantity of the information values for the corresponding 

Modbus data object (e.g., register, discrete input, coil). The operation flow of the Modbus 

honeypot used as a client is described in the previous section. In particular, shows how this 

operation flow is carried out. 

• Client Module: The CSV file generated by the Data Pre-processing Module is used by the Client 

Module in order to construct Modbus/TCP request packets similar to those of the real device. 



  D3.3 
  Version 1.0 
 

 

© SDN microSENSE consortium      Page | 60 
Public document 

  

5.2.4 Honeypot Manager  

5.2.4.1 Functional description 
The Honeypot Manager is a component that belongs to the S-RAF component in the application layer 

(See Figure 4) and it has two main functionalities in the SDN-microSENSE project: 

1. Provides means to develop in an automatic way those honeypots that the security operator or 

manager decide to deploy in the network. 

2. Processes the information about unknown anomalies (like zero-day attacks) provided by the 

XL-SIEM and to indicate to the SDN controller the required information to re-arrange the 

honeypots network in order to collect information for these unknown anomalies detected by 

the ML models of the XL-EPDS.  

Figure 20 shows the logic process followed by the Honeypot Manager to carry out its two main 

functionalities.  

 

Figure 20. Honeypot Manager – Main functionalities  

Honeypot Manager – Deployment functionality 

The deployment functionality is based on the business logic defined in the SPEAR project [SPE19] but 

with significant changes. The first change is the technology used, it has been decided to change the 



  D3.3 
  Version 1.0 
 

 

© SDN microSENSE consortium      Page | 61 
Public document 

  

technology to do the Honeypot Manager more extensible and scalable. The second and more 

important change is that it has been included the functions from which that the security operator 

/manager in charge of the security actions of the network can select the honeypot that want to deploy 

in the network as an additional level of security.  

This functionality is responsible for automating and optimizing the honeypot deployment. Multiple 

actions are performed related to define a specific honeypot configuration: 

• It handles the lifecycle of the virtual machines in which the honeypots will be deployed. It 

creates, configures and destroys virtual machine instances within the infrastructure. Each of 

the honeypots planned to be installed in the EPES infrastructure as security mechanism are 

deployed in a separate virtual machine instance.  

• It handles the lifecycle of the honeypots to be deployed as security mechanism in the EPES 

infrastructure; it installs, configures, starts and stops the corresponding honeypots. There is a 

catalogue of different honeypots that can be planned to deploy.  

Honeypot Manager – Unknown anomalies functionality 

This functionality has the final objective of obtaining more information of how the IDEs can react in 

case of an unknown attack (zero-day attack).  

In order to gather this information, the Honeypot Manager analyse the information received from the 

XL-SIEM about zero-day attack alerts. The process for creating zero-day attack alerts involves several 

components, as depicted in Figure 21.  

 

Figure 21. General overview of the Honeypot Manager and its interaction with other SDN-
microSENSE components 

Zero-days attacks are detected by the Nightwatch component (XL-EDPS component), using 

information taken from the SDN Controller and from detectors (security sensors and honeypots) 



  D3.3 
  Version 1.0 
 

 

© SDN microSENSE consortium      Page | 62 
Public document 

  

deployed in the infrastructure to monitor. Nightwatch receives events in real time through a RabbitMQ 

queue where the XL-SIEM export the normalised events. Additionally, Nightwatch receives logs from 

the SDN controller related to network metrics (i.e., transmission rate). Both, events and SDN controller 

logs are used by the Nightwatch component to infer the occurrence of zero-day attacks. These positive 

occurrences are injected back in the XL-EDPS which will be used by the XL-SIEM to generate alerts 

associated to these zero-day attacks verdicts. These alerts generated by the XL-SIEM, including zero-

day attack ones, are exported to a RabbitMQ queue and are consumed by the Honeypot Manager.  

To optimize the deployment of components and to simplify the usage of interfaces, the Nightwatch 

detector reuses the communication channel established between detectors and the XL-SIEM: sensors 

and honeypots logs are sent to the XL-SIEM agent. 

Once the Honeypot Manager receives the unknown anomalies alerts, it analyses them in order to 

obtain information and to check if there is a possibility to rearrange the network traffic to one of the 

honeypots that are deployed in the EPES network. Two possibilities could be found:  

• The first possibility is that a honeypot that could receive traffic is already deployed in the 

infrastructure, so in this case the Honeypot Manager utilises the REST API of the SDN controller 

in order to instruct the transparent redirection of traffic, originally destined to the real device, 

towards the honeypot. The Honeypot Manager has already configured appropriately the 

honeypot to share the same network information with the real device, i.e. same MAC and 

same IP address. In this way, the attacker will assume that he communicates with the real 

device, although he communicates with the honeypot.  

• The second possibility is that in the honeypot catalogue of the Honeypot Manager, there is a 

honeypot capable to emulate the protocol related to the unknown anomaly, however this 

honeypot has not been deployed in the EPES network. In this case, the Honeypot Manager a) 

informs the Security Administrator that a honeypot with specific configurations needs to be 

deployed, b) the Security Administrator decides to deploy this honeypot, c) the Honeypot 

Manager deploys the honeypot and d) once the honeypot is running, the Honeypot Manager 

sends the appropriate REST API commands to the SDN controller in order to redirect the traffic, 

similarly to the first case. 

5.2.4.2 Technical description 
Back-end: 

The Honeypot Manager’s back-end consists of a Spring Boot application, managed by Maven, and 

contains the following modules: 

• Database: A MySQL database is accessed using Spring JPA Repository technology. 

• REST API: A definition of REST services using Spring REST technology. 

• Security: All REST services are secured through a role-based system. In addition, to access each 

of the REST services it is necessary to be authenticated through JSON Web Tokens (JWT 

technology). 

Front-end: 

Honeypot Manager’s front-end consists of a web application developed in HTML5 + CSS3 technologies. 

The selected scripting language to perform all the operations is AngularJS. 



  D3.3 
  Version 1.0 
 

 

© SDN microSENSE consortium      Page | 63 
Public document 

  

5.2.4.3 Prototype architecture and components description 
The Honeypot Manager tool has been designed following the high-level architecture shown in Figure 

22. 

 

Figure 22. Honeypot Manager - High Level Architecture 

The main components are: 

• The front-end is composed by four subcomponents in charge of presenting to the Security 

operator all the information that could be useful for managing the honeypots deployed in the 

EPES network. 

• The back-end component oversees the execution of the two main functionalities of this tool: 

deployment of the honeypots and analysing the unknown anomalies (UA) to rearrange the 

traffic to the honeypots. The back-end is also responsible to manage the communication with 

the XL- SIEM and the SDN-controller.  

Following, these two components are described in detail: 

Front-end 

This component has the main objective of presenting to the security operator all the information 

available about the honeypot deployed in the EPES network. Additionally, through this front end, the 

security operator can select and configure the honeypots to be deployed and manage (run and stop) 

the virtual machines where the honeypots are deployed. 

The main subcomponents are: 

1. Honeypot catalogue 

 



  D3.3 
  Version 1.0 
 

 

© SDN microSENSE consortium      Page | 64 
Public document 

  

 

Figure 23. Main Screen - Honeypot catalogue 

This section shows the honeypot catalogue. The following options are available: 

• Add/edit honeypot: It allows to insert/update a honeypot through the following 

dialog: 

 

Figure 24. Add/edit option - Honeypot catalogue 

• View detail: It allows to consult all the information stored of a honeypot: 



  D3.3 
  Version 1.0 
 

 

© SDN microSENSE consortium      Page | 65 
Public document 

  

 

Figure 25. View option - Honeypot catalogue 

• Delete honeypot: It allows to remove a honeypot from the database when it is not 

being used by a task. 

• Prepare for deploy: This option allows to prepare a honeypot to be deployed. Through 

this dialog: 

 

Figure 26. Prepare deployment option - Honeypot catalogue 

The security operator chooses the honeypots and where he wants to deploy them. Once the 

configuration is selected, it is converted to deployment tasks. 

2. Target host manager.  



  D3.3 
  Version 1.0 
 

 

© SDN microSENSE consortium      Page | 66 
Public document 

  

 

Figure 27. Main Screen - Target host manager 

The target host manager shows the list of the stored host machines. The following actions are 

available: 

• Add/edit host: It allows to insert/update a host through the following dialog: 

 

Figure 28. Add/edit host option - Target host manager 

• View detail: It allows to consult all the information stored of a host: 



  D3.3 
  Version 1.0 
 

 

© SDN microSENSE consortium      Page | 67 
Public document 

  

 

Figure 29. View host option - Target host manager 

• Delete host: It allows to remove a host from the database. 

 

3. Task deployment manager 

 

Figure 30. Main Screen – Task deployment manager 

This section manages the prepared deployment tasks. There are two tables: the first one shows the 

prepared tasks by the selection of the security operator, and the second one shows the tasks prepared 

based on the analysis done by the Unknown Anomalies component. 

The following options are available: 

• View detail: It allows to consult all the information about the task 



  D3.3 
  Version 1.0 
 

 

© SDN microSENSE consortium      Page | 68 
Public document 

  

 

Figure 31. View Option – Task deployment manager 

 

• Delete task: It allows to remove a task from the database. This option is only available 

when a task is “Pending” or “Finished”. 

• Deploy task: When the task state is “Pending”, this option allows to deploy a honeypot. 

• Undeploy task: When the task state is “Stopped”, this option allows to undeploy a 

honeypot. 

• Start task: When a task state is “Stopped”, this option allows to re-start the honeypot. 

• Stop task: When a task state is “Running”, this option allows to stop the honeypot. 

 

4. Unknown Anomalies manager 



  D3.3 
  Version 1.0 
 

 

© SDN microSENSE consortium      Page | 69 
Public document 

  

 

Figure 32. Main Screen – Unknown Anomalies manager 

This section shows all the unknown anomalies retrieved from the XL-SIEM component. The list of 

anomalies can be filtered by processed/no processed, and the detail of each alarm can be consulted 

through the dialog: 

 

Figure 33. Unknown Anomaly details – Unknown Anomalies manager 



  D3.3 
  Version 1.0 
 

 

© SDN microSENSE consortium      Page | 70 
Public document 

  

Once an anomaly is processed, it is allowed to remove it from the database. 

Back-end 

This component is in charge of 1) deploying the honeypots selected and 2) analysing unknown 

anomalies. 

Honeypot deployment 

1. Honeypot catalogue. This component is responsible for managing the honeypots registered 

and available to be deployed. It manages the following information: 

• Name/description: The name and a short description of each honeypot. 

• OVA file: The OVA virtual machine file containing the honeypot. 

• Username/password: The credentials to access the virtual machine containing the 

honeypot. 

• Master/slave behaviour: If a group of honeypots can behave like master slaves, 

communicating with each other. 

• Starting/stopping commands: The commands needed to start and/or stop a honeypot. 

• SSH port: The port configured to access the honeypot by SSH. 

• SSH forwarded port: The configured port, corresponding to the host machine, through 

which the Honeypot Manager will connect to the honeypot when it does not yet have an 

assigned IP address. 

• Open ports: The rules that specify which ports should be opened. For example, port 502 

for MODBUS. 

2. Target host manager. Honeypots are deployed on virtual machines. And these virtual 

machines run on a physical machine. This component is in charge of managing the information 

about these physical machines: 

• Description: A short description of the host machine. 

• IP address: The IP address assigned to the physical machine. 

• Network interface: The network interface used to establish a bridge between the host and 

the honeypots virtual machines. 

• SSH port: Its configured SSH port. 

• Username/password: The credentials to access the host machine. 

3. Task deployment manager. Honeypot Manager calls “task” to a prepared deployment of a 

honeypot in a host machine. This is, after choosing a honeypot of the catalogue and selecting 

a host machine, a deployment task is prepared. A task can be “Pending”, “Running”, “Stopped” 

and “Finished, and the most relevant information it collects is: 

• Honeypot: The selected honeypot. 

• Master/slave: If the honeypot behaves as master or slave (if supported). 

• State: The current state of the task: “Pending”, “Running”, “Stopped” or “Finished”. This 

state is mostly used to know if a honeypot is running or not. 

• Host IP: The IP address corresponding to the host machine. 

• Honeypot IP: The IP address assigned to the virtual machine containing the honeypot. 

Unknown Anomalies manager 

This component is composed by three main subcomponents 



  D3.3 
  Version 1.0 
 

 

© SDN microSENSE consortium      Page | 71 
Public document 

  

1. Alert connector. This component retrieves the alerts form the XL-SIEM correlation engine. This 

is done through a RabbitMQ server provided by the XL- SIEM. A detailed explanation on how 

this is done could be found in the section regarding the interfaces. 

2. Alert parser. The alerts retrieved from the XL-SIEM should be converted to an object that could 

be analysed by the UA Analyser subcomponent. The retrieved alert has more information that 

the one that it is required by the UA Analyser, so this parser is in charge to read all the 

information provided by the alert, select the relevant fields of the alert: PLUGIN_SID , 

SID_NAME, CATEGORY, SUBCATEGORY, PROTOCOL, SRC_IP, DST_IP, SRC_PORT and DST_PORT 

and transform this information in an object to be understandable by the UA Analyser. 

3. UA Analyser. The analyser with the information coming from the alert and the information 

that the information available in Honeypot Manager, i.e.: honeypot deployed, honeypots in 

the catalogue, type of attack etc. has two possibilities: 

• There is a deployed honeypot which can received the traffic rearrange with the 

information of the unknown anomalies, in this case the UA Analyser calls to the SDN 

connector. 

• There is a honeypot available in the catalogue, but it is not deployed in the EPES 

network. In this case, through the component UA manager of the front-end informs 

to the security manager of this option and if the decision is to deploy this honeypot, 

the process to deploy automatically the honeypot starts. Once the new honeypot is 

deployed and running, the UA Analyser calls to the SDN connector to rearrange the 

traffic to it.  

4. SDN Connector. This connector is responsible to carry out all the actions required to rearrange 

the traffic to the selected honeypot. The SDN connector receives the required information to 

implement the redirection from a) the Honeypot Manager, including IP and/or MAC addresses 

of both the attacker and the honeypot as well as b) the topology from the SDN controller in 

order to specify the switch port that the honeypot is connected to. More details about the 

specific REST API commands are provided in the Interfaces section. 

5.3 Interfaces model  

5.3.1 Honeypots: IEC 61850, IEC60870-5-104, Modbus 
As mentioned in section 5.1, the honeypots interact mainly with two other components in the SDN-

microSENSE ecosystem, XL-SIEM and SDN controller. 

Figure 34 shows graphically these interfaces to other SDN-Microsense architecture components: 



  D3.3 
  Version 1.0 
 

 

© SDN microSENSE consortium      Page | 72 
Public document 

  

 

Figure 34. Interface model 

SDN-Microsense Honeypot Manager component uses SSH communication protocol to establish a 

secure connection with honeypot machines where there are the honeypots. This connection is 

required to perform the following tasks related to honeypot virtual machine management: 

• Create, start, stop and destroy of honeypot virtual machine. 

• Network interface management. 

• Monitorization of virtual machine status. 

Furthermore, each honeypots machine has a direct connection with XL-SIEM Agent component 

developed by ATOS in the context of WP5.  

XL-SIEM exposes different interfaces to communicate security events and incidents. In the cases of the 

developed honeypots, the rsyslog interface exposed by XL-SIEM agent has been selected for event 

communication. Rsyslog is run into honeypot machine to recollect inputs to event file 

/var/log/honeypot.log and output the results to XL-SIEM by means of a secure connection. The 

connection is secured by TLS protocol. Rsyslog could deal with different input formats. As XL-SIEM does 

not define a specific message format for events the following JSON message format has been defined: 

• IEC61850 logs: 

{"eventId":"0001","name":"New connection","timestamp":"Tue Mar 19 22:04:00 4448757", 
"parameters":{"ip":"10.0.0.3","param2":"Another param"}} 

Detailed description of each parameter is given in “Technical description” section. Rsyslog Server 

deployed in XL-SIEM agent is listening for incoming events on port 5200. 

• IEC60870-5-104 logs 

{"timestamp": "2020-06-22T16:44:34.656128", "sensorid": "default", "id": "245cc5ac-ba77-4677-

4276-876976583791", "src_ip": "192.168.1.55", "src_port": 60839, "dst_ip": "192.168.1.135", 

"dst_port": 2404, "data_type": "iec104", "request": null, "response": null, "event_type": "STARTDT 

act"} 

• Modbus logs 



  D3.3 
  Version 1.0 
 

 

© SDN microSENSE consortium      Page | 73 
Public document 

  

{"timestamp": "2019-11-25T13:34:53.902098", "sensorid": "default", "id": "167b36dc-af68-4935-

8393-490972134866", "src_ip": "122.228.19.80", "src_port": 60824, "dst_ip": "83.212.75.106", 

"dst_port": 5020, "public_ip": "83.212.75.106", "data_type": "modbus", "request": null, 

"response": null, "event_type": "NEW_CONNECTION"} 

5.3.2 Honeypot Manager 
Additionally to the interface mentioned in the section above, the Honeypot Manager as commented 

in in the section 5.1, Honeypot Manager interacts with XL-EPDS to retrieve information of the unknown 

anomalies (S-RAF/XL-EPDS-01) and SDN-controller to provides information to forward network traffic 

to the deployed honeypots (S-RAF_NBI-1). This section explains how these communications are done. 

XL-EPDS (S-RAF/XL-EPDS-01) 

As shown in Figure 35, the Honeypot Manager receives alerts from the XL-SIEM correlation engine. 

This is done through a RabbitMQ server that manages the subscription of consumers to these alerts. 

This RabbitMQ server is working on a fan-out mode, which means that an exchange queue is used by 

the XL-SIEM to export alerts as shown in Figure 35. When a component wants to consume such as 

alerts it must create a new queue and attach it to the exchange queue used by the XL-SIEM. This is a 

good working mode because in the SDN-microSENSE project it would be more than one component 

consuming these alerts, and it is a good way to guarantee that all alerts are delivered to all components 

without losing information. If all components consuming alerts were attached to the same queue just 

one consumer would get an alert because messages are deleted from queues when consumed. 

 

Figure 35. Fan-out queue configuration used to feed the Honeypot Manager 

Figure 36 shows a screenshot of the RabbitMQ control panel showing the exchange queue for the XL-

SIEM alerts and the Honeypot Manager queue blinded to the exchange queue. 



  D3.3 
  Version 1.0 
 

 

© SDN microSENSE consortium      Page | 74 
Public document 

  

 

Figure 36. RabbitMQ exchange queue for alerts 

SDN-controller (S-RAF_NBI-1)  

The Honeypot Manager communicates with the SDN controller via the SDN connector to insert specific 

rules that manage traffic of honeypots. The SDN connector interacts with SDN-C for the following 

reasons: 

• To retrieve the topology 

• To initialise the communications of a honeypot 

• To redirect traffic towards a honeypot 

• To revert the traffic redirection 

When the Honeypot Manager deploys a new honeypot that has the same network configurations with 

a real device, by default all traffic towards the honeypot should be blocked. To implement this, first, 

the SDN connector obtains the network topology via the topology REST API by issuing the HTTP GET 

command /v1.0/topology/hosts. This command can be executed to the first available SDN-C. A 

response example is provided bellow: 

 [ 

    { 

        "mac": "0c:85:e2:13:c9:00", 

        "ipv4": [ 

            "172.16.1.1" 

        ], 

        "ipv6": [ 

            "fe80::e85:e2ff:fe13:c900" 



  D3.3 
  Version 1.0 
 

 

© SDN microSENSE consortium      Page | 75 
Public document 

  

        ], 

        "port": { 

            "dpid": "0000aae8061f594b", 

            "port_no": "00000003", 

            "hw_addr": "3e:db:af:ef:64:b0", 

            "name": "eth3" 

        } 

    }, 

    { 

        "mac": "00:50:79:66:68:03", 

        "ipv4": [], 

        "ipv6": [ 

            "::" 

        ], 

        "port": { 

            "dpid": "00004a4b56428b4e", 

            "port_no": "00000003", 

            "hw_addr": "46:25:b6:ac:a5:f1", 

            "name": "eth3" 

        } 

    } 

] 

By searching for the JSON object that has the MAC address of the deployed honeypot (mac field), two 

properties are obtained: 

• The datapath id (dpid, SDN switch identification), to which the honeypot is connected. Future 

commands should be addressed to this datapath id. 

• The switch port number that the honeypot occupies (port_no)  

If the honeypot’s MAC address has not been found by asking the first available SDN-C, then iteratively 

all SDN-C´s are being asked. The list of all available SDN controllers is obtained from the 

Synchronisation and Coordination Service (SCS). 

Moreover, the SDN connector searches the above JSON objects for the attacker’s MAC or IP address 

to obtain the switch port that they are connect to. 

After the required information has been obtained (datapath id, attacker’s port, honeypot’s port), the 

SDN Connector retrieves the master controller for the specific datapath id, via SCS, and executes the 

HTTP POST command /stats/flowentry/add with the following JSON data included in the body: 

 { 
    "dpid": "00004a4b56428b4e" 

    "priority": 10, 

    "cookie_id": 10, 

    "table_id": 100 

    "match": { 

        "in_port": 6, 



  D3.3 
  Version 1.0 
 

 

© SDN microSENSE consortium      Page | 76 
Public document 

  

        "eth_src": "46:25:b6:ac:a5:f1", 

    }, 

    "actions": [] 

} 

The JSON object is explained as follows: 

• dpid refers to the datapath id obtained via the topology REST API 

• priority determines the priority level of the flow. Greater priority implies that the flow will be 

looked up first by the switch. The value 10 is reserved by SDN-C for this type of flow. 

• cookie_id is a number that the Honeypot Manager always must include in any command to 

SDN-C. This number is used internally by SDN-C to track and manage all instructions inserted 

by a particular SDN app. 10 is the number reserved for commands inserted by the Honeypot 

Manager. 

• table_id is the table ID to insert the flow. The Honeypot Manager should always insert new 

flows to table 100. 

• In the match field, in_port specifies the port obtained also by the topology REST API and 

eth_src matches the MAC address of the honeypot. This filter matches all ingress traffic 

generated by the honeypot. 

• Finally, the empty actions field implies that the matches packets/frames will be dropped. In 

other words, this means that the honeypot will be able to receive traffic, but its responses are 

dropped. 

Next step is to redirect traffic originated from the attacker to the honeypot. To achieve this, the SDN 

connector asks again about the master controller and then issues the HTTP POST command 

/stats/flowentry/add with the following content. Note that the port in actions refers to the honeypot’s 

port and has been obtained via the topology API: 

{ 

    "dpid": "00004a4b56428b4e" 

    "priority": 9, 

    "cookie_id": 10, 

    "table_id": 100 

    "match": {   

       "eth_dst": "46:25:b6:ac:a5:f1",   //honeypot MAC 

       "eth_src": "00:25:b6:ac:a5:f0",   //attacker MAC 

    }, 

    "actions": [{ 

        "type": "OUTPUT" 

        "port": 6  

    }] 

} 

Right after, the SDN connector inserts the appropriate flow to redirect the honeypot’s replies to the 

attacker. Note that the port included in actions refers to the attacker’s port obtained via the topology 

API: 

{ 

    "dpid": "00004a4b56428b4e" 

    "priority": 9, 



  D3.3 
  Version 1.0 
 

 

© SDN microSENSE consortium      Page | 77 
Public document 

  

    "cookie_id": 10, 

    "table_id": 100 

    "match": {   

       "eth_dst": "00:25:b6:ac:a5:f0",   // attacker MAC 

       "eth_src": "46:25:b6:ac:a5:f1",   // honeypot MAC 

    }, 

    "actions": [{ 

        "type": "OUTPUT" 

        "port": 1  

    }] 

} 

Finally, if the SDN Connector wants to revoke any of the aforementioned commands, then the SDN 

Connector should issue an HTTP POST command to /stats/flowentry/delete_strict with the exact 

same body content as the flow that the connector intends to delete. 

5.4 Deployment details 

5.4.1 Honeypots: IEC 61850, IEC60870-5-104, Modbus 
These honeypots are deployed using Honeypot Manager. Following the description on how this 

deployment is done. 

Prerequisites: 

• Oracle VirtualBox 6.0. 

• SSH port (usually 22) and 2200 open to the IP address of the machine containing the Honeypot 

Manager. 

• The OVA file containing the honeypot must have a “NAT adapter” and a “Bridge adapter”: 

 
 

 
 

• The OVA file containing the honeypot must have the Netplan configured that picks up the 

Bridge adapter connected to the DHCP server. For example: 

Steps to deploy a honeypot: 

The steps described in Figure 37 have to be followed: 



  D3.3 
  Version 1.0 
 

 

© SDN microSENSE consortium      Page | 78 
Public document 

  

 

Figure 37. Steps to deploy a honeypot using the Honeypot Manager 

Step 1: Access to the Honeypot Manager: 

Login in the Honeypot Manager front-end as administrator or as Security Operator (Figure 38). 

 

Figure 38. Login Screen – Honeypot Manager 

Step 2: Prepare the deployment: 

• Check that there are Hosts available, and that there are honeypots in the catalogue. 

 

Figure 39. Manage host – Honeypot Manager 



  D3.3 
  Version 1.0 
 

 

© SDN microSENSE consortium      Page | 79 
Public document 

  

 

Figure 40. Manage Honeypots – Honeypot Manager 

• In the “Manage honeypots” click on the “tool” icon to configure a new deployment 

 

• Select the number of instances to deploy, the target IP address, and click the  button. 

 

Figure 41. Deployment configuration – Honeypot Manager 

• The new deployments will be added to the list of prepared deployments: 

 

Figure 42. Deployments prepared (example)– Honeypot Manager 

• When the configuration is done, click on “Prepare” button. It will appear as a “Task” in the 

Task Control Panel screen: 



  D3.3 
  Version 1.0 
 

 

© SDN microSENSE consortium      Page | 80 
Public document 

  

 

Figure 43. Task management screen– Honeypot Manager 

Step 3: Manage the Task(s) generated: 

In the Task list, select the honeypot Task to be deployed (Figure 43). In this screen, the Security 

operator can view the Task detail, remove Tasks, and perform one of these operations on honeypots: 

deploy, start, stop and undeploy. 

Step 4: Deploy the honeypot: 

Once a deployment Task is selected, click on the “Deploy” button: 

 

Figure 44. Start deployment– Honeypot Manager 

The deployment will start: 

 

Figure 45. Deployment in progress– Honeypot Manager 

Once the deployment is completed, the Task will change its state to “Running”, and the assigned IP 

address to the honeypot will be shown: 

 

Figure 46. Honeypot running– Honeypot Manager 



  D3.3 
  Version 1.0 
 

 

© SDN microSENSE consortium      Page | 81 
Public document 

  

If a Task is “Running”, a “Stop” button appears, clicking on it, the machine will be stopped: 

 

Figure 47. Honeypot status management– Honeypot Manager 

If a Task is “Stopped”, the options of “Restart” and “Undeploy” will appear: 

• Restart: the honeypot will be restarted, and the Task will change its state to “Running”. 

• Undeploy: the honeypot will be destroyed, and the Task will change its state to “Finished”. 

5.4.2 Honeypot Manager 
Prerequisites 

• A computer with Linux Ubuntu 10.04 installed. 

• Docker server installed. 

• SSH port (usually 22) open to the IP address of the machine that will host the deployed 

honeypots. 

Honeypot Manager installation: 

Create a new directory in “/home/<user>”, and copy inside the four dockerized components of the 

Honeypot Manager: 

• sdn.honeypot.manager.mysql.server 

• sdn.honeypot.manager.mysql.client 

• sdn.honeypot.manager.backend.server 

• sdn.honeypot.manager.frontend.server 

Build Docker images: 

Build MySQL Server Docker image: 

cd /home/<user>/SDN_HPM/honeypot.manager.mysql.server 
sudo docker build -f Dockerfile -t sdn/honeypot.manager.mysql.server . 

 

Build MySQL Client Docker image: 

cd /home/<user>/SDN_HPM/honeypot.manager.mysql.client 
sudo docker build -f Dockerfile -t sdn/honeypot.manager.mysql.client . 

 

Build Backend Docker image: 



  D3.3 
  Version 1.0 
 

 

© SDN microSENSE consortium      Page | 82 
Public document 

  

cd /home/vlad/SDN_HPM/honeypot.manager.backend.server 
sudo docker build -f Dockerfile -t sdn/honeypot.manager.backend.server . 

 

Build Frontend Docker image: 

cd /home/vlad/SDN_HPM/honeypot.manager.frontend.server/src/main/docker 
sudo docker build -f Dockerfile -t sdn/honeypot.manager.frontend.server . 

 

Create a Docker network: 

In order for the different components to communicate with each other, it is necessary to configure a 

Docker network: 

sudo docker network create --driver=bridge sdn_hm_network > /dev/null 2>&1 || true 

 

Run Docker images: 

Run MySQL Server Docker image: 

sudo docker run -d -p 3306:3306 --name sdn.hm.mysql.server --env 
MYSQL_ROOT_PASSWORD=sdn_hm_pwd --network sdn_hm_network 
sdn/honeypot.manager.mysql.server 

Run MySQL Client Docker image: 

sudo docker run -d --name sdn.hm.mysql.client --restart=no --env MYSQL_DB_USER=root --
env MYSQL_DB_PASSWORD= sdn_hm_pwd --env MYSQL_DB_NAME=sdn_hm_manager --
env MYSQL_DB_HOST=sdn.hm.mysql.server --network sdn_hm_network 
sdn/honeypot.manager.mysql.client 

Run Backend Docker image: 

sudo docker run -d -p 10001:8080 --name sdn.hm.backend.server --network 
sdn_hm_network sdn/honeypot.manager.backend.server 

Run Frontend Docker image: 

sudo docker run -d -p 82:80 --name sdn.hm.frontend.server --network sdn_hm_network 
sdn/honeypot.manager.frontend.server 

 

Check the installation: 

In order to check if the Honeypot Manager is properly running, type in a web browser: 

http://<host>:82 

 

The login screen appears and to access as Administrator should use the following credentials: 



  D3.3 
  Version 1.0 
 

 

© SDN microSENSE consortium      Page | 83 
Public document 

  

• User: admin 

• Password: sdn_hm_admin 

To access as a Security Operator: 

• User: operator 

• Password: sdn_hm_operator 

  



  D3.3 
  Version 1.0 
 

 

© SDN microSENSE consortium      Page | 84 
Public document 

  

6 SDN-Microsense Assessment: Unit Testing  
The testing strategy defined in the D2.4, “Pilot, Demonstration & Evaluation Strategy” [SMS20-D24] 

defines the Unit Testing Phase as the phase where the operation of each SDN-microSENSE component 

in terms of the corresponding technical specifications defined in D2.3 is tested. The unit tests will be 

implemented in the relevant technical deliverables in WP3, WP4 and WP5 aiming to cover the 

respective technical specifications defined in D2.3. If there are implementation constraints or 

necessary interconnections with other components, the corresponding unit tests can also be 

implemented in D7.4 named Early Prototype, which will describe the first version of the integrated 

SDN-microSENSE platform. 

In this deliverable unit test cases have been implemented for the components developed within task 

3.3, namely the components previously described in sections 5: IEC 61850 honeypot, IEC 60870-5-104 

honeypot, Modbus honeypot and Honeypot Manager. The unit test cases are referencing the 

specification defined in D2.3 [SMS20-D23]; those specifications have been previously elicited from the 

user, security and privacy requirements defined in D2.2 [SMS20-D22]. 

The details of the performed test cases and their results are shown below. 

6.1 IEC 61850 Honeypot 

6.1.1 Unit testing scenario 
Figure 48 shows the testing scenario deployed in Tecnalia’s Smart Grid Cybersecurity laboratory to 

validate IEC 61850 honeypot application functionality. As it has been described in the technical 

description section of the honeypot, the application could be easily built for any target platform. Thus, 

a Raspberry Pi 4, connected to laboratory’s switch, has been selected to deploy honeypot application. 

As client application, laboratory’s existing SCADA has been used to stablish connections and request 

different actions against the honeypot using IEC 61850/MMS communications standard. An output 

connection to the internet is open to allow the honeypot to communicate the registered events to the 

XL-SIEM. 

 

Figure 48. IEC 61850 testing scenario 

6.1.2 Unit tests 
 



  D3.3 
  Version 1.0 
 

 

© SDN microSENSE consortium      Page | 85 
Public document 

  

Test Case ID HP_61850_01 Component IEC 61850 honeypot 

Description The honeypot registers new connection events when it receives new connection 

attempts directed to TCP port number 102  

SPEC ID SPEC-F4 Priority High 

Prepared 

by 

TECNALIA Tested by TECNALIA 

Pre-

condition(s

) 

• SCADA has network connectivity with IEC 61850 honeypot 

• IEC 61850 Honeypot must be up and listening on port 102 

• Rsyslog daemon must be installed and running 

Test steps 

1 IEC 61850 client attempts to open a new MMS connection on port 102. 

2 Test if the connection has been successfully established 

3 Test if the honeypot has correctly registered the event on /var/log/honeypot.log 

Input data N/A 

Result • Step 1 and Step 2:  

 

• Step 3 

 



  D3.3 
  Version 1.0 
 

 

© SDN microSENSE consortium      Page | 86 
Public document 

  

Test Case 

Result 

Achieved 

 

Test Case 

ID 

HP_61850_02 Component IEC 61850 honeypot 

Description The honeypot registers every control operation on CSWI logical node position which 

would indicate that an attacker is trying to open/close the circuit breaker. 

SPEC ID SPEC-F4 Priority High 

Prepared 

by 

TECNALIA Tested by TECNALIA 

Pre-

condition(s

) 

• SCADA has network connectivity with IEC 61850 honeypot 

• IEC 61850 Honeypot must be up and listening on port 102 

• Rsyslog daemon must be installed and running 

• When the honeypot app starts the status of the breaker is closed 

Test steps 

1 IEC 61850 client opens a new MMS connection on port 102. 

2 Test if the connection has been successfully established 

3 Test if the honeypot has correctly registered the event on /var/log/honeypot.log 

4 Test if the Circuit Breaker status is correctly displayed on the SCADA’s HMI 

5 Test to open the Circuit Breaker sending control operation on CSWI position 

6 Test if the response of the honeypot to the Control Operation is SUCCESS 

7 Test if the honeypot has registered a “Control Operation” event with ID 0003 on 

/var/log/honeypot.log 

8 Test to close the Circuit Breaker sending control operation on CSWI position 

9 Test if the response of the honeypot to the Control Operation is SUCCESS 

10 Test if the honeypot has registered a “Control Operation” event with ID 0003 on 

/var/log/honeypot.log 

Input data N/A 

Result • Step 1 and Step 2 



  D3.3 
  Version 1.0 
 

 

© SDN microSENSE consortium      Page | 87 
Public document 

  

 

• Step 3 

 

• Step 4 

 

• Step 5 

 



  D3.3 
  Version 1.0 
 

 

© SDN microSENSE consortium      Page | 88 
Public document 

  

 

• Step 6 

 

 

• Step 7 



  D3.3 
  Version 1.0 
 

 

© SDN microSENSE consortium      Page | 89 
Public document 

  

 

• Step 8 

 

 

• Step 9 

 

• Step 10 



  D3.3 
  Version 1.0 
 

 

© SDN microSENSE consortium      Page | 90 
Public document 

  

 

Test Case 

Result 

Achieved 

 

Test Case ID HP_61850_03 Component IEC 61850 honeypot 

Description The honeypot registers MMS read operations on data objects and attributes. 

SPEC ID SPEC-F4 Priority High 

Prepared 

by 

TECNALIA Tested by TECNALIA 

Pre-

condition(s

) 

• SCADA has network connectivity with IEC 61850 honeypot 

• IEC 61850 Honeypot must be up and listening on port 102 

• Rsyslog daemon must be installed and running 

• On honeypot initialization PhyHealth Data object stVal is set to “Ok” 

Test steps 

1 IEC 61850 client opens a new MMS connection on port 102. 

2 Test if the connection has been successfully established 

3 Test if the honeypot has correctly registered the event on /var/log/honeypot.log 

4 IEC 61850 sends read request to retrieve status data attribute of PhyHealth Data Object on 

LPHD Logical Node.  

5 Test if honeypot returns the correct value for PhyHealth Data Object that has been 

established in initialization time 

6 Test if the honeypot has registered a “Read Operation” event with ID 0004 on 

/var/log/honeypot.log 

Input data N/A 

Result • Step 1 and Step 2 



  D3.3 
  Version 1.0 
 

 

© SDN microSENSE consortium      Page | 91 
Public document 

  

 

• Step 3 

 

• Step 4 

 

• Step 5 



  D3.3 
  Version 1.0 
 

 

© SDN microSENSE consortium      Page | 92 
Public document 

  

 

• Step 6 

 

Test Case 

Result 

Achieved 

 

Test Case ID HP_61850_04 Component IEC 61850 honeypot 

Description Test case to verify honeypot’s control operation interlocking logic. 

SPEC ID SPEC-F4 Priority High 

Prepared 

by 

TECNALIA Tested by TECNALIA 

Pre-

condition(s

) 

• SCADA has network connectivity with IEC 61850 honeypot 

• IEC 61850 Honeypot must be up and listening on port 102 

• EnaCls and EnaOpn Data Object values in CSWI are True at initialization time. 

• When the honeypot app starts the status of the breaker is closed 

Test steps 



  D3.3 
  Version 1.0 
 

 

© SDN microSENSE consortium      Page | 93 
Public document 

  

1 IEC 61850 client opens a new MMS connection on port 102. 

2 Test if the connection has been successfully established 

3 Test if the honeypot has correctly registered the event on /var/log/honeypot.log 

4 Send control operation on CSWI to change Circuit Breaker position to closed 

5 Test if the honeypot rejects the operation due to “Object Access Denied” cause. 

6 Test if the honeypot has registered a “Control Operation” event with ID 0003 and the cause 

for the denial on /var/log/honeypot.log  

7 Send control operation on CSWI to change Circuit Breaker position to open 

8 Test if the response of the honeypot to the ‘Control Operation’ is SUCCESS 

9 Test if the honeypot has registered a “Control Operation” event with ID 0003 and the cause 

for the denial on /var/log/honeypot.log 

10 Test if Circuit Breaker position status has changed in SCADA’s HMI to opened 

11 Send control operation on CSWI to change Circuit Breaker position to opened 

12 Test if the honeypot rejects the operation due to “Object Access Denied” cause 

13 Test if the honeypot has registered a “Control Operation” event with ID 0003 and the cause 

for the denial on /var/log/honeypot.log 

14 Change EnaCls to FALSE state 

15 Send control operation on CSWI to change Circuit Breaker position to closed 

16 Test if the honeypot rejects the operation due to “Object Access Denied” cause 

17 Test if the honeypot has registered a “Control Operation” event with ID 0003 and the cause 

for the denial on /var/log/honeypot.log 

18 Change EnaOpn to FALSE state 

19 Send control operation on CSWI to change Circuit Breaker position to opened 

20 Test if the honeypot rejects the operation due to “Object Access Denied” cause 

21 Test if the honeypot has registered a “Control Operation” event with ID 0003 and the cause 

for the denial on /var/log/honeypot.log 

Input data N/A 

Result • Step 1 and Step 2 



  D3.3 
  Version 1.0 
 

 

© SDN microSENSE consortium      Page | 94 
Public document 

  

 

• Step 3 

 

• Step 4 

 

• Step 5 

 



  D3.3 
  Version 1.0 
 

 

© SDN microSENSE consortium      Page | 95 
Public document 

  

• Step 6 

 

• Step 7 

 

• Step 8 

 



  D3.3 
  Version 1.0 
 

 

© SDN microSENSE consortium      Page | 96 
Public document 

  

• Step 9 

 

• Step 10 

 

• Step 11 

 

• Step 12 



  D3.3 
  Version 1.0 
 

 

© SDN microSENSE consortium      Page | 97 
Public document 

  

 

• Step 13 

 

• Step 15 

 

• Step 16 

 

• Step 17 



  D3.3 
  Version 1.0 
 

 

© SDN microSENSE consortium      Page | 98 
Public document 

  

 

• Step 19 

 

• Step 20 

 

• Step 21 

 

 

Test Case 

Result 

Achieved 

 



  D3.3 
  Version 1.0 
 

 

© SDN microSENSE consortium      Page | 99 
Public document 

  

Test Case ID HP_61850_05 Component IEC 61850 honeypot 

Description Test case to verify if the honeypot is able to deal with Buffered and Unbuffered 

reports. 

SPEC ID SPEC-F4 Priority High 

Prepared 

by 

TECNALIA Tested by TECNALIA 

Pre-

condition(s) 
• SCADA has network connectivity with IEC 61850 honeypot 

• IEC 61850 Honeypot must be up and listening on port 102 

• Rsyslog daemon must be installed and running 

• One buffered and one unbuffered report are defined into honeypot ICD file. 

The datasets are configured to be correctly interpreted by SCADA HMI. 

Test steps 

1 IEC 61850 client opens a new MMS connection on port 102. 

2 Test if the connection has been successfully established 

3 Test if the honeypot has correctly registered the event on /var/log/honeypot.log 

4 Test if the Circuit Breaker status is correctly displayed on the SCADA’s HMI 

5 Test if unbuffered Reports are periodically transmitted from honeypot to SCADA 

6 Send control operation on CSWI to change Circuit Breaker position to opened 

7 Test if a Buffered Report is generated by the honeypot informing the SCADA of circuit breaker 

status change 

Input data N/A 

Result • Step 1 and Step 2 

 

• Step 3 

 

• Step 4 



  D3.3 
  Version 1.0 
 

 

© SDN microSENSE consortium      Page | 100 
Public document 

  

 

• Step 5 

 

• Step 6 



  D3.3 
  Version 1.0 
 

 

© SDN microSENSE consortium      Page | 101 
Public document 

  

 

 

• Step 7 

 



  D3.3 
  Version 1.0 
 

 

© SDN microSENSE consortium      Page | 102 
Public document 

  

 

Test Case 

Result 

Achieved 

6.2 IEC 60870-5-104 Honeypot 
 

Test Case ID HP_60870_104_01 Component IEC 60870-5-104 

honeypot 

Description The Master sends a Counter Interrogation command to RTU (IEC104 honeypot) using 

I-format to performed information transfer. The RTU supports the Counter 

Interrogation Mode A (Counter freeze without reset). The Counter Interrogation 

command freezes totals at common time. 

SPEC ID SPEC-F1, SPEC-F4 Priority Medium 

Prepared 

by 

SID Tested by SID 

Pre-

condition(s

) 

• There is a network connection with IEC 60870-5-104 honeypot 

• IEC 60870-5-104 honeypot must be up and listening on port 2404 

• Install and execute the Rsyslog daemon. 

Test steps 

1 IEC4 client (Slave) attempts to connect with the Master. 



  D3.3 
  Version 1.0 
 

 

© SDN microSENSE consortium      Page | 103 
Public document 

  

2 Test if the Master sends an "Activation" command, with IOA=0. The element includes 

information for the Counter Interrogation command. 

3 Test if the RTU receives the "Counter Interrogation command" from the Master. The length of 

the APDU is 20 (in decimal). The "Type identification" is C_CI_NA_1 (Counter interrogation 

command). The number of objects is 1. The related "Counter interrogation request qualifiers" 

is set to 5 (general counter interrogation) which references every counter in the RTU. Note that, 

the initial value of the Counter is 0. 

4 Test if the RTU responds with the "Activation Confirmation". It supports Mode A, the Sequence 

number (SQ) for the IOA is increased. The RTU changes the counter value to 1. The RTU sends 

the Counter Interrogation value in the response to the Master. 

5 Test if the RTU sends the "Activation termination" for the Counter interrogation command. 

6 Test if the IEC104 honeypot has registered this event on the “iec104_logs.log” 

Input data N/A 

Result The “Counter Interrogation command” is sent. 

 

It was received by the RTU 

 

Test Case 

Result 

Achieved 

 

Test Case ID HP_60870_104_02 Component IEC 60870-5-104 

honeypot 

Description The Master sends a Read Command (C_RD_NA_1) to RTU (IEC104 honeypot) using 

I-format to perform the information transfer. The “Read command" is called with 

the an IOA address in order to have each value of a register. It responds by the value 

from the corresponding IEC104 register/bit. 

SPEC ID SPEC-F1, SPEC-F4 Priority High 

Prepared 

by 

SID Tested by SID 



  D3.3 
  Version 1.0 
 

 

© SDN microSENSE consortium      Page | 104 
Public document 

  

Pre-

condition(s) 

• There is a network connection with IEC 60870-5-104 honeypot 

• IEC 60870-5-104 honeypot must be up and listening on port 2404 

• Install and execute the Rsyslog daemon. 

Test steps 

1 IEC4 client (Slave) attempts to connect with the Master. 

2 Test if the Master sends an "Activation" command, with IOA=0. The element includes 

information for the “Read command”. 

3 Test if the RTU receives the "Read command" from the Master 

4 Test if more than one value is requested, then the meter responds with a sequence of 

information elements ASDU with the SQ bit set to 1. 

5 Test if a single value is request, then the meter responds to a read request with a sequence 

of information objects ASDU with the SQ bit in the variable structure qualifier set to 0. 

6 Test if the RTU sends the "Activation termination" for the “Read Command”. 

7 Test if the IEC104 honeypot has registered this event on the “iec104_logs.log” 

Input data N/A 

Result The RTU receives the command to Read. 

 

Test Case 

Result 

Achieved 

 

Test Case 

ID 

HP_60870_104_03 Component IEC 60870-5-104 

honeypot 

Descriptio

n 

The IEC 60870-5-104 port is open.  

SPEC ID FR-UR-02, FR-UR-03 Priority High 

Prepared 

by 

SID Tested by SID 

Pre-

condition(

s) 

• There is a network connection with IEC 60870-5-104 honeypot 

• IEC 60870-5-104 honeypot must be up and listening on port 2404 

• Install and execute the Rsyslog daemon.  

Test steps 

1 Test if the port 2404 is open. 



  D3.3 
  Version 1.0 
 

 

© SDN microSENSE consortium      Page | 105 
Public document 

  

Input data N/A 

Result We can observe that the IEC104 server is running and the port 2404 is opened. There 

is no error. 

 

Test Case 

Result 

Achieved 

 

6.3 Modbus Honeypot 

 

Test Case ID HP_Modbus_01 Component Modbus honeypot 

Description This unit test aims to check and verify that the Modbus/TCP service is used 

normally by the VM where the Modbus honeypot operates as a server (e.g., 

RTU). To this end, the nmap tool was used in order to scan and identify which 

network services are executed by the VM in which the Modbus honeypot 

operates. 

Spec ID SPEC-F4 Priority High 

Prepared by UOWM Tested by UOWM 

Pre-condition(s) - 

Test steps 

1 The Modbus honeypot was deployed successfully in a VM. 

2 The Modbus honeypots is executed, utilising the following commands. 

1. cd Documents 



  D3.3 
  Version 1.0 
 

 

© SDN microSENSE consortium      Page | 106 
Public document 

  

2. ./run-modbus_honeypot.sh 

3 Nmap is used in order to check and verify that the Modbus service successfully operates in 

the VM, which hosts the Modbus honeypot. The following command is used. 

nmap -PN -p 502 99.66.198.248 

Input data - 

Result The following image shows that the Modbus/TCP is used by the Modbus 

honeypot. 

 
Figure 49. Nmap execution which validates that the Modbus/TCP service 

is used by the Modbus honeypot which operates as a server. 

Test Case Result Achieved 

 

Test Case ID HP_Modbus_02 Component Modbus honeypot 

Description This unit test aims to check the capability of the Modbus honeypot to operate as a 

client (MTU/HMI). To this end, Modbus/TCP request packets are transmitted, 

including a) function code 01 (Read Coils), b) function code 02 (Read Discrete Input) 

and c) function code 03 (Read Holding Register).  

Spec ID SPEC-F4 Priority High 

Prepared 

by 

UOWM Tested by UOWM 

Pre-

condition(s

) 

- 

Test steps 

1 The Modbus honeypot was deployed successfully in a VM. 

2 The Modbus honeypot is executed in the client mode (e.g., MTU/HMI), using the following 

command: 



  D3.3 
  Version 1.0 
 

 

© SDN microSENSE consortium      Page | 107 
Public document 

  

python3 modbus_hmi.py 

3 The Modbus honeypot generates the following Modbus/TCP request packets. 

1. Modbus/TCP request packet with the function code 01 (Read Coils) 

2. Modbus/TCP request packet with the function code 02 (Read Discrete Inputs) 

3. Modbus/TCP request packet with the function code 03 (Read Holding Registers) 

Input data - 

Result The following image shows the generation and transmission of the Modbus/TCP 

request packet with the function code 01 (Read Coils). 

 
Figure 50. Generation and Transmission of the Modbus/TCP request packet 

with the function code 01 (Read Coils). 

The following image depicts the generation and transmission of the Modbus/TCP 

request packet with the function code 02 (Read Discrete Inputs) 

 
Figure 51. Generation and Transmission of the Modbus/TCP request packet 

with the function code 02 (Read Discrete Inputs). 

The following image shows the generation and transmission of the Modbus/TCP 

request packet with the function code 03 (Read Holding Registers) 

 
Figure 52. Generation and Transmission of the Modbus/TCP request packet 

with the function code 03 (Read Holding Register). 

Test Case 

Result 

Achieved 

 

Test Case ID HP_Modbus_03 Component Modbus honeypot 

Description This unit test aims to check and verify that the Modbus honeypot (operating as a 

client) can be seen as a real PLC, which utilises the Modbus protocol. To this end, 



  D3.3 
  Version 1.0 
 

 

© SDN microSENSE consortium      Page | 108 
Public document 

  

the Modbus honeypot was configured to emulate the characteristics of real 

Unitronics Vision 700 PLC. The Nmap Scripting Engine (NSE) was used to execute 

some diagnostic tests against the Modbus honeypot.  

Spec ID SPEC-F4 Priority High 

Prepared by UOWM Tested by UOWM 

Pre-

condition(s) 
- 

Test steps 

1 The Modbus honeypot was deployed successfully in a VM. 

2 The Modbus honeypots is executed, utilising the following commands. 

1. cd Documents 

2. ./run-modbus_honeypot.sh 

3 The following Nmap NSE command is used. 

nmap -Pn –script modbus-discover.nse –script-args=‘modbus-discover.aggresive=true‘ -p 502 

94.66.198.248 

Input data - 

Result The following image shows that the Modbus honeypot was recognised as a 

Unitronics Vision 700 PLC. 

 
Figure 53. Recognition of the Modbus honeypot (operating as a client) as a 

Unitronics Vision 700 PLC. 

Test Case 

Result 

Achieved 

 

Test Case ID HP_Modbus_04 Component Modbus honeypot 

Description This unit test aims to validate that the Modbus function code 22 (Mask Write 

Register) is successfully supported by the Modbus honeypot in the client-mode (e.g., 

MTU/HMI). The specific function code is not supported by the existing honeypots. 

Spec ID SPEC-F4 Priority Medium 

Prepared by UOWM Tested by UOWM 



  D3.3 
  Version 1.0 
 

 

© SDN microSENSE consortium      Page | 109 
Public document 

  

Pre-

condition(s) 

- 

Test steps 

1 The Modbus honeypot was deployed successfully in a VM. 

2 The Modbus honeypot is executed in the client-mode (e.g., MTU/HMI), using the following 

command: 

python3 modbus_client.py 

3 A Modbus/TCP request packet with the function code 22 is generated.  

Input data - 

Result The following image depicts the generation and transmission of the Modbus/TCP 

request packet with the function code 22.  

 
Figure 54. Generation and transmission of the Modbus/TCP request packet 

with the function code 22 (Mask Write Register). 

Subsequently, the following image illustrates the request Modbus/TCP packet with 

the function code 22 (Mask Write Register), using Wireshark. 

 
Figure 55. Modbus/TCP function code 22 (Mask Write Register) request packet 

in Wireshark. 

Test Case 

Result 

Achieved 

 

Test Case ID HP_Modbus_05 Component Modbus honeypot 



  D3.3 
  Version 1.0 
 

 

© SDN microSENSE consortium      Page | 110 
Public document 

  

Description This unit test aims to validate that the Modbus function code 22 (Mask Write 

Register) is successfully supported by the Modbus honeypot as a server (e.g., RTU). 

The specific function code is not supported by the existing honeypots. 

Spec ID SPEC-F4 Priority Medium 

Prepared by UOWM Tested by UOWM 

Pre-

condition(s) 

- 

Test steps 

1 The Modbus honeypot was deployed successfully in a VM. 

2 The Modbus honeypots is executed in the server-mode (e.g., RTU), using the following 

commands: 

1. cd Documents 

2. ./run-modbus_honeypot.sh 

3 A Modbus/TCP request packet with the function code 22 (Mask Write Register) is sent to the 

Modbus honeypot.  

4 The Modbus honeypot responds appropriately to the Modbus/TCP request packet with the 

function code 22 (Mask Write Register) with an appropriate Modbus/TCP response packet. 

Input data Modbus/TCP request packet with the function code 22 (Mask Write Register). 

Result The following image depicts the response of the Modbus honeypot. 

 
Figure 56. Response of the Modbus honeypot, which operates as a server in 

a Modbus/TCP function 22 (Mask Write Register) request packet. 

Subsequently, the following image illustrates the respective response Modbus/TCP 

packet, using Wireshark. 



  D3.3 
  Version 1.0 
 

 

© SDN microSENSE consortium      Page | 111 
Public document 

  

 
Figure 57. Modbus/TCP function code 22 (Mask Write Register) response 

packet generated by the Modbus honeypot.  

Test Case 

Result 

Achieved 

 

Test Case ID HP_Modbus_06 Component Modbus honeypot 

Description This unit test aims to validate that the Modbus function code 23 (Read/Write Multiple 

Registers) is successfully supported by the Modbus honeypot in the client-mode (e.g., 

MTU/HMI). The specific function code is not supported by the existing honeypots. 

Spec ID SPEC-F4 Priority Medium 

Prepared 

by 

UOWM Tested by UOWM 

Pre-

condition(s) 

- 

Test steps 

1 The Modbus honeypot was deployed successfully in a VM. 

2 The Modbus honeypot is executed in the client-mode (e.g., MTU/HMI), using the following 

command: 

python3 modbus_client.py 

3 A Modbus/TCP request packet with the function code 23 (Read/Write Multiple Registers) is 

generated.  

Input data - 

Result The following image illustrates the request Modbus/TCP packet with the function 

code 23 (Read/Write Multiple Registers), using Wireshark. 



  D3.3 
  Version 1.0 
 

 

© SDN microSENSE consortium      Page | 112 
Public document 

  

 
Figure 58. Modbus/TCP function code 23 (Read/Write Multiple Registers) 

request packet in Wireshark. 

Test Case 

Result 

Achieved 

 

Test Case ID HP_Modbus_07 Component Modbus honeypot 

Description This unit test aims to validate that the Modbus function code 23 (Read/Write 

Multiple Registers) is successfully supported by the Modbus honeypot as a server 

(e.g., RTU). The specific function code is not supported by the existing honeypots. 

Spec ID SPEC-F4 Priority Medium 

Prepared by UOWM Tested by UOWM 

Pre-

condition(s) - 

Test steps 

1 The Modbus honeypot was deployed successfully in a VM. 

2 The Modbus honeypots is executed in the server-mode (e.g., RTU), using the following 

commands: 

1. cd Documents 

2. ./run-modbus_honeypot.sh 

3 A Modbus/TCP request packet with the function code 23 (Read/Write Multiple Registers) is 

sent to the Modbus honeypot.  

4 The Modbus honeypot responds appropriately to the Modbus/TCP request packet with the 

function code 23 (Read/Write Multiple Registers) with an appropriate Modbus/TCP 

response packet. 



  D3.3 
  Version 1.0 
 

 

© SDN microSENSE consortium      Page | 113 
Public document 

  

Input data Modbus/TCP request packet with the function code 23 (Read/Write Multiple 

Registers) 

Result The following image depicts the response of the Modbus honeypot. 

 
Figure 59. Response of the Modbus honeypot, which operates as a server in a 

Modbus/TCP function 23 (Read/Write Multiple Registers) request packet. 

Subsequently, the following image illustrates the respective response Modbus/TCP 

packet, using Wireshark. 

 
Figure 60. Modbus/TCP function code 23 (Read/Write Multiple Registers) 

response packet generated by the Modbus honeypot.  

Test Case 

Result 

Achieved 

 

Test Case ID HP_Modbus_08 Component Modbus honeypot 

Description This unit test aims to validate that the Modbus function code 24 (Read FIFO Queue) 

is successfully supported by the Modbus honeypot in the client-mode (e.g., 

MTU/HMI). The specific function code is not supported by the existing honeypots. 

Spec ID SPEC-F4 Priority Medium 

Prepared by UOWM Tested by UOWM 

Pre-

condition(s) - 

Test steps 

1 The Modbus honeypot was deployed successfully in a VM. 



  D3.3 
  Version 1.0 
 

 

© SDN microSENSE consortium      Page | 114 
Public document 

  

2 The Modbus honeypot is executed in the client-mode (e.g., MTU/HMI), using the following 

command: 

python3 modbus_client.py 

3 A Modbus/TCP request packet with the function code 24 (Read FIFO Queue) is generated.  

Input data - 

Result The following image illustrates the request Modbus/TCP packet with the function 

code 24 (Read FIFO Queue), which is generated by the Modbus honeypot. 

 
Figure 61. Modbus/TCP function code 24 request packet generated by the 

Modbus honeypot. 

The following image illustrates the request Modbus/TCP packet with the function 

code 24 (Read FIFO Queue), using Wireshark. 

 
Figure 62. Modbus/TCP function code 24 (Read FIFO Queue) request packet 

generated by the Modbus honeypot in Wireshark. 

Test Case 

Result 

Achieved 

 

Test Case ID HP_Modbus_09 Component Modbus honeypot 

Description This unit test aims to validate that the Modbus function code 24 (Read FIFO Queue) 

is successfully supported by the Modbus honeypot as a server (e.g., RTU). The 

specific function code is not supported by the existing honeypots. 

Spec ID SPEC-F4 Priority Medium 



  D3.3 
  Version 1.0 
 

 

© SDN microSENSE consortium      Page | 115 
Public document 

  

Prepared by UOWM Tested by UOWM 

Pre-

condition(s) 
- 

Test steps 

1 The Modbus honeypot was deployed successfully in a VM. 

2 The Modbus honeypot is executed in the server-mode (e.g., RTU), using the following 

commands: 

1. cd Documents 

2. ./run-modbus_honeypot.sh 

3 A Modbus/TCP request packet with the function code 24 (Read FIFO Queue) is sent to the 

Modbus honeypot.  

4 The Modbus honeypot responds appropriately to the Modbus/TCP request packet with the 

function code 24 (Read FIFO Queue) with an appropriate Modbus/TCP response packet. 

Input data Modbus/TCP request packet with the function code 24 (Read FIFO Queue) 

Result The following image depicts the response of the Modbus honeypot. 

 
Figure 63. Response of the Modbus honeypot, which operates as a server in 

a Modbus/TCP function 24 (Read FIFO Queue) request packet. 

Subsequently, the following image illustrates the respective response Modbus/TCP 

packet, using Wireshark. 

 
Figure 64. Modbus/TCP function code 24 (Read FIFO Queue) response packet 

generated by the Modbus honeypot.  

Test Case 

Result 

Achieved 



  D3.3 
  Version 1.0 
 

 

© SDN microSENSE consortium      Page | 116 
Public document 

  

 

Test Case ID HP_Modbus_10 Component Modbus honeypot 

Description This unit test aims to validate that the Modbus/TCP packets generated by the 

Modbus honeypot (which operates as a server) are similar to those of the real 

device which is emulated. To this end, the network traffic generated by the Modbus 

honeypot was compared with the network traffic of a real Unitronics Vision 700 

PLC.  

Spec ID SPEC-F4 Priority High 

Prepared by UOWM Tested by UOWM 

Pre-

condition(s) 
- 

Test steps 

1 The Modbus honeypot was deployed successfully in a VM. 

2 The Modbus honeypot is executed in the server-mode (e.g., RTU), using the following 

commands: 

1. cd Documents 

2. ./run-modbus_honeypot.sh 

3 The same Modbus/TCP request packets are transmitted to the Modbus honeypot and the 

real Unitronics Vision 700 PLC. 

Input data Appropriate Modbus/TCP request packets were transmitted to the Modbus 

honeypot and the real Unitronics Vision 700 PLC. 

Result The following images show that the Modbus network traffic generated by the 

Modbus honeypot is similar to that produced by the real Unitronics Vision 700 PLC. 

 
Figure 65. The Modbus/TCP network traffic generated by the Modbus 

honeypot 



  D3.3 
  Version 1.0 
 

 

© SDN microSENSE consortium      Page | 117 
Public document 

  

 
Figure 66. The Modbus/TCP network traffic generated by the real Unitronics 

Vision 700 PLC 

Test Case 

Result 

Achieved 

 

Test Case ID HP_Modbus_11 Component Modbus honeypot 

Description This unit test aims to validate that the payload of the Modbus/TCP packets 

generated by the Modbus honeypot (which operates as a server) is similar to the 

payload of the Modbus/TCP packets produced by a real industrial device. To this 

end, a real Unitronics Vision 700 PLC was used. 

Spec ID SPEC-F4 Priority High 

Prepared by UOWM Tested by UOWM 

Pre-

condition(s) 
- 

Test steps 

1 The Modbus honeypot was deployed successfully in a VM. 

2 The Modbus honeypot is executed in the server-mode (e.g., RTU), using the following 

commands: 

1. cd Documents 

2. ./run-modbus_honeypot.sh 

3 The same Modbus/TCP request packets are transmitted to the Modbus honeypot and the 

real Unitronics Vision 700 PLC. 

Input data Appropriate Modbus/TCP request packets were transmitted to the Modbus 

honeypot and the real Unitronics Vision 700 PLC. 

Result The following figures show that the payload of the Modbus/TCP packets generated 

by the Modbus honeypot is similar to the payload of the Modbus/TCP packets 

produced by the real Unitronics Vision 700 PLC. 



  D3.3 
  Version 1.0 
 

 

© SDN microSENSE consortium      Page | 118 
Public document 

  

 
Figure 67. Standard deviation of the data against the number of epochs.  

 
Figure 68. Arithmetic mean of the data against the number of epochs. 

Test Case 

Result 

Achieved 

 

Test Case ID HP_Modbus_12 Component Modbus honeypot 

Description This unit test aims to validate that the Modbus honeypot (operating as a server) can 

generate normally logs if an entity (e.g., potential cyberattacker) interracts with it. 

Spec ID SPEC-F4 Priority High 



  D3.3 
  Version 1.0 
 

 

© SDN microSENSE consortium      Page | 119 
Public document 

  

Prepared by UOWM Tested by UOWM 

Pre-

condition(s) 
- 

Test steps 

1 The Modbus honeypot was deployed successfully in a VM. 

2 The Modbus honeypot is executed in the server-mode (e.g., RTU), using the following 

commands: 

1. cd Documents 

2. ./run-modbus_honeypot.sh 

3 The following Nmap NSE command is executed against the Modbus honeypot. 

nmap -Pn –script modbus-discover.nse –script-args=‘modbus-discover.aggresive=true‘ -p 502 

94.66.198.248 

Input data - 

Result The following image shows the logs generated by the Modbus honeypot. 

 
Figure 69. Modbus honeypot (server) logs.  

Test Case 

Result 

Achieved 

 

6.4 Honeypot Manager 

 

Test Case 

ID 

HM_01 Component Honeypot Manager 

Description Deployment with the Honeypot Manager the IEC61850 Honeypot 

SPEC ID SPEC-OP1, SPEC-OP3 Priority Medium 

Prepared 

by 

TECNALIA Tested by TECNALIA 



  D3.3 
  Version 1.0 
 

 

© SDN microSENSE consortium      Page | 120 
Public document 

  

Pre-

condition(s

) 

• A target host to contain the VM with the honeypot has to be registered in the 

application. 

 
• The honeypot IEC61850 has to be registered in the application. 

 
 

• The OVA file corresponding to the honeypot IEC61850 must exist in the path 

indicated in the honeypot info. 

 
• The port 22 has to be open in the target host. 

Test steps  

1 Login in the Honeypot Manager application. 



  D3.3 
  Version 1.0 
 

 

© SDN microSENSE consortium      Page | 121 
Public document 

  

 

2 Click on the option “Honeypots → Manage honeypots”, and prepare the deployment clicking 

on the “tool” icon corresponding to the IEC61850 honeypot. 

 

3 Select the target host, and the number of instances wanted to be deployed. Then, click on the 

“plus” icon. 

  

The deployment will be prepared. Finally, press the “Prepare” button. 

 

4 In “Tasks → Control panel”, a new task appears as PENDING (under the section “Tasks from 

‘Security operator’”). 



  D3.3 
  Version 1.0 
 

 

© SDN microSENSE consortium      Page | 122 
Public document 

  

 

5 Click on the “Deploy” button. 

 

Wait for the honeypot to be deployed. 

 

When deployed, the VM containing the honeypot has its own assigned IP address. 

 

Input data Although the input data are built using the GUI, the REST function in charge of the 

deployment receives a Task in JSON format (as body): 

 

And the previous state of the Task (as path variable): 

 

Result The honeypot has to be deployed properly. 



  D3.3 
  Version 1.0 
 

 

© SDN microSENSE consortium      Page | 123 
Public document 

  

 

Enter the VM and type the command “pm2 status“. The honeypot has to be “online“. 

 

Test Case 

Result 

Achieved 

 

  



  D3.3 
  Version 1.0 
 

 

© SDN microSENSE consortium      Page | 124 
Public document 

  

7 Conclusions  
This deliverable aims at describing the architecture and detailed designed of the honeypots that 

emulate the industrial protocols and the Honeypot Manager developed as part of the SDN-microSENSE 

Risk Assessment Framework (S-RAF).  

The industrial protocols honeypots are designed to serve as a decoy mechanism to possible attackers, 

facilitating early detection of threats and attack patterns, and the mitigation of potential risks. The 

honeypots developed in SDN-microSENSE cover the most relevant industrial protocols used in the 

EPES. The industrial protocols emulated are: i) IEC 61850, ii) iED60870-5-104 and iii) Modbus.  

Complementary to these three different honeypots, SDN-microSENSE project offers the Honeypot 

Manager that has two functionalities: i) To provide means to develop in an automatic way those 

honeypots that the security operator or manager decide to deploy in the network and ii) to process 

the information about unknown anomalies (like zero-day attacks) and to indicate to the SDN controller 

the required information to re-arrange the honeypots network in order to collect information for 

unknown anomalies.  

The deliverable also summarizes the innovations brought by Industrial protocols honeypots and 

Honeypot Manager with respect to the state of the art (section 3.2). 

The development of the honeypots in SDN-microSENSE has taken into account the state of the art of 

the honeypots existing (section 2 and 3) together with the specification presented in the deliverable 

D2.3 of this project [SMS20-D23] (section 4). 

The present document gathers the overall functional and architectural overview and the detailed 

description of the developed components’ designs including the interfaces offered to other 

components in the SDN-microSENSE reference architecture. Furthermore, this document presents the 

guides for the deployment of these components.  

The document also collects the results of the unit tests performed over the honeypots and the 

Honeypot Manager, but the communication with the other components not developed in this task will 

be done later during the integration activities (WP7) and will be documented properly in the 

deliverable D7.5 

  



  D3.3 
  Version 1.0 
 

 

© SDN microSENSE consortium      Page | 125 
Public document 

  

References 
[60870] IEC 60870-5-104:2006+AMD1:2016 CSV - Telecontrol equipment and systems - Part 

5-104: Transmission protocols - Network access for IEC 60870-5-101 using standard 
transport profiles. 

[61850] IEC 61850:2020. Communication networks and systems for power utility automation 

[61850-6] IEC 61850-6:2009 Communication networks and systems for power utility 
automation - Part 6: Configuration description language for communication in 
electrical substations related to IEDs. Available: 
https://webstore.iec.ch/publication/6013 [Accessed: 25- Jun- 2020]. 

[AAO13] Ayeni, O. A., Alese, B. K., & Omotosho, L. O. (2013). Design and implementation of a 
medium interaction honeypot. International Journal of Computer Applications, 975, 
8887. 

[ABH03] Abhilash Verma: Production Honeypots. An Organizations view“, GIAC October 2003 

[ATE20] A European H2020 Project – ATENA ", A European H2020 Project - ATENA, 2020. 
[Online]. Available: https://www.atena-h2020.eu/. [Accessed: 25- Jun- 2020]. 

[BJM+14] D. Buza, F. Juhász, G. Miru, M. Félegyházi and T. Holczer, "CryPLH: Protecting Smart 
Energy Systems from Targeted Attacks with a PLC Honeypot", Lecture Notes in 
Computer Science, pp. 181-192, 2014. Available: 10.1007/978-3-319-10329-7_12 
[Accessed 25 June 2020]. 

[CAB+17] Chovancová, E., Adám, N., Baláž, A., Pietriková, E., Feciľak, P., Šimoňák, S., & 
Chovanec, M. (2017). Securing distributed computer systems using an advanced 
sophisticated hybrid honeypot technology. Computing and Informatics, 36(1), 113-
139. 

[CLL+18] J. Cao, W. Li, J. Li and B. Li, "DiPot: A Distributed Industrial Honeypot System", Lecture 
Notes in Computer Science, pp. 300-309, 2018. Available: 10.1007/978-3-319-73830-
7_30 [Accessed 25 June 2020]. 

[COH] Conpot: Honeypot de Sistemas de Control Industrial. Available at 
https://revista.seguridad.unam.mx/numero29/conpot-honeypot-de-sistemas-de-
control-industrial [Accessed: 25- Jun- 2020]. 

[COL17] 
 

G. Collins, "Pymodbus Documentation", 2017.  

[CON20] CONPOT ICS/SCADA Honeypot. Available at conpot.org. [Accessed: 25- Jun- 2020]. 

[CRW04] Clarke, G., Reynders, D., & Wright, E. (2004). Practical modern SCADA protocols: 
DNP3, 60870.5 and related systems. Newnes 

[DAL19] C. Dalamagkas et al., "A Survey On Honeypots, Honeynets And Their Applications On 
Smart Grid", 2019 IEEE Conference on Network Softwarization (NetSoft), 2019. 
Available: 10.1109/netsoft.2019.8806693 [Accessed 19 June 2020]. 

[DSI+19] 

 

C. Dalamagkas, P. Sarigiannidis, D. Ioannidis, E. Iturbe, O. Nikolis, F. Ramos, E. Rios, 
A. Sarigiannidis and D. Tzovaras, "A Survey On Honeypots, Honeynets And Their 
Applications On Smart Grid", in 2019 IEEE Conference on Network Softwarization 
(NetSoft), 2019. 

https://webstore.iec.ch/publication/6013
https://www.atena-h2020.eu/
https://revista.seguridad.unam.mx/numero29/conpot-honeypot-de-sistemas-de-control-industrial
https://revista.seguridad.unam.mx/numero29/conpot-honeypot-de-sistemas-de-control-industrial


  D3.3 
  Version 1.0 
 

 

© SDN microSENSE consortium      Page | 126 
Public document 

  

[FDF+18] W. Fan, Z. Du, D. Fernández and V. A. Villagrá, "Enabling an Anatomic View to 
Investigate Honeypot Systems: A Survey," in IEEE Systems Journal, vol. 12, no. 4, pp. 
3906-3919, Dec. 2018, doi: 10.1109/JSYST.2017.2762161. 

[HCS08] 

  

Huitsing, R. Chandia, M. Papa, and S. Shenoi, “Attack taxonomies forthe modbus 
protocols,”International Journal of Critical Infrastructure Protection, vol. 1, pp. 37–
44, 12 2008. 

 [HDEF] Honeypot definition. Available at: 
https://searchsecurity.techtarget.com/definition/honey-pot [Accessed 22 Jun. 
2020]. 

[IECSTD] Core IEC Standards Available: https://www.iec.ch/smartgrid/standards/ . [Accessed: 
28- Jun- 2020]. 

[KG15] K. Koltys and R. Gajewski, “Shape: A honeypot for electric power substation,” Journal 
of Telecommunications and Information Technology, no. 4, p. 37, 2015. 

[KGV+17] Karthikeyan, R., Geetha, D. T., Vijayalakshmi, S., & Sumitha, R. (2017). Honeypots for 
Network Security. International journal for Research & Development in Technology, 
7(2), 62-66. 

[KMS14] Kaur, T., Malhotra, V., & Singh, D. (2014). Comparison of network security tools-
firewall, intrusion detection system and Honeypot. Int. J. Enhanced Res. Sci. Technol. 
Eng, 200204. 

[LIB61850-20] Open Source Libraries for IEC 61850. Available: https://libiec61850.com/libiec61850 
[Accessed: 25- Jun- 2020].  

[MAS19] Ahamed Mashhoor, “Benefits of the honeypots”, 2019. [online]. Available at: 
https://www.egscyber.com/library/benefits-of-honeypots/. [Accessed: 20/07/ 
2020]. 

[MCG+17] D. Mashima, B. Chen, P. Gunathilaka and E. L. Tjiong, "Towards a grid-wide, high-
fidelity electrical substation honeynet," 2017 IEEE International Conference on 
Smart Grid Communications (SmartGridComm), Dresden, 2017, pp. 89-95, doi: 
10.1109/SmartGridComm.2017.8340689. 

[MLC19] D. Mashima, Y. Li and B. Chen, "Who's Scanning Our Smart Grid? Empirical Study on 
Honeypot Data", 2019 IEEE Global Communications Conference (GLOBECOM), 2019. 
Available: 10.1109/globecom38437.2019.9013835 [Accessed 19 June 2020]. 

[MODBUS] "MODBUS APPLICATION PROTOCOL SPECIFICATION V1.1b", Modbus-IDA, 2020. 
 

[MRG19] Matoušek, P., Ryšavý, O., & Grégr, M. (2019, September). Increasing Visibility of IEC 
104 Communication in the Smart Grid. In 6th International Symposium for ICS & 
SCADA Cyber Security Research 2019 6 (pp. 21-30). 

[MZG12] Mansoori, M., Zakaria, O., & Gani, A. (2012). Improving exposure of intrusion 
deception system through implementation of hybrid honeypot. The International 
Arab Journal of Information Technology, 9(5), 436-444. 

[NW16] M. Nawrocki, M. Wählisch et al “A survey on honeypot software and data analysis.” 
arXiv preprint arXiv:1608.06249. [Accessed 22 June 2020]. 

[NWS+16] Nawrocki, M., Wählisch, M., Schmidt, T.C., Keil, C., & Schönfelder, J. (2016). A Survey 
on Honeypot Software and Data Analysis. ArXiv, abs/1608.06249. 

[ONF-15] Open Networking Foundation. OpenFlow Switch Specification. Version 1.5.1 
(Protocol version 0x06 ). March 26, 2015. ONF TS-025. [online] Available at: 

https://searchsecurity.techtarget.com/definition/honey-pot
https://www.iec.ch/smartgrid/standards/
https://libiec61850.com/libiec61850
https://www.egscyber.com/library/benefits-of-honeypots/


  D3.3 
  Version 1.0 
 

 

© SDN microSENSE consortium      Page | 127 
Public document 

  

https://www.opennetworking.org/wp-content/uploads/2014/10/openflow-switch-
v1.5.1.pdf [Accessed 26 Feb. 2020]. 

[PB19]  PESATORI, M., & BARLOCCO, M. (2019). Design and implementation of a high 
interaction honeypot for a distributed control system. 

[PH07] N. Provos and T. Holz, Virtual Honeypots: From Botnet Tracking to Intrusion 
Detection. Addison-Wesley Professional, 2007. 

[PRO04] Provoset al., “A virtual honeypot framework.” inUSENIXSecurity Symposium, vol. 
173, 2004, [Accessed 22 June 2020]. 

[PSL+20] [UOWM1] D. Pliatsios, P. Sarigiannidis, T. Lagkas, and A. G. Sarigiannidis, “A Survey  
on  SCADA  Systems:  Secure  Protocols,  Incidents,  Threats  and Tactics,”IEEE 
Communications Surveys & Tutorials, 2020. 
 

[PYY+19] Z. Pan, W. Yu, X. Yi, A. Khan, F. Yuan and Y. Zheng, "Recent Progress on Generative 
Adversarial Networks (GANs): A Survey", IEEE Access, vol. 7, pp. 36322-36333, 2019. 
Available: 10.1109/access.2019.2905015 [Accessed 29 June 2020]. 
 

[RIS13] L. Rist, “Introducing Conpot,” 2013. [Online]. Available: 
https://www.honeynet.org/node/1047 

[RNK+20] N. Rowe, T. Nguyen, M. Kendrick, Z. Rucker, D. Hyun and J. Brown, "Creating 
Convincing Industrial-Control-System Honeypots", Proceedings of the 53rd Hawaii 
International Conference on System Sciences, 2020. Available: 
10.24251/hicss.2020.228 [Accessed 19 June 2020]. 

[RRM+18] R.  R.  S,  R.  R,  M.  Moharir,  and  S.  G,  “Scapy-  a  powerful  interactivepacket  
manipulation  program,”  in 2018  International  Conference  onNetworking, 
Embedded and Wireless Systems (ICNEWS), 2018, pp. 1–5. 

[RSL+20]  P. Radoglou-Grammatikis, I. Siniosoglou, T. Liatifis, A. Korouniadis, K. Rompolos and 
P. Sarigiannidis, “Implementation and Detection of Modbus Cyberattacks: A Case 
Study,” 10th International Conference on Modern Circuits and Systems Technologies 
(MOCAST), 2020, to appear. 
 

[SER18] "SerIoT – Secure and Safe Internet of Things", Seriot-project.eu, 2018. [Online]. 
Available: https://seriot-project.eu/. [Accessed: 25- Jun- 2020]. 

[SIS16] SISSDEN", Sissden.eu, 2020. [Online]. Available: https://sissden.eu/. [Accessed: 25- 
Jun- 2020] 

[SMS20-D22] SDN-microSENSE Deliverable D2.2: . User & Stakeholder, Security and Privacy 
Requirements. Feb 2020. 

[SMS20-D23] SDN-microSENSE Deliverable D2.3 Platform Specifications and Architecture 

[SMS20-D24] SDN-microSENSE Deliverable D2.4. Pilot, Demonstration & Evaluation Strategy  

[SMS20-D51] SDN-microSENSE Deliverable D5.1XL-SIEM System.  

[SOY15] A. Serbanescu, S. Obermeier and D. Yu, "ICS Threat Analysis Using a Large-Scale 
Honeynet", 2015. Available: 10.14236/ewic/ics2015.3 [Accessed 19 June 2020]. 

https://www.honeynet.org/node/1047
https://seriot-project.eu/
https://sissden.eu/


  D3.3 
  Version 1.0 
 

 

© SDN microSENSE consortium      Page | 128 
Public document 

  

[SPE19] "SPEAR Project", Spear2020.eu, 2019. [Online]. Available: 
https://www.spear2020.eu/.  [Accessed: 19- Jun- 2020]. 

[SPE20-D43] SPEAR project Deliverable D4.3 – AMI Honeypots and Game-theory based Honeypot 
Manager 

[SPI-03] L. Spitzner, “Honeypots: catching the insider threat,” in 19th Annual Computer 
Security Applications Conference, 2003. Proceedings., no. Acsac. IEEE, 2003, pp. 
170–179. [Online]. Available: http://ieeexplore.ieee.org/document/1254322/ 

[SR01] The Value of Honeypots, Part One: Definitions and Values of Honeypots by Lance 
Spitzner with extensive help from Marty Roesch last updated October 10, 2001 

[TIT15] “Benefits of Honeypots – There’s More to Honeypots Than Wasting Hackers’ Time”, 
April 2015, [Online]. Available: https://www.webtitan.com/blog/honeypots-how-
far-can-you-go-in-wasting-a-hackers-time/. [Accessed: 01/07/2020]. 

[TR-IEC104] “Description and analysis of IEC 104 Protocol” Technical Report no. FIT-TR-2017-12. 
Faculty of Information TechnologyBrno University of TechnologyBrno, Czech 
Republic. Available at https://www.fit.vut.cz/research/publication-file/11570/TR-
IEC104.pdf  

[VKS15] A. G. Voyiatzis, K. Katsigiannis, and S. Koubias, “A  modbus/tcpfuzzer for testing 
internetworked industrial systems,” in 2015 IEEE 20thConference  on  Emerging  
Technologies  &  Factory  Automation  (ETFA).IEEE, 2015, pp. 1–6. 
 

[WIC06] Wicherski, G. (2006). Medium interaction honeypots. German Honeynet Project. 

[WW19] Wang, H., & Wu, B. (2019, March). SDN-based hybrid honeypot for attack capture. 
In 2019 IEEE 3rd Information Technology, Networking, Electronic and Automation 
Control Conference (ITNEC) (pp. 1602-1606). IEEE. 

[YAK18] Project YAKSHA – Cybersecurity Awareness and Knowledge Systemic High-level 
Application", Project-yaksha.eu, 2018. [Online]. Available: https://project-
yaksha.eu/. [Accessed: 25- Jun- 2020]. 

[YU19] C. Yinka-Banjo and O. Ugot, "A review of generative adversarial networks and its 
application in cybersecurity", Artificial Intelligence Review, vol. 53, no. 3, pp. 1721-
1736, 2019. Available: 10.1007/s10462-019-09717-4. 
 

  
 

https://www.spear2020.eu/
http://ieeexplore.ieee.org/document/1254322/
mailto:lance@honeynet.org
mailto:lance@honeynet.org
https://project-yaksha.eu/
https://project-yaksha.eu/

